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In recent years, the impact of various chronic eye diseases on quality of life has become

increasingly apparent. Therefore, it is particularly important to control the progress of

chronic diseases at an early stage. Many studies have used neuroimaging methods to

explore the effects of chronic eye diseases on the brain, and to identify changes in brain

function that may act as markers for early diagnosis and treatment. This article reviews

the clinical application of different techniques of functional magnetic resonance imaging

in chronic eye diseases.
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APPLICATION OF ALFF IN CHRONIC EYE DISEASES

As a resting-state functional magnetic resonance imaging (MRI) analysis tool, the amplitude of low-
frequency fluctuation (ALFF) has high accuracy and repeatability and does not require definition
of regions of interest (ROI) in advance. By calculating the root mean square of the blood oxygen
level dependent (BOLD) signal power spectrum at low frequencies (0.01HZ−0.08HZ), the neuronal
activity in different brain regions is expressed and is an indicator of spontaneous neuronal activity
(1). The value of ALFF technology in detecting brain neuron activity has been confirmed in
previous experiments (2). Changes in ALFF value reflect disease progression, in part and are
widely used in the diagnosis and monitoring of eye diseases. ALFF markers for chronic eye disease
are shown in Table 1, where the middle frontal gyrus (MFG) features prominently. However,
changes in ALFF values at the MFG have implications that vary with disease. For example, in
patients with monocular blindness (5) and neovascular glaucoma (10), ALFF changes at the MFG
are related to visual perception impairment or compensation, while similar changes in diabetic
vitreous hemorrhage (9) indicate visual motor disorder, and in strabismic amblyopia (7), diabetic
retinopathy and nephropathy (8) they may indicate a tendency toward anxiety and depression.

APPLICATION OF DC IN CHRONIC EYE DISEASES

Voxel-wise degree centrality (DC) is another commonly used technique in resting state functional
MRI technology. It assesses functional connectivity within the brain by measuring the topological
structure of brain functional connectors at voxel level, and provides the correlation between
different nodes and the importance of each node in the network structure (11). The degree of direct
functional connection between two nodes can be expressed byDC values. A highDC value indicates
a higher degree of direct connection between the node and other nodes. A change in DC values
indicates a change in connectivity between the node and the network and clearly shows the state
of each node (12). This method can be used to find any changes in brain functional connectivity in
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chronic ocular disease, and the changemay be an important
marker for disease detection. Chronic diseases and their
corresponding DC value markers are shown in Table 2.

APPLICATION OF REHO IN CHRONIC EYE
DISEASES

Regional homogeneity (ReHo) is a widely used analytical method
in resting state MRI, and plays an important role in exploring
changes in local synchronization of voxels in brain regions
(16). The analysis of ReHo is based on the measurement of
voxels, and is used to measure the synchronization of adjacent
regions based on the similarity between the time series of a
given voxel and its nearest adjacent time series (calculated by
the Kendall consistency coefficient of BOLD time series) (17).
The coherence and centrality of regional brain activity are closely
related to the ReHo values. ReHo is usually calculated in the
low frequency range (0.01Hz–0.1Hz). Like ALFF, ReHo does not
need a priori definition of ROI and can provide information
about the activity of the whole brain. ReHo has been widely
used in various studies to explore the local synchronization of
spontaneous fMRI signals. In addition, the ReHo method is
used in many studies of chronic eye diseases. Altered ReHo
values can be used as a marker to monitor progress of various
diseases, as shown by Table 3. ReHo measures at the inferior
temporal gyrus (ITG) and the right cuneus (RC) are common
markersfor chronic eye disease. The significantly increased ReHo
values of the ITG in concomitant exotropia (23) and monocular
blindness (20) indicated the compensatory mechanism of visual
function. In monocular blindness, the ReHo values of RC
decrease significantly, indicating the interruption of synchronous
neural activity. The RC also showed a decreased ReHo value in
diabetic retinopathy (22), reflecting vision-related dysfunction in
this area. In patients with anisometropic amblyopia (18), a clear
increase in RC was related to the compensatory mechanism of
eye movement.

APPLICATION OF FC IN CHRONIC EYE
DISEASES

Functional connectivity (FC) is a seed-based or ROI-based
functional connection, in which areas functionally related to
activities in the seed area may be found (24). In seed-based
analysis, cross-correlation is calculated between the time series
of the seed and the rest of the brain to assess the activity of the
selected brain region. Functional connections may be considered
as brain areas which have been activated similarly, indicating
that they have a similar role in brain functional activity.
Physiologically, the relevant brain regions may not be directly
connected by nerve fibers, but the connectivity matrix shows
connection strength and range including indirect connections.
Flexibility and sensitivity of this technique has resulted in it being
widely used in the study of various brain functional diseases (25).
The FC value indicates the intensity of activity and may be used
to mark changes in brain functional activity caused by disease.

TABLE 1 | Application of ALFF in chronic eye diseases.

Disease Year Increased ALFF

values

Decreased ALFF

values

High myopia (3) 2016 BMCC, LposCG,

LpreCU/IPL

RITG/MTG,

LMTG, LIFG/PT,

RIFG/PT/IS,

RMFG, RIPL

Diabetic

retinopathy (4)

2016 BOG, RLG, preCU RP/ACL, RPG,

RFG, RSTG,

RIPG, RAG

Monocular

blindness (5)

2016 RMFG, LMFG,

LSMG

LCAL, RMG, RC,

LPCG/PCL

Congenital

comitant

strabismus (6)

2016 BCPL, LAG BMFG

Strabismus with

amblyopia (7)

2018 RSFG, RPC, LC,

BPCG

LCPL, LT, RT,

LMFG

Diabetic

retinopathy and

nephropathy (8)

2019 BCPL, LITG BMFG, RSTG,

RMFG, LMFG, BP,

LIPL

Vitreous

hemorrhage (9)

2020 RCPL, LCPL,

LCPL/LLG,

BSFG/LPG

RMFG, RIFG,

RMFG/LAC,

RSFG,

RSFG/MFG,

LMFG

Neovascular

glaucoma (10)

2020 RSFG, LMFG RC, RMOG, RP,

LCG, LMFG

RITG/MTG, right inferior and middle temporal gyrus; LMTG,left middle temporal

gyrus; LIFG/PT, left Inferior frontal gyrus/putamen; RIFG/PT/IS, right inferior frontal

gyrus/putamen/insula; RMFG, right middle frontal gyrus; RIPL, right inferior parietal lobule;

BMCC, bilateral midcingulate cortex; LposCG, left postcentral gyrus; LpreCU/IPL, left

precuneus/inferior parietal lobule; BOG, bilateral occipital gyrus; RLG, right lingual gyrus;

RP/ACL, right posterior/anterior cerebellar lobe; RPG, right parahippocampal gyrus; RFG,

right fusiform gyrus; RSTG, right superior temporal gyrus; RIPG, right inferior parietal

gyrus; RAG, right angular gyrus; LAG, left angular gyrus; LSMG, left supramarginal gyrus;

RC, right cuneus; LC, left cuneus; LCAL, left cerebellum anterior lobe; LPCG/PCL, left

precentral gyrus/paracentral lobule; BCPL, bilateral cerebellum posterior lobe; RSFG, right

superior frontal gyrus; RPC, right precuneus; BPCG, bilateral precentral gyrus; LCPL, left

cerebellum posterior lobe; LT, left thalamus; RT, right thalamus; LITG, left Inferior frontal

gyrus; BP, bilateral precuneus; LLG, left lingual gyrus; LPG, left postcentral gyrus; LAC,

left anterior cingulate;RP, right precuneus; RMOG, bilateral middle occipital gyrus; LCG,

left cingulate gyrus.

Application of the FC method as a marker in brain functional
activity of chronic ophthalmopathy is shown in Table 4.

APPLICATION OF VBM IN CHRONIC EYE
DISEASES

Voxel-based morphometry (VBM) is an MRI whole-brain
analysis technique for measuring density and volume changes of
gray and white matter at the voxel level, and is used to enhance
understanding of the anatomical structure of the brain (30). In
contrast with some other resting MRI techniques, VBM has no
preset region of interest, it detects changes in neural activity
across all parts of the brain, and is an objective measure so is
minimally influenced by subjective factors. The VBM approach
filters the white and gray matter areas with statistically significant
activity by comparing the processed MRI images (31), and can
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TABLE 2 | Application of DC in chronic eye diseases.

Disease Year Increased DC

values

Decreased DC

values

Comitant

exotropic

strabismus (13)

2018 RSTG, BAC, LIPL RCPL, RIFG,

RMFG, RSPL/SI

Diabetic

nephropathy and

retinopathy (14)

2019 BP RITG, LSG

Monocular

blindness (15)

2019 LITG, BMFG BC/V1/V2

RSTG, right superior temporal gyrus; BAC, bilateral anterior cingulate; LIPL, left inferior

parietal lobule; RCPL, right cerebellum posterior lobe; RMFG, right middle frontal gyrus;

RSTG, right superior temporal gyrus; RIFG, right inferior frontal gyrus; BP, bilateral

precuneus; LSG, left subcallosal gyrus; RITG, right inferior temporal gyrus; LITG, left

inferior temporal gyrus; BMFG, Bilateral medial frontal gyrus; BC, Bilateral cuneus; V1,

primary visual cortex, V2, secondary visual cortex.

TABLE 3 | Application of ReHo in chronic eye diseases.

Disease Year Increased ReHo

values

Decreased ReHo

values

Anisometropic

amblyopia (18)

2012 RINS/PUT, LSTG,

LperCG, LFG,

RMOG

RC, LMPC, LIFG,

LC

Comitant

strabismus (19)

2016 RITG/RFG/RCAL,

RLG, BCG

_

Monocular

blindness (20)

2017 RITG, RFMO,

LPC/LP, LMFG

RRG, RC, RAC,

RLOC

Strabismus and

amblyopia (21)

2019 LLG, RMOG/RP,

BAC, LMOG, BPG

LIFG

Diabetic

retinopathy (22)

2019 RCPL, LCPL RAC, RC, BP,

LMFG

Constant

exotropia (23)

2019 RV2 LBA47

RINS/PUT, right insula and putamen; LSTG, left superior temporal gyrus; LperCG, left

precentral gyrus; LFG, left fusiform gyrus; LMPC, left media prefrontal cortex; LIFG,

left inferior frontal gyrus; RITG, right inferior temporal gyrus; LITG, left inferior temporal

gyrus; RFG, right fusiform gyrus; RCAL, right cerebellum anterior lobe; RLG, right lingual

gyrus; BCG, bilateral cingulate gyrus; RRG, right rectal gyrus; RFMO, right frontal middle

orbital ; LPC, left posterior cingulate; LP, left precuneus; RP, right precuneus; BP, bilateral

precuneus; LMFG, left middle frontal gyrus; RMFG, right middle frontal gyrus; RRG, right

rectal gyrus; RC, right cuneus; RAC, right anterior cingulate; RLOC, right lateral occipital

cortex; LLG, left lingual gyrus; RMOG, right middle occipital gyrus; LMOG, left middle

occipital gyrus; BAC, bilateral anterior cingulate; RAC, right anterior cingulate; BPG,

bilateral precentral gyrus; RCPL, right cerebellum posterior lobe; lCPL, left cerebellum

posterior lobe; RV2, right secondary visual cortex; LBA47, left Brodmann area 47; RC,

right cerebellum; LC, left cerebellum.

be used to detect pathological changes of brain function caused
by disease. Changes of this kind have been found to accompany
progression of many ophthalmic diseases, as shown in Table 5.

APPLICATION OF VMHC IN CHRONIC EYE
DISEASES

Voxel-mirrored homotopic connectivity (VMHC) is a new
resting-state FC analysis method to measure the functional

TABLE 4 | Application of FC in chronic eye diseases.

Disease Year Increased FC

values

Decreased FC

values

Anisometropic

amblyopia (26)

2013 Lpost, LPL/MFG BC, BIPL/AL,

LMFL/PreG

Comitant

exotropia (27)

2018 _ LLG/CPL,

RMOG, LPreG/PG,

RIPL/PG

Comitant

Strabismus (28)

2019 PPVC, BA19, BA6 _

Neovascular

Glaucoma (29)

2020 BMFG LP, BC

Strabismus (30) 2021 BC, BC/RLG,

LIOG, RMOG

LP/PG, RI/RO,

LPG,

BPL/PG/RPG/LPG

LPostG, left postcentral gyrus; LPL/MFG, left paracentral lobule and the middle frontal

gyrus; BC, bilateral cerebellum; BIPL/AL, bilateral inferior parietal lobe and the angular

lobe; LMFL/PreG, left middle frontal lobe and the precentral gyrus; LLG/CPL, left lingual

gyrus/cerebellum posterior lobe; RMOG, right middle occipital gyrus; LPreG/PG, left

precentral gyrus/postcentral gyrus; RIPL/PG, right inferior parietal lobule/postcentral

gyrus; BMFG, bilateral middle frontal gyrus; LP, left precuneus; BC, bilateral cuneus;

RLG, right lingual gyrus; LIOG, left inferior occipital gyrus; RI/RO, right insula and rolandic

operculum; RPG, right postcentral gyrus; PPVC, posterior primary visual cortex; BA,

Brodmann area.

TABLE 5 | Application of VBM in chronic eye diseases.

Disease Year Altered WMV

values

Altered GMV

values

Adult strabismus

(32)

2004 _ OEF, PEF, PEF,

SEF, PFC, SR

Amblyopia (33) 2005 _ C/PC, MPOJ,

LPOJ, VTC

Comitant

strabismus (34)

2017 LMTG, RMTG, RP,

RPC

LMTP, LCPL,

RPCC, LC, RPC

Monocular

blindness (35)

2019 -_ RSM, RI, LI, RAC,

LMOG, RIPL

C/PC, calcarine and paracalcarine cortex; MPOJ, medial parietal-occipital junction; LPOJ,

lateral parietal-occipital junction; VTC, ventral temporal cortex; WMV , white matter

volume; GMV, grey matter volume; LMTG, left middle temporal gyrus; RMTG, right middle

temporal gyrus; RP, right precuneus; RPC, right premotor cortex; LMTP, left middle

temporal pole; LCPL, left cerebellum posterior lobe; RPCC, right posterior cingulate

cortex; LC, left cuneus; RSM, right supra marginal; RI, right insular cortex; LI, left insular

cortex; RAC, right anterior cingulate; LMOG, left middle occipital gyrus; RIPL, right inferior

parietal lobe; OEF, occipital eye field; PEF, parietal eye field; FEF, frontal eye field; SEF,

supplementary eye field; PFC, prefrontal cortex; SR, subcortical regions.

connection between hemispheres (36). This method can
detect abnormal functional activity in local brain areas and
changes of functional connection and synchronization of neural
activity between corresponding regions in bilateral cerebral
hemispheres at rest, which shows that the degree of separation
of cerebral hemispheres is its outstanding advantage. The
normal human brain generally has the characteristic of high
synchronization of spontaneous nerve activity in homotopic
regions between hemispheres. Many studies have confirmed that
this characteristic may be generally destroyed in patients with
chronic eye diseases, suggesting that hemispheric dysfunction
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TABLE 6 | Application of VMHC in chronic eye diseases.

Disease Year Increased VMHC

values

Decreased

VMHC values

Early blindness

(37)

2017 _ PVC, VAC, SAC

Monocular

blindness (38)

2018 LI, LMFG LC/C/LG,

RC/C/LG,

RPMC/PSC, RSPL

Comitant

exotropia (39)

2018 STG, MFG PreG, IPL, SPL

Diabetic

retinopathy and

nephropathy (40)

2020 _ BMTG, BMOG,

BMFG

LC/C/LG, left cuneus/calcarine/lingual gyrus; LI, left insula; LMFG, left middle frontal

gyrus; RC/C/LG, right cuneus/calcarine/lingual gyrus; RPMC/PSC, right primary motor

cortex (M1)/primary somatosensory cortex (S1); RSPL, right superior parietal lobule;

BMFG, bilateral medial frontal gyrus; STG, superior temporal gyrus; PreG, precentral

gyrus; IPL, inferior parietal lobule; SPL, superior parietal lobule; BMOG, bilateral middle

occipital gyrus; BMTG, bilateral medial frontal gyrus; PVC, primary visual cortex; VAC,

visual association cortex; SAC, somatosensory association cortex.

plays an important role in brain dysfunction in patients with
chronic eye diseases. Using VMHC, this loss of synchrony has
been demonstrated in patients with diseases of this kind, as
shown in Table 6.

APPLICATION OF OTHER TECHNIQUES IN
CHRONIC EYE DISEASES

The fractional amplitude of low-frequency fluctuation (fALFF)
provides a measure of inherent spontaneous brain activity (41).
Measurement of fALFF values need to be carried out within a
specified frequency range, and spontaneous brain activity can
be expressed by the measurement of cerebral blood flow at
the amplitude of low frequency oscillation (0.01–0.08Hz) (42).
The fALFF technique has the advantages of high sensitivity and
specificity and is non-invasive, so it is widely used in brain
functional activity imaging. Diffusion tensor imaging (DTI) is a
widely usedMRI method, which describes the diffusion direction
of water as average diffusion coefficient (MD; diffusion within
voxels) and fractional anisotropy (FA) (43). The overall extent of
water diffusionmay also be displayed. On the basis of eigenvalues
(λ1, λ2, λ3) of diffusion tensor, scalar values ranging from 0
to 1 can be obtained. These are the FA values, which measure
the overall directionality of water diffusion and the complexity
of cytoskeleton structure, of great significance to the movement
of water inside and outside of cells (44). Changes in direction
of water diffusion help understand the pathological changes of
myelin and other related brain tissues. On this basis, some studies
have explored the application of DTI in eye diseases, and the
value of DTI as a marker in the diagnosis of diseases. Arterial
spin labeling (ASL) is a new technology developed on the basis of
magnetic resonance perfusion imaging, which has high accuracy
and is non-invasive. It can detect blood flow changes reflecting
pathological changes in various regions of the brain. The ASL
method has been successfully applied to trace the changes of local

TABLE 7 | Application of other techniques in chronic eye diseases.

Disease Year fALFF

Increased fALFF

values

Decreased fALFF

values

Monocular

blindness (45)

2020 LP, RPI, LPI LAC

Neovascular

glaucoma (46)

2021 LP RRO, LAC, RC

Disease Year DTI

Increased DTI

values

Decreased DTI

values

Amblyopia (47) 2013 PC _

Comitant

strabismus (48)

2016 LSTG BMFG, RGP/B,

BP

Disease Year ASL

Increased ASL

values

Decreased ASL

values

Comitant

exophoria (49)

2018 RHP, BMFG/ACC,

LIFG, RIFG, LSFG,

BMCC, RMFG,

RPL

_

LP, left precuneus; RPI, right inferior parietal lobes; LPI, left inferior parietal lobes; LAC,

left anterior cingulate; RRO, right rolandic operculum; RC, right caudate; LSTG, left

superior temporal gyrus; BMFG, bilateral medial frontal gyrus; RGP/B, right globus

pallidus/brainstem; BP, bilateral precuneus; RHP, right parahippocampal; ACC, anterior

cingulate cortex; LIFG, left inferior frontal gyrus; RIFG, right inferior frontal gyrus; LSFG,

left superior frontal gyrus; BMCC, bilateral medial cingulate cortex; RPL, right paracentral

lobule; PC, prechiasmatic region.

blood flow in eye diseases and is beneficial to disease diagnosis.
Table 7 shows the application of fALFF, DTI and ASLmethods in
chronic eye diseases.

Summary and Future Prospects
In summary, each magnetic resonance imaging technique has
its own characteristics. To summarize the above, both ALFF
and fALFF show regional differences in the brain, with high
accuracy and repeatability, and do not need to pre-define regions
of interest (ROI) (1), while fALFF makes improvements in noise
reduction on the basis of ALFF (50); DC is more sensitive
to showing the changes of connectivity in the brain network
structure and the state changes of each node, so as to show
the correlation of each network structure (11, 12); Both ReHo
and FC can show the temporal distribution of voxels in brain
functional regions (17, 25). ReHo focuses on describing the
consistency within regions, while FC focuses on describing the
synchronization between regions, but neither of them directly
describes the intensity of brain activity in a certain region, that is,
activity detection cannot be carried out. VMHC, as a new static
FC analysis method, is more sensitive to the changes of functional
synchronization between the two hemispheres of the brain (36).
VBM focuses on exploring the changes of brain anatomy (51);
DTI has irreplaceable advantages in understanding the complex
cytoskeleton structure and other fine structures of the brain (43);
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ASL can track the changes of local blood flow in eye diseases and
improve the accuracy of diagnosis.

In recent years, MRI has been increasingly widely used
to explore disease-related changes in brain activity and
functional connections. It provides a useful imaging index for
understanding the mechanism and monitoring the progress of
pathological changes in disease. Its role as a disease marker
has been confirmed in many studies. Most chronic eye diseases
are characterized by occult and chronic progression, which
easily leads to missed diagnosis and misdiagnosis. Using MRI,
changes in spontaneous brain activity which occur with eye
diseases may be detected at an early stage and monitored,
and then accurately locate the brain region where lesions
occur, and combine clinical symptoms based on the consistent
physiological functions of different brain regions to improve
the accuracy of diagnosis, aiding both early diagnosis and
treatment of chronic eye diseases. However, the application
of magnetic resonance imaging as a marker in chronic eye
diseases has some limitations, since physiological and hardware-
related factors may affect the experimental results. In addition,
due to overlapping functions of different brain regions, it
may not be possible to accurately locate the affected areas of
the diseased brain. Despite these limitations, MRI technology
has great potential and scope to provide indicators of onset
and progression of chronic eye diseases. With the continuous

progress of technology, MRI technology will usher in a broader
range of applications, increasing the scope for exploration of
chronic eye diseases.
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