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Abstract: SH3 domains constitute an important class of protein modules involved in a variety of
cellular functions. They participate in protein-protein interactions via their canonical ligand binding
interfaces composed of several evolutionarily conserved aromatic residues forming binding grooves
for typical (PxxP) and atypical (PxxxPR, RxxK, RKxxY) binding motifs. The calcium/calmodulin-
dependent serine protein kinase (CASK)-interacting protein 1, or Caskin1, a multidomain scaffold
protein regulating the cortical actin filaments, is enriched in neural synapses in mammals. Based
on its known interaction partners and knock-out animal studies, Caskin1 may play various roles
in neural function and it is thought to participate in several pathological processes of the brain.
Caskin1 has a single, atypical SH3 domain in which key aromatic residues are missing from the
canonical binding groove. No protein interacting partner for this SH3 domain has been identified
yet. Nevertheless, we have recently demonstrated the specific binding of this SH3 domain to the
signaling lipid mediator lysophospatidic acid (LPA) in vitro. Here we report the solution NMR
structure of the human Caskin1 SH3 domain and analyze its structural features in comparison with
other SH3 domains exemplifying different strategies in target selectivity. The key differences revealed
by our structural study show that the canonical binding groove found in typical SH3 domains
accommodating proline-rich motifs is missing in Caskin1 SH3, most likely excluding a bona fide
protein target for the domain. The LPA binding site is distinct from the altered protein binding
groove. We conclude that the SH3 domain of Caskin1 might mediate the association of Caskin1 with
membrane surfaces with locally elevated LPA content.

Keywords: caskin1; SH3 domain; lipid signaling; lysophosphatidic acid; protein-lipid-interaction;
NMR spectroscopy; molecular recognition

1. Introduction

The calcium/calmodulin-dependent serine protein kinase (CASK)-interacting protein
1 or Caskin1, enriched in neuronal synapses in mammals, is an adaptor protein regulating
cortical actin filaments [1]. Similar to its isoform, Caskin2, it is a multidomain protein
containing six ankyrin repeats, a single Src homology 3 (SH3) domain, two sterile αmotif
(SAM) domains, an intrinsically disordered proline-rich segment, and a unique C-terminal
conserved region [1,2]. In a complex with CASK, Caskin1 associates with the cytoplasmic
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tail of neurexin1, a neuron specific adhesion molecule [1]. Regarding the CASK-Caskin1
interaction, a short linear motif in the unstructured linker connecting the SH3 and SAM
domains of Caskin1 is known to be responsible for binding to CASK [3]. Similar functional
binding motifs were identified in Mint1 and TIAM1, suggesting that Caskin1 may compete
with these proteins for CASK binding in vivo [3].

Previously, we demonstrated that Abl interactor-2 (Abi-2) binds to the proline-rich,
unstructured region of Caskin1 [2]. Besides CASK and Abi-2, our yeast two hybrid study
identified several other proteins as potential interactors of Caskin1, including EphA2
(receptor tyrosine kinase), L1CAM (cell adhesion molecule), Myosin IB (cytoplasmic motor),
Nck1 (adaptor), Neurexin 2 (neuronal cell adhesion molecule), Stathmin-like 3 protein
(regulator of microtubule stability), Synaptotagmin (mediator of Ca2+-regulated vesicle
fusion), Septin 4 (cell cycle regulator), and Siah1 (ubiquitin ligase) [2]. Additionally, a
homolog of Caskin1 in Drosophila was found to be necessary for embryonic motor axon
guidance by interacting with the leukocyte common antigen-related (Lar) receptor protein
tyrosine phosphatase [4]. An SH2/SH3 adaptor protein, Dock (homolog of human Nck in
Drosophila), was also identified as a binding partner of Caskin in the same work [4]. While
Lar binds to the N-terminal SAM domain of Caskin, Dock has a different binding site,
suggesting that they may form a tripartite complex in vivo. [4]. We have also demonstrated
the binding of mammalian Nck to Caskin1 [5]. Moreover, we have shown that Nck recruits
Caskin1 to EphB1, a receptor tyrosine kinase responsible for cell-cell contact dependent
signalization [6]. In the complex, the SH2 domain of Nck binds to the activated receptor,
while the SH3 domains of Nck bind the proline-rich C-terminal region of Caskin1 [5].
Intriguingly, a complex formation of the receptor, adaptor, and scaffold proteins results in
tyrosine phosphorylation of Caskin1 on its SH3 domain.

Caskin1 has been associated with a number of pathological conditions. A study
investigating transcriptomic and proteomic changes in a mouse model strain of autism
spectrum disorders (ASDs) identified Caskin1 as a novel gene associated with the ASD-like
phenotype [7]. Furthermore, down-regulation of the expression of Caskin1 by a microRNA
(miR-21a-5p) has been found to promote the proliferation of porcine hemagglutinating
encephalomyelitis virus [8]. Additionally, Caskin1 has been shown to be downregulated in
an ischemia/reperfusion injury rat model system both at the mRNA and protein levels,
indicating a potential role of Caskin1 in the pathomechanism of stroke [9]. It has also been
shown that prenatal exposure to ethanol induces a significant decrease in the expression of
Caskin1 in rats, indicating that maternal consumption of alcohol may affect Caskin-related
synaptic functions in the brain [10]. Caskin1 may also be involved in the development of
anaplastic large-cell lymphoma (ALCL) by being associated with nucleophosmin-anaplastic
lymphoma kinase, a chimeric oncogene constitutively overexpressed in ALCL patients [11].
Moreover, it has been shown that the concentration of Caskin1 in the spinal dorsal horn
increases during chronic pain and it contributes to various behavioral phenotypes, in-
cluding nociception, gait, memory, and stress response in broad regions of the central
nervous system [12]. More recently, a postsynaptic role of Caskins has been demonstrated
in knockout mice with indications that they affect learning abilities by regulating spine
morphology and AMPA receptor localization [13]. Additionally, the Caskin1 gene has
been found to have deletions in some patients with TSC2/PKD1 contiguous gene deletion
syndrome [14,15].

The SH3 domain of Caskins is atypical in a sense that, unlike in conventional SH3
domains [16–18], key conserved aromatic residues necessary for the recognition of canonical
(PxxP) and non-canonical Pro-containing motifs in target signaling proteins are missing [19]
(Figure 1). Accordingly, no Pro-rich interacting partners have been identified yet. Instead,
as we have shown recently, Caskin1 SH3 selectively binds LPA in vitro [20], a signaling-
born lysophospholipid mediator activating bona fide G-protein coupled receptors [21,22].
Specifically, as revealed by intrinsic tryptophan measurements, the SH3 domain of Caskin1
selectively binds to oleoyl (18:1) LPA, whereas no binding is observed for oleoyl LPC
bearing a phosphocholine headgroup or for the related sphingolipid mediator sphingosine-
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1-phosphate [20]. Testing the effect of the saturation level of the hydrocarbon chain on
binding further suggested that oleate esterified LPA or oleoyl-cyclic LPA is preferred
over saturated palmitoyl LPA. Both fluorescence and ITC measurements have indicated
a dependence of the binding interaction on the association state of LPA, with preferred
binding of ~nM affinity to micellar LPA, suggesting that the SH3 domain has a preference
for LPA-containing lipid surfaces compared to monomeric LPA. Chemical shift perturbation
of 15N-HSQC spectra of Caskin1 SH3 domain indicates no major structural changes upon
LPA addition, but reveals a discrete set of amino acids affected by LPA binding [20]
(Figure S1). Mapping LPA-induced chemical shift changes to a homology model built
based on the solution NMR structure of the SH3 domain of human Caskin2 has suggested
that amino acids involved in LPA binding are likely to be distinct from the canonical
proline-rich ligand binding groove in the SH3 domain of Src-kinase [20]. The goal of the
present study was to obtain an atomic-level structure of human Caskin1 SH3 and analyze
its structural features in comparison with SH3 domains known to bind canonical or non-
canonical proline-rich peptides. The presented solution NMR structure provides structural
evidence for a missing typical peptide binding groove seen in other SH3 domains as well
as evidence that the binding surface for LPA is distinct from this altered peptide binding
groove, supporting our hypothesis that the SH3 domain of Caskin1 has specialized for the
binding of membrane surfaces with locally elevated LPA content during evolution.
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accession P00520, PDB: 1ABO; Grap2: mouse GRB2-related adhesion protein 2, C-terminal SH3 domain, residues 262–322, 
UniProt accession O89100, PDB: 1OEB; Lyn: human tyrosine-kinase Lyn, residues 62–163, UniProt accession P07948, PDB: 
1W1F; Dnmbp: human dynamin-binding protein C-terminal SH3 domain, residues 1512–1576, UniProt accession Q6XZF7, 
PDB: 4CC7; Itsn1: human Intersectin-1, residues 912–971, UniProt accession Q15811-1, PDB: 4IIM. 
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The coding sequence corresponding to the SH3 domain of human Caskin1 (Uniprot: 
Q8WXD9, residues: 284–346) was obtained from Integrated DNA Technologies as a syn-
thetic gene construct and subsequently subcloned into a modified pET vector harboring a 
hexahistidine tag and a TEV protease recognition site by using NdeI and BamHI re-
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Figure 1. Sequence alignment of selected Src homology 3 (SH3) domains. The highly conserved residues that typically
interact with the proline-rich ligand in many SH3 domains are shown in bold. Substitutions at some of the key conserved
positions are indicated in red. The xP sites and the specificity sites are highlighted in green and pink backgrounds,
respectively. Residues having an important role in ligand binding in specific SH3 domains are italicized and shown in
aquamarine and magenta depending on whether they interact with the proline-rich segment or the flanking region of the
ligand. The secondary structure elements are indicated above the sequence of c-Src. The SH3 sequences shown are as
follows. Cski1: human Caskin1, residues 280–347, UniProt accession Q8WXD9; Cski2: human Caskin2, residues 280–347,
Uniprot accession Q9WXE0, PDB 2KE9; Src: chicken c-Src, residues 80–142, UniProt accession P00523, PDB 1QWE; Fyn:
human Fyn tyrosine kinase, residues 81–143, UniProt accession P06241, pDB: 4EIK; Crk: mouse c-Crk, N-terminal SH3
domain, residues 131–192, UniProt accession Q64010, PDB: 1CKA; Abl: mouse tyrosine-protein kinase, residues 60–121,
UniProt accession P00520, PDB: 1ABO; Grap2: mouse GRB2-related adhesion protein 2, C-terminal SH3 domain, residues
262–322, UniProt accession O89100, PDB: 1OEB; Lyn: human tyrosine-kinase Lyn, residues 62–163, UniProt accession P07948,
PDB: 1W1F; Dnmbp: human dynamin-binding protein C-terminal SH3 domain, residues 1512–1576, UniProt accession
Q6XZF7, PDB: 4CC7; Itsn1: human Intersectin-1, residues 912–971, UniProt accession Q15811-1, PDB: 4IIM.

2. Materials and Methods
2.1. Protein Expression and Purification

The coding sequence corresponding to the SH3 domain of human Caskin1 (Uniprot:
Q8WXD9, residues: 284–346) was obtained from Integrated DNA Technologies as a syn-
thetic gene construct and subsequently subcloned into a modified pET vector harboring a
hexahistidine tag and a TEV protease recognition site by using NdeI and BamHI restriction
sites. The 6x His-tagged protein was expressed in E. coli Rosetta pLysS cells. Cells were
grown in 4 × 1000 mL LB medium and supplemented with ampicillin and chlorampheni-
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col up to OD600 = 0.6 at 37 ◦C, while shaking at 250 rpm. Cells were harvested using
centrifugation and resuspended in 1 L Minimal Media containing 1 g/L 15N-NH4Cl and
5 g/L 13C-D-glucose as single nitrogen and carbon sources, respectively. Protein expression
was induced using 0.5 mM isopropyl-thio-ß-galactoside (Sigma-Aldrich) at 37 ◦C for 4 h.
Cells were harvested using centrifugation for 20 min at 4 ◦C and then resuspended in lysis
buffer (50 mM Tris-HCl, 300 mM NaCl, 0.5 M EDTA, 1 mM PMSF, 1× complete EDTA-free
protease inhibitor cocktail (Roche), pH 8.0). After sonication (10 × 10 s), cell debris was
removed using centrifugation (4 ◦C, 30 min) and the supernatant was purified using a Ni-
NTA column (Macherey-Nagel, cat. no. 745400). The target protein was eluted with elution
buffer (50 mM HEPES, 30 mM KCl, 5 mM TCEP, pH 7.5) containing 250 mM imidazole. The
His-tag was cleaved using TEV protease while dialyzing against the lysis buffer. To remove
the protease, residual undigested protein molecules, and digested His-tags, samples were
loaded again onto a Ni-NTA column. The flow through was dialyzed against a buffer
containing 20 mM K-phosphate, 100 mM KCl, 0.05% NaN3, 0.1 mM TCEP, pH = 7.2 (NMR
buffer). Purity of the SH3 domain was monitored using SDS-PAGE.

2.2. NMR Spectroscopy

Multidimensional NMR experiments were carried out on a 600 MHz Varian NMR
spectrometer equipped with a 5 mm indirect detection triple 1H13C15N resonance z-axis
gradient probe in buffer containing 20 mM K-phosphate, 100 mM KCl, 0.05% NaN3, 0.1 mM
TCEP, pH 7.2 at 10 ◦C. Protein concentration was ~0.6 mM. Backbone resonance assignment
was obtained on the uniformly [U-13C,15N]-enriched SH3 domain of human Caskin1
using a combination of two-dimensional (2D) 1H-15N HSQC [23], three-dimensional (3D)
gHNCACB [24], gCBACACONH [25], and gHBHA(CO)NH [26] experiments. Side-chain
assignments involved 3D CC-TOCSY-NNH [27], 3D HCC-TOCSY-NNH [27], and 3D g-
HCCH-TOCSY [28] measurements. Spectral processing, computer assisted spin-system
analysis, and resonance assignment was carried out using Felix 2004 (Accelrys, Inc.). The
1H chemical shifts were referenced externally to 2,2-dimethylsilapentane-5-sulfonic acid
(DSS), whereas 13C and 15N chemical shifts were referenced indirectly to DSS [29]. Position
and length of secondary structure elements were initially determined from the deviations
of Hα, Cα, and Cβ chemical shifts from random coil values using CSI [30]. Interproton
distance restraints were obtained from aliphatic and aromatic 3D 13C-NOESY-HSQC [31],
3D 15N-NOESY-HSQC [32], 3D Met-Met-NOESY [33], and 2D 1H-1H NOESY spectra [34].
Structure calculations were performed with ARIA (Ambiguous Restraints for Iterative
Assignment, version 2.2) [35] using a log-harmonic shape potential and Bayesian weighting
for distance restraints [36]. In each of the seven iterations, the 50 lowest energy structures
were used as templates for the next iteration and the 15 best structures were used for
restraint violation analysis. The computational algorithm in the structure calculation
employed torsional angle simulated annealing followed by torsional angle and Cartesian
molecular dynamics cooling stages. Structural refinement was completed in a water shell.
The stereochemical quality and structural statistics of the final ensemble were determined
using PROCHECK [37], MolProbity [38], and the PDB validation server.

The 15N T1, T2 measurements [39,40] were collected on U-[15N]-enriched human
Caskin1 at 20 ◦C at 14.1 T (corresponding to 1H Larmor frequencies of 600 MHz). The
protein concentration was 0.2 mM. Backbone amide 15N T1 values were measured from two
series of eight spectra (24 transients, interscan delay of 1.5 s) with the following relaxation
delay times: T = 20, 100, 190, 290, 390, 530, 670, and 830 ms, and T = 20, 50, 100, 170, 240,
340, 480, and 710 ms. Amide 15N T2 values were obtained similarly: T = 10, 30, 50, 90,
130, 170, 210, and 250 ms, and T = 10, 30, 70, 90, 110, 150, 190, and 230 ms. To map the
regions of backbone order and disorder, gradient- and sensitivity-enhanced 15N-HSQC
experiments were used to collect amide proton saturation transfer data by recording spectra
(32 transients) with and without water presaturation during a 5 s interscan delay [41].
Saturation transfer measurements were carried out in triplicates. Relaxation NMR data
were analyzed with CCPNMR.
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3. Results
3.1. 3D Solution Structure of the SH3 Domain of Human Caskin1

Sequence specific resonance assignments (Supplementary Table S1) and 1H-1H dis-
tance restraints for the human Caskin1 SH3 domain were obtained using standard 3D
triple resonance experiments collected on uniformly 13C, 15N-enriched protein at 10 ◦C,
as detailed in Materials and Methods. Elements of the secondary structure were initially
identified via the analysis of the deviations of 1Hα, 13Cα, and 13Cβ chemical shifts from
random coil values and diagnostic inter-residue 1H-1H nuclear Overhauser effect (NOE)
correlations (Figure 2A). As expected, beta-strands are the major elements of the secondary
structure. This is evidenced by a consensus chemical shift index as well as stretches of
strong sequential Hα,i-HNi+1 NOEs complemented with long-range Hα,i-Hα,i+j NOEs
between the alpha protons of neighboring β-strands. Additionally, a large number of
long-range NOEs were observed between the side chains of residues separated by more
than five amino acids corresponding to strand-strand interactions. The distribution of
sequential, medium, and long-range NOEs along the amino acid sequence is depicted in
Figure 2B. NOE restraints used to determine the tertiary structure of the domain together
with statistics for the lowest-energy structural ensemble (Figure 3A) are summarized in
Table 1. In ordered protein regions, over 80% of the non-proline, non-glycine residues
were in the most favored regions of the Ramachandran plot. The exceptions included
residues in more ordered regions of the RT-loop (D291, Y292, S300, N302, K304) and in
the n-Src-loop (Q314) assuming (Φ, Ψ) angles in the additionally allowed regions of the
Ramachandran plot. A representative element of the lowest-energy structural ensemble
is depicted in Figure 3B. Accordingly, the Caskin1 SH3 domain displays a tertiary fold
characteristic of SH3 beta-sandwiches. Specifically, a hydrophobic core is defined by two
orthogonal antiparallel beta-sheets, with one of the strands (β2) shared by the two sheets.
The hydrophobic core is stabilized by van der Waals interactions between bulky hydropho-
bic side chains of β2 (I309, V311, L312) and β3 (W320, I324), with contribution from β1
(L284, V286) and the RT-loop (L301). Between β2 and β3, as part of the n-Src-loop, residues
315HPDG318 form a type I turn stabilized by multiple i, i + 3 (between H315 and G318)
and i, i + 4 (between H315 and R319) backbone H-bonds. Unlike in many other SH3
domains [42], no presence of a 310 helix is observed toward the C-terminus. While residues
in the beta-strands show a high degree of convergence (with overall RMSDs from the mean
structure of 0.8 and 1.3 Å for backbone and all heavy atoms, respectively), most of the loop
regions display a high degree of flexibility (Figure 3C). However, besides the network of
backbone H-bonds stabilizing the overall fold, a number of side chain interactions occur
between more peripheral elements restricting the motional freedom of these segments.
This includes a salt bridge between the side chains of R287 and E343 stabilizing the con-
tact between β1 and β5. It is noteworthy that the distal-loop (D326-R333) is involved in
multiple H-bond interactions with β2 (between the side chains of D307 and N327) and the
RT-loop (between the side chains of N302 and R333). The distal-loop is further stabilized
by favorable electrostatic interactions between the side chains of D326 and K304 (RT-loop).
Additionally, an H-bond between the side chains of D326 and N331 occurs in about half
of the lowest-energy structural ensemble restricting the conformational space of the loop.
Backbone-side chain contacts are also prevalent including the side chains of D307 (β2),
D326 (distal-loop), and R333 (distal-loop). Importantly, the beginning of the RT-loop is
restricted by two backbone H-bonds (K290-A305 and Y292-V303) extending the tie between
β1 and β2.

3.2. Solvent Exchange and Backbone 15N Relaxation

Hydrogen exchange rates characteristic of backbone hydrogen bonding interactions
and local unfolding events in proteins [43,44] in general follow the distribution of secondary
structure elements in Caskin1 SH3. This is shown in Figure 4A, where the relative intensity
(I/Io) of 1H-15N correlations collected with and without solvent presaturation is depicted
along the amino acid sequence. The two longest continuous segments exhibiting rapid
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hydrogen exchange are C293-S300 of the RT-loop and H325-G330 of the distal-loop. The
most protected surface from solvent exchange is comprised of β2 and the middle segments
of β1 and β3. β4 is considerably more susceptible to solvent exchange, whereas via two
strong H-bonds to Q285 of β1, the C-terminal half of β5 gains an increased protection.

In some SH3 domains, such as in Fyn tyrosine kinase, NMR measurements have
indicated the presence of a low-populating folding intermediate in equilibrium with
its unfolded and fully folded states at ambient temperatures [45]. As low populated
higher energy states including partially unfolded states could play a role in molecular
recognition processes mediated by the SH3 domain of Caskin1 as well, we examined the
possibility of the contribution of conformational exchange to transverse relaxation. The
ratio of longitudinal (T1) and transverse (T2) 15N relaxation times, a diagnostic marker of
conformational exchange processes on the µs-ms timescale, is plotted in Figure 4B as a
function of the amino acid sequence. Values of T1/T2 exceeding the average by more than
one standard deviation have been found sporadically throughout the protein at residues
L298 (RT), V303 (RT), I308 (β2), Q314 (n-Src), G322 (β3), and Y328 (β4). Among them, L298,
Q314, and Y328 exhibit intensive solvent exchange as well. The absence of continuous
segments of elevated T1/T2 values shows that slow conformational fluctuations do not
provide a significant contribution to transverse relaxation and the Caskin1 SH3 domain is
fairly rigid on the µs-ms timescale.
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Figure 2. Summary of NMR structural parameters. (A) NOEs observed between residue pairs i and i + j are indicated in
black. In the last row, NOEs between the alpha protons of residues separated by more than eight amino acids are diagnostic
markers of strand-strand interactions in beta-sheets. The amino acid sequence of Caskin1 SH3 is shown at the top using the
numbering of the complete human Caskin1 sequence. Residues with a consensus chemical shift index (CSI) indicating a
beta-strand conformation as obtained from the analysis of the deviation of Hα, Cα, and Cβ chemical shifts from random
coil values are highlighted in blue. No 310 helix is observed toward the C-terminus. (B) Distribution of NOE restraints.
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and long-range NOEs are in magenta.
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Figure 3. Results of NMR structure calculation. (A) Superposition of the 30 lowest-energy conformations obtained for the
backbone atoms of the SH3 domain of human Caskin1. (B) Ribbon diagram of the most representative member of the
lowest-energy structural ensemble. Secondary structure elements are labeled. Beta-strand β2 is shared by the front (β5, β1,
β2) and back (β2, β3, β4) beta-sheets. (C) Average backbone RMSDs from the mean of the 30 lowest-energy conformations
of the SH3 domain of human Caskin1. Secondary structure elements along the amino acid sequence are indicated at the top.

Table 1. Statistics and stereochemical quality of the lowest-energy NMR structural ensemble (30 struc-
tures) of the human Caskin1 SH3 domain in aqueous buffer (20 mM K-phosphate, 100 mM KCl,
0.05% NaN3, 0.1 mM TCEP, pH 7.2) at 10 ◦C. The analysis was carried out using Procheck and the
Protein Structure Validation Suite (PSVS). Glycines, prolines, and residues in disordered regions were
excluded from the Ramachandran analysis.

Distance restraints from NOEs

unambiguous 809

intraresidue 307

sequential 152

i–i + j, where j = 2, 3, or 4 74

i–i + j, where j > 4 276

ambiguous 180

Ensemble RMSD values

All backbone atoms 1.3 Å
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Table 1. Cont.

All heavy atoms 1.8 Å

All backbone atoms in ordered regions 0.8 Å

All heavy atoms in ordered regions 1.3 Å

Statistics

Ramachandran plot statistics (ordered protein regions)

Residues in most favored regions [A, B, L], % 81.5

Residues in additionally allowed regions [a, b, l, p], % 18.3

Residues in generously allowed regions [~a, ~b, ~l, ~p], % 0.2

Residues in disallowed regions, % 0.0

Main-chain statistics

SD ofω angle, degrees 3.9

Bad contacts/100 residues 0

Cα chirality, SD of ζ angle, degrees 1.2

SD of H-bond energy, kcal/mol 0.9

Overall G-factor −0.1

Side-chain statistics

χ-1 gauche minus SD, degrees 7.3

χ-1 trans SD, degrees 9.1

χ-1 gauche plus SD, degrees 9.7

χ-1 pooled SD, degrees 10.7

χ-2 trans SD, degrees 12.0

3.3. Mapping LPA-Induced Chemical Shift Perturbations on the NMR Structure of Human
Caskin1 SH3 Domain

As we have shown previously, addition of oleoyl LPA to the human Caskin1 SH3 do-
main (lipid-to-protein molar ratio of 10) induces above-average chemical shift perturbations
(Figure S1) in a discrete set of amino acids involving residues of β1–β5 (V286, I309-T310,
C323, H325, R328, R333-V334, A344), the 313EQH315 triad of the n-Src-loop together with
W320 at the beginning of β3, and sporadically at other positions, primarily with side chains
capable of H-bond formation (Y296, N302, S339). Notably, the binding of LPA induces
a peak doubling for a small number of residues including V346 and I308 as well as the
side chain NH2 groups of N302 and N327. The affected amino acid positions are mapped
onto the solution NMR structure of the human Caskin1 SH3 domain in Figure 5A. The
majority of the perturbations in the hydrophobic core of the domain suggest that besides
the favorable electrostatic interaction of arginines (and depending on their charged state,
perhaps the histidines as well) with the LPA headgroups, the hydrophobic acyl chains of
LPA may insert deeply into the protein interior. The involvement of residues with H-bond
donor/acceptor side chains also suggests the rearrangement of bound water molecules
upon LPA binding. Importantly, the most significant changes in the chemical environment
upon the interaction with LPA are detected in regions distinct from the canonical PxxP or
non-canonical proline-rich peptide binding site of SH3 domains in general (cf below). Based
on the Gonnet Pam250 matrix [46], using the groupings of ‘STA’, ‘NEQK’. ‘NHQK’, ‘NDEQ’,
‘QHRK’, ‘MILV’, ‘MILF’, ‘HY’, ‘FYW’, and ‘C’ for the analysis of sequence similarity, the
majority of LPA-affected residues are well conserved among Caskins (Figure 5B), whereas
they are not conserved among SH3 domains in general, indicating that LPA recognition is
likely to be specific to Caskins.
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tional exchange processes on the μs-ms timescale, is plotted in Figure 4B as a function of 
the amino acid sequence. Values of T1/T2 exceeding the average by more than one standard 
deviation have been found sporadically throughout the protein at residues L298 (RT), 
V303 (RT), I308 (β2), Q314 (n-Src), G322 (β3), and Y328 (β4). Among them, L298, Q314, 
and Y328 exhibit intensive solvent exchange as well. The absence of continuous segments 
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significant contribution to transverse relaxation and the Caskin1 SH3 domain is fairly 
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Figure 4. Summary of NMR parameters diagnostic of slow motions and local unfolding events in the SH3 domain of human
Caskin1. (A) Ratio of relative peak intensities with (I) and without (Io) presaturation of the solvent resonance and (B) ratio
of the longitudinal (T1) and transverse (T2) relaxation times as a function of the amino acid sequence. Error bars are shown.
Dashed lines correspond to the mean and the mean plus one standard deviation. At residues marked with an asterisk in
(A) fast solvent exchange obscures the analysis. Secondary structural elements are indicated at the top. Longitudinal and
transverse relaxation times averaged around T1 = 449 ± 42 ms and T2 = 149 ± 23 ms, respectively, matching the values
expected for an ~70-residue globular protein at the investigated temperature (20 ◦C).
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protein molar ratio of 10:1) backbone (1H, 15N) chemical shift change (Figure S1). The region corresponding to the peptide
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comparison together with the secondary structure elements. Non-conserved amino acid replacements affected by LPA
binding is indicated in red. Amino acid positions corresponding to the peptide binding groove in c-Src are marked by an
asterisk. The SH3 sequences shown as follows. Src: c-Src, Gallus gallus (UniProt P00523); Caskin1, Homo sapiens (UniProt
Q8WXD9); Caskin2, Homo sapiens (Uniprot Q9WXE0); Caskin1, Rattus norvegicus (UniProt Q8VHK2); Caskin2, Xenopus laevis
(Uniprot Q6DD51); Caskin1, Mus musculus (UniProt Q6P9K8); Caskin2, Salmo salar (UniProt A0A1S3QUC9); Caskin2, Vulpes
vulpes (UniProt A0A3Q7T5U3); Caskin1, Lipotes vexillifer (UniProt A0A340X375); Caskin2, Ursus arctos horribilis (UniProt
A0A3Q7TV80); Caskin1, Sus scrofa (UniProt I3LCF2).

3.4. Comparison with the SH3 Domain of Human Caskin2

Comparison of the Caskin1 SH3 domain and its isoform, human Caskin2 (PDB:
2ke9 [18]) reveals differences primarily in the loop regions as well as in the linker connecting
the β4 and β5 beta-strands. This is shown in Figure 6A, where the lowest-energy element
of the structural ensemble of Caskin1 and Caskin2 is superimposed, and in Figure 6B,
where Cα positional differences (dCα) between the mean structures of the two ensembles
are depicted along the amino acid sequence. The region exhibiting the largest difference
between the two isoforms is the distal- and the n-Src-loop with values of dCα exceeding 6 Å.
Among the two, the distal-loop shows a significantly larger conformational heterogeneity
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in Caskin2 with Cα RMSDs of the structural ensemble approaching 10 Å in the central
segment of the loop (Figure 6C). In Caskin1, the H325-N331 region appears to be more
defined due to favorable electrostatic interactions between the side chains of D326 and
K304 of the RT-loop (Figure 6D). The NH3

+ group of the lysine is further stabilized by the
proximate D307. In Caskin2, the lysine is replaced by an arginine, and instead of the distal-
loop, it forms contacts with D291 located in the N-terminal end of the RT-loop. Another
important difference between the two isoforms is the n-Src-loop, which in Caskin1 assumes
a type I turn stabilized by two H-bonds (Figure 6E). In Caskin2, W320 (β3), following
immediately the n-Src-loop, forms hydrophobic contacts with F337 of β4 and P339 of the
310 helix, pulling β3 slightly away from β2, yielding a looser n-Src-loop and hindering the
formation of a well-defined turn. While in Caskin2 the 310 helix (339PGI341) is stabilized
by two hydrogen-bonds, in Caskin1 the corresponding 338PSSL341 segment appears to be
more flexible. The lack of the formation of a stable 310 helix in Caskin1 is suggested by the
analysis of chemical shifts, the observed strong solvent exchange at S340 (Figure 4A), and
the low number of NOEs in the region. We note that despite the high degree of overall
sequence similarity between the SH3 domains of Caskin1 and Caskin2, this region, i.e., the
linker between β4 and β5 together with β5, shows significant dissimilarities (Figure 1). It
is noteworthy that the arrangement of the residues in the altered peptide binding groove
in the SH3 domain of Caskin1 and Caskin2 are highly similar. Among the regions found to
be affected by LPA in Caskin1 SH3, the n-Src-loop differs the most.

3.5. Comparison with other SH3 Domains

As we noted in the introduction, the SH3 domains of human Caskin1 and Caskin2 are
unique in the sense that some of the aromatic residues having a major role in the binding
of Pro-rich sequences in other SH3 domains are substituted by amino acids with positively
charged or small hydrophobic side chains. This is demonstrated in Figure 7A, where human
Caskin1 is superimposed on the complex of Src SH3 with APP12 (1APPLPPRNRPRL12),
a canonical high-affinity Pro-rich peptide selected from a phage display library [47]. The
two dipeptide units of APP12 (Ala1-Pro2 and Leu4-Pro5) bind to the hydrophobic clefts
formed by Y90 (in Figure 7A, Y1), Y136 (Y2) (pocket 1) and Y92 (Y3), W118 (W4), and Y136
(Y2) (pocket 2) of Src-SH3, respectively. Among the flanking residues, Arg7 packs against
the side chain of W118 and forms a salt bridge with D99 (D5) near the RT-loop (pocket 3).
As shown in Figure 7A, in Caskin1, three of the key aromatic residues are substituted
with K290 (K1), R319 (R4), and L341 (L2), whereas the aspartate of the specificity pocket is
replaced by a serine.

Besides the xP binding site, even larger differences exist between the specificity site
of the SH3 domain of Caskin1 and that of c-Crk (Figure 7B). As revealed by the X-ray
structure of the N-terminal Crk-SH3 domain in a complex with a high affinity peptide
(1PPPALPPKKR10) from the guanine nucleotide exchange factor (C3G) [48], a lysine residue
is tightly coordinated by three acidic residues of the RT-loop. Binding of the flanking region
is stabilized by three simultaneous hydrogen-bonds between the carboxylates and the sp3
hybridized amino group of the lysine. As noted by the authors, the high specificity of the
interaction is highlighted by the observed disorder in the complex with a mutant peptide,
where Lys8 is replaced by an arginine. While the lysine-carboxylate interaction is unique to
c-Crk SH3 and its relatives, it is a remarkable example of a specifically evolved mode of
recognition to overcome the limited variability of binding motifs on the proline-rich ligand.
When comparing it to Caskin1 SH3, in addition to the missing hydrophobic interaction at
the canonical binding site (Figure 7B, left), there is significantly less acidic residues in the
RT-loop and the ones present are positioned in a non-optimal geometry for the binding of
positively charged (either Arg or Lys) flanking residues in Pro-rich peptides (Figure 7B,
right).
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Figure 6. Structural comparison of the SH3 domains of human Caskin1 and Caskin2. (A) Superimposed ribbon diagrams
of the lowest-energy element of the structural ensemble of the SH3 domains of human Caskin1 (yellow, PDB: 7ATY) and
Caskin2 (grey, PDB: 2KE9 [18]). (B) Cα positional differences between the mean structures of the Caskin1 and Caskin2 SH3
structural ensemble. (C) Average Cα RMSDs based on pairwise distances between matched atoms in the lowest-energy
structural ensemble of the SH3 domain of human Caskin1 (grey) and Caskin2 (white). Dashed lines in (B) and (C) at 2 Å are
for better viewing. (D,E) Superimposed diagrams of the Caskin1 (yellow) and Caskin2 (grey) SH3 domains highlighting (D)
stabilizing electrostatic interactions between the RT- (K304) and the distal-loops (D326) and (E) the formation of a type I
turn in the n-Src-loop of Caskin1. Stabilizing H-bonds between the backbone atoms of H315, G318, and R319 are indicated
by dashed lines. Hydrophobic interactions of W320 with F337 and P339 of the 310-helical region in Caskin2 SH3 are shown
in grey. Nitrogen and oxygen atoms are shown in blue and red, respectively. See text for details.
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Figure 7. Superimposed ribbon diagrams of the SH3 domains of human Caskin1 (yellow, PDB: 7ATY) and (A) c-Src
complexed with a proline-rich ligand (grey, PDB: 1QWE [47]), (B) c-Crk complexed with a proline-rich ligand (grey, PDB:
1CKA [48]), (C) intersectin-1 complexed with a synthetic proline-rich peptide (grey, PDB: 4IIM [49]). Side chains that have
been found crucial for ligand binding in typical SH3 domains are indicated as sticks. For clarity, in the case of c-Crk, the
PxxP (left) and specificity (right) site are shown separately. Aromatic (green) and acidic (cyan) residues, which have a
key role in binding and are replaced by other residues (black) in Caskin1 are highlighted. Residue numbers are omitted
for clarity. Superscripts are used to mark the same amino acid position in the superimposed structures to highlight the
replacements in Caskin1. Oxigen, nitrogen, and sulfur atoms are in red, blue, and yellow, respectively. Ligands are shown
in magenta.

The adaptability and the divergent strategies of recognition by SH3 domains are
further exemplified by a complex of one of the SH3 domains of human intersectin-1 (Itsn1)
with a non-canonical peptide ligand [49]. A synthetic peptide 1WRDSSGYVMGPW12 with
a Kd of ~50 µM has been shown to interact with a specificity site and a novel exosite
on the surface of the Itsn1 SH3 domain, different from the canonical PxxP binding site.
However, even the interaction with the specificity site possesses features differing from
common motifs observed in SH3 domains. Specifically, instead of positively charged
flanking residues, the C-terminal GPW triad of the ligand packs against a hydrophobic
pocket encompassed by M948 (M4), W949 (W5), and W959 (W7) (Figure 7C). The longer
WRDSSGYVM region of the peptide binds to an exosite, where hydrophobic interactions
together with hydrogen-bonds and a salt bridge stabilize the complex.
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4. Discussion

SH3 domains are one of the most prevalent protein modules in nature involved
in a variety of cellular functions including cell growth and differentiation, cytoskeletal
rearrangements and cell motility, signal transduction, protein degradation, and immune
response [19,50]. Primarily, they are known to recognize Pro-rich motifs, in particular the
canonical PxxP motifs in proteins [16,51], forming a left-handed, polyproline type II helix
in either of two well-defined orientations (class I and II) [47,52]. However, in recent years,
there is growing evidence of alternative binding motifs underlying the broader range of
specificity of SH3 domains. These atypical binding motifs include both proline-containing
motifs (e.g., PxxxPR [53], PxxDY [54]) and those spared of proline, e.g., RxxK [55–57] and
RKxxY [58,59]. In the latter, the phosphorylation state of the tyrosine has been shown
to regulate the binding interaction suggesting that peptide recognition by SH3 may be
coupled to phosphotyrosine signaling. This is supported by subsequent studies showing
also that phosphorylation of tyrosines in SH3 domains themselves can lead to the inhibition
of partner binding. Specifically, in a recent study of Abl1 and Abl2 SH3 domains, we have
shown that two specific simultaneously-phosphorylated tyrosines hinder ligand binding
by sterically blocking the ligand binding groove with the phosphate groups [60].

In both canonical and non-canonical peptide recognition, besides the set of conserved,
primarily aromatic residues comprising the binding groove, an additional key element of
interaction is the specificity site contributed mainly by the RT- and n-Src-loops. In most
cases, it involves a pocket of negatively charged residues recognizing a basic Arg or Lys
on the binding partner flanking the central motif (Figure 7A,B). Additionally, a conserved
tryptophan following the n-Src-loop (Figure 1) often forms stabilizing van der Waals and
cation-π interactions with the binding partner. Importantly, the length and sequence of
the RT- and n-Src-loops display a variety among SH3 domains resulting in structurally
diverse specificity sites, which may recognize peptide motifs other than the canonical with
a positively charged flanking residue (Figure 7C) [49]. Additionally, besides the utilization
of specific recognition elements, SH3 domains have also been shown to associate with
other proteins via tertiary contacts without the involvement of a specific binding motif.
Examples include the interaction between the Sla1 SH3 domain and ubiquitin [61] as well
as the Fyn SH3 domain and the SAP SH2 domain [62]. Taken together, despite the common
architecture of the SH3 domain, via a combinatorial use of the xP binding site and the
specificity site, diverse strategies for partner recognition are observed across the family [17].

The SH3 domain of human Caskin1 differs from typical SH3 domains as some of
the key aromatic residues involved in ligand binding are substituted by basic or small
hydrophobic residues (Figures 1 and 7A,B). Additionally, some of the negatively charged
residues in the RT-loop are also missing. Instead, the distal-loop possesses an acidic patch
involving D326 and D332 (unlike for instance the SH3 domain of Src kinase). Additionally,
a repositioning of acidic residues is found in the n-Src-loop. Mapping of the residues
involved in LPA binding to the NMR structure of human Caskin1 SH3 presented for the
first time in the current study provides structural evidence for the missing proline-rich
peptide binding groove and undoubtedly shows that LPA binding involves a protein region
distinct from the peptide binding groove present in SH3 domains in general. The SH3
domain of human Caskin1 is not the only SH3 domain reported to date with a capability of
lipid binding. Helical extended specialized SH3 domains have been reported to bind acidic
phospholipids [63,64]. More recently, lipid binding by c-Src SH3 has been shown involving
residues of the RT- and n-Src-loops forming a binding site opposite to the classical peptide
binding site but overlapping with the region interacting with the Unique domain of c-Src.
This suggests a complex interplay with membranes and an additional layer of regulation
in c-Src signal transduction [65].

In conclusion, while adaptability is essential for the evolution of novel pathways and
the modulation of signaling events, discrimination between potential binding partners is
of high importance. We hypothesize that selective binding to LPA allows the anchoring
of Caskin1 SH3 to membrane microdomains where LPA accumulates due to elevated
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production in specific signaling events. Thus, by serving as docking sites for the SH3
domain, lysophosphatidate residing within the plasma membrane may contribute to the
guiding of Caskin1 interaction networks. For instance, based on the competing binding
of Mint1- and Caskin1-CASK complexes to the cytoplasmic tail of neurexin, one can
hypothesize that a coincident LPA signaling event might modulate the signaling of this
protein network. Taken together, our structural data support a novel mode of recognition
in Caskin1 signal transduction, where affinity and specificity can be tuned by imposing a
spatial and temporal regulation of its interaction domain by LPA.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-440
9/10/1/173/s1, Figure S1: Oleoyl LPA-induced NMR spectral changes. Table S1: Assigned chemical
shifts of the SH3 domain of human Caskin1.
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