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Abstract: Transforming growth factor 3 (TGF-(3) is a multifunctional cytokine regulating homeostasis
and immune responses in adult animals and humans. Aberrant and overactive TGF-f3 signaling
promotes cancer initiation and fibrosis through epithelial-mesenchymal transition (EMT), as well
as the invasion and metastatic growth of cancer cells. TGF-$ is a key factor that is active during
hypoxic conditions in cancer and is thereby capable of contributing to angiogenesis in various types of
cancer. Another potent role of TGF-f is suppressing immune responses in cancer patients. The strong
tumor-promoting effects of TGF-f3 and its profibrotic effects make it a focus for the development
of novel therapeutic strategies against cancer and fibrosis as well as an attractive drug target in
combination with immune regulatory checkpoint inhibitors. TGF-f belongs to a family of cytokines
that exert their function through signaling via serine/threonine kinase transmembrane receptors to
intracellular Smad proteins via the canonical pathway and in combination with co-regulators such
as the adaptor protein and E3 ubiquitin ligases TNF receptor-associated factor 4 (TRAF4) and TNF
receptor-associated factor 6 (TRAF6) to promote non-canonical pathways. Finally, the outcome of
gene transcription initiated by TGF-f is context-dependent and controlled by signals exerted by other
growth factors such as EGF and Wnt. Here, we discuss the synergistic cooperation between TGF-f
and hypoxia in development, fibrosis and cancer.
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1. Introduction

Hypoxia is frequently observed during tumor progression, which, in turn, leads to
cancer cells starting to secrete immunosuppressive cytokines such as vascular endothelial
growth factor (VEGF) and transforming growth factor  (TGF-f) [1,2]. High levels of
TGEFf31 as a response to tissue damage have been found to be strongly correlated with the
development of connective tissues in the affected organs due to the production of collagen
and subsequent fibrosis in tissues such as the kidneys or lungs [3,4]. In this review, we
focus on the role of TGF-f3 in relation to hypoxia, fibrosis and cancer and discuss recent
insights into the role of TGF-f3 signaling and hypoxia in the most common forms of cancer
such as prostate, kidney, lung, breast, cervix, gastric, colon, liver and pancreas. To obtain a
better understanding of the underlying complex and inter-molecular mechanisms between
TGEF-p and hypoxia signaling pathways is important, as it could lead to the generation of
novel and more specific treatment strategies for patients with cancer and fibrosis. Moreover,
we also discuss potential biomarkers and novel therapeutic strategies that might lead to
the future development of precision medicine for patients with certain forms of cancer.

TGEF-f is a pleiotropic cytokine that structurally belongs to a superfamily that includes
activin and bone morphogenic proteins [5-7]. TGF-f3 superfamily signaling is crucial for
normal embryogenesis in animals and humans [8,9]. TGF-f3 signaling is elicited by the
three different ligands TGF-31, TGF-32 and TGF-33 (7). In this review we use TGF-f3 as a
common denominator for the ligand, if it has not been stated by the authors of the article we
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cite, that the response is the result of a specific TGF-§3 ligand used in their study. In the adult,
physiological TGF-{3 signaling is a safeguard against cancer due to its inhibitory effects
on the cell cycle and proliferation in normal epithelial cells [10]. TGF-f3 also promotes
the apoptosis of epithelial cells, thereby acting as a tumor suppressor to prevent the
accumulation of mutations in the DNA [11]. Normal physiological TGF-f3 signaling is also
essential for keeping the immune response under strict control to counteract autoimmune
responses [12,13]. High levels of TGF-{ are found in tumors and in the circulation of cancer
patients, which also reflect poor prognosis in several forms of cancer [14-16]. Aberrant
TGEF-$3 signaling due to mutations or deletions in components of the TGF-f3 signaling
pathway is observed, for instance, in colorectal cancer and pancreatic cancer [17-20]. The
complex and dual role of TGF-f3 as both a tumor suppressor and tumor promoter [21]
underscores the potential risk associated with inhibiting the physiological effects of TGF-{3,
while there is an urgent need to interfere with its tumor-promoting effects [20,22].

The TGF-f stimulation of epithelial cells leads to their transdifferentiation to acquire
a mesenchymal phenotype and to transform them to become mobile and invasive in a
process called EMT [23,24]. TGE-B’s effect of promoting EMT is particularly prominent in
the presence of the Ras effector RREB [25]. TGF-f3 mediated extracellular matrix (ECM)
synthesis occurs during development and maintenance of mesenchymal tissues as well
as in fibrosis [4,26-30]. TGEF-f efficiently activates specific transcription programs in
both epithelial and mesenchymal cells leading to the accumulation of extracellular matrix
proteins, which results in fibrosis in different organs [3,31-35]. We also discuss the role of
TGF-B during hypoxia below.

2. TGF-3 Signals Are Transduced by Canonical and Non-Canonical
Signaling Pathways

The TGF-f3 signaling pathway is under tight control during embryogenesis and in
normal healthy tissues. The TGF- ligand is kept inactive during protein synthesis and
secretion to the extracellular space. The ligand can then be released by proteolytic enzymes
such as matrix metallopeptidase 2 (MMP2) and matrix metallopeptidase 9 (MMDP9) [36,37].
Integrins and tension in the tissue can release the ligand so that it can bind in a dimeric fash-
ion to the transmembrane TGF-{3 receptors, which are serine/threonine kinases [12,20,38].
When the ligand binds to the TGF-f3 type II receptor (TGFBRII), which is constitutively
active, it recruits the TGF-f type I receptor (TGFBRI) or ALK5-full length (ALK5-FL), result-
ing in the formation of a heterotetrameric complex, in which the TGFBRII kinase activity
phosphorylates the TGFBRI, which leads to its activation as a kinase. Thereby, the activated
TGFBRI can, in turn, phosphorylate the intracellular Smad proteins Smad2 and Smad3 at
their C-terminal ends, thereby converting them to become active as transcription factors in
a nuclear complex together with Smad4 [5,7,12]. The activity of the nuclear Smad complex
for the regulation of gene transcription is highly versatile and dependent on the physiologi-
cal context (Figure 1A); for excellent reviews for further reading, see [3,5,24,38,39]. Smad7
is a direct target gene for the TGF-f-induced nuclear Smad complex and was originally
classified as an inhibitory Smad [5]. Smad? is also directly involved in gene transcription
in cancer cells, as the Smad? protein can bind to specific regions in the promoter of c-Jun
and histone deacetylase 6 (HDAC6) in prostate cancer cells, promoting migration and
invasion [40]. Nuclear Smad? was recently shown to regulate gene transcription in mouse
embryonic stem cells [41]. The activity of the TGFf signaling pathways are regulated
at several levels, often in negative feedback loops as for Smad7 when by binding to the
TGFBRI, Smad?7 inhibits TGFf-Smad canonical signaling [5]. Yet another way to regulate
function of TGFf signaling is exemplified by the fact that TGFBRI undergoes proteolytic
cleavage by the activated disintegrin and metalloprotease 17 (ADAM17)/tumor necro-
sis factor-o-converting enzyme (TACE), and thereby TGF-f3 can no longer cause growth
inhibition in cancer cells [42].

In the non-canonical signaling pathway, TNF receptor-associated factor 6 (TRAF6)
has been shown to play important key roles in the diversity of the effects of the TGF-f3
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signaling pathway in cancer cells, leading to either apoptosis or EMT [43,44]. In mammary
cancer cells, TNF receptor-associated factor 4 (TRAF4) is amplified and promotes cancer
cell invasion and metastasis [45]. Here, we focus on the role of TRAF6 in promoting certain
cellular responses in cancer cells (Figure 1A).
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Figure 1. (A) A graphical illustration of canonical (left) and non-canonical (right) TGF-f signaling. In
canonical TGF-f signaling, TGF-p ligand binds to TGFBRI (TARI) and TGFBRII (TARII) receptors,
resulting in their activation in a hetero-tetrameric complex. The intracellular Smad2/3 are next
activated by phosphorylation, initiated by TGFRRI; pSmad2/3 form a complex with Smad4 and,
together with certain transcription factors (TF), activate specific targets genes that contain Smad-
binding elements (SBEs), implicated in growth inhibition, apoptosis, ECM synthesis, and immune
response. In the non-canonical signaling pathway, TGF-f induces the expression of TRAF6 and
ubiquitinates it in a Lys63-dependent manner, promoting its catalytic activity. TRAF6 then activates
TACE and PSEN], resulting in the proteolytic cleavage of TGFBRI, generating the soluble TGFBRI
intracellular domain (TGFBRI-ICD/ TBRI-ICD). The endosomal adaptor proteins APPL1/APPL2
and intact microtubules are required for the translocation of TGFBRI-ICD to the nucleus, where
it contributes to activating specific target genes. Other modes of non-canonical TGF-f3 signaling
pathways are also shown. Adapted from [43,44,46-51,54]. (B) TGF-f3 signaling can also induce EMT
through the activation of non-Smad pathways such as Rho GTPase and via the phosphorylation of
the polarity protein PARG, leading to cytoskeletal rearrangements and the breakdown of epithelial
cell junctions, respectively. Adapted from [52-56].

TRAF6 binds to TGFBRI via a specific consensus binding site identified in TGFBRI [43].
When the TGF-f ligand binds to the TGFRII/TGFBRI complex, it results in the forma-
tion of a heterotetrameric complex in which the enzymatic properties of TRAF6 become
activated. Active TRAF6 thereby promotes the Lys63-linked polyubiquitination of trans-
forming growth factor beta-activated kinase 1 (TAK1), a member of the mitogen activated
protein kinase kinase kinase (MAPKKK) family, resulting in its activation as a kinase. The
subsequent activation of the downstream p38 MAPK/JNK pathways as well as the nuclear
factor kappa B (NF-«B) pathways leads to EMT, apoptosis, migration, invasion and inflam-
matory responses through activator protein-1 (c-Jun/c-Fos) and p65 transcription factors,
respectively [43,46]. In cancer cells, TRAF6 also engages and activates proteolytic enzymes
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such as ADAM17/TACE and presenilin-1 (PSEN1 or PS1), which leads to the generation
and release of the TGFBRI intracellular domain (TGFBRI-ICD) [47,48]. The Lys63-linked
polyubiquitination of TGFBRI on Lys178 by TRAF6, together with its binding to the early
endosomal proteins, adaptor protein, phosphotyrosine interacting with PH domain and
leucine zipper 1 (APPL1)/(APPL2), and microtubule system, transfer the soluble TGFBRI-
ICD to the nucleus, where it binds to the transcriptional co-regulator p300 [47,49,50]. Within
the nucleus, the TGFBRI-ICD promotes the transcription of TGF-f3 and TGFBRI itself, as
well as pro-invasive genes such as SNAILT and MMPs, further promoting the activity
of TGF-f3 in this positive forward signaling loop, leading to enhanced EMT, conferring
migratory and invasive capabilities on cancer cells. TGF-f induces the sumoylation of
K234 on SNAIL1, promoting EMT [51]. TGF-§ signaling can also induce EMT through
the activation of non-Smad pathways such as Rho GTPase and via the phosphorylation of
the polarity protein PAR6, leading to cytoskeletal rearrangements and the breakdown of
epithelial cell junctions [52,53] (Figure 1B).

The generation of nuclear TGFBRI-ICD or ALK5-ICD is also dependent on an atypical
protein kinase C (aPKC) called protein kinase C zeta (PKC() [47]. The knockdown of PKC(
in three different prostate cancer cell lines in vivo leads to a reduction in tumor growth and
metastasis [57]. The role of TRAF6 as an oncogene in cancer has recently emerged, as TRAF6
is amplified in several types of cancer, such as lung carcinoma [58], advanced prostate
cancer [59], gastric carcinoma [60] and bladder cancer [61], and promotes angiogenesis and
glioblastoma progression [62,63]. For further reading about the oncogenic role of TRAF6 in
cancer, see a recent review [64].

The capability of TGFBRRI-ICD (or ALK5-ICD) and function of the nuclear TGFfRI-
ICD to promote the invasion of clear-cell renal carcinoma cells (ccRCCs) in vitro has also
been demonstrated. Moreover, high levels TGFBRI-ICD in clinical ccRCC tissues derived
from patients have been shown to correlate with poor prognosis [65,66]. Interestingly the
TGFBRI was also found to be in a complex together with HIF1-«/HIF2-x in clear cell renal
cell carcinoma (ccRCC)s in vitro, suggesting a role for TGFBRI in hypoxia [67], consistent
with previous reports about a functional role of TGF-f in promoting angiogenesis [68-70].

3. Hypoxia and Von Hippel-Lindau (VHL)

Hypoxia is a condition where the levels of oxygen are severely reduced, often leading
to pathogenesis. Normal oxygen levels are called normoxia, and extreme hypoxia or total
oxygen deprivation is called anoxia (Figure 2) [71].
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Figure 2. A graphical illustration of varied regions in solid tumors. The tumor region close to the
blood vessel contains oxygenated cells, followed by a region of hypoxic cells and necrotic cells.
Adapted from [72,73].
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Von Hippel-Lindau protein (pVHL) tumor suppressor is an E3 ubiquitin ligase and it
works in an oxygen-dependent manner. In the presence of oxygen, pVHL targets HIF-«
for ubiquitination and subsequent proteasomal degradation through the activity of HIF-
o associated prolyl hydroxylase (PHD) family members [73]. However, hypoxia or an
irregularity in VHL renders pVHL ineffective; this leads to the stabilization of HIF-«, which
activates the expression of several target genes that facilitate tumor progression. pVHL
is a well-established tumor suppressor gene, and importantly, it regulates the expression
of hypoxia-inducible factors (HIFs). HIF-1x and HIF-2« are associated with the induced
expression of genes associated with tumor promotion [73-77] (Figure 3). Interestingly,
pVHL has recently been demonstrated to control stability of Smad3 in normal epithelial cells
by marking Smad3 for degradation both in mammalian epithelial cells and in the Drosophila
wing during development; pVHL can directly control the transcriptional outcome of the
TGF-B-Smad3 canonical signaling pathway [78]. Further studies will elucidate the impact
of these findings on development of cancer and fibrosis in relation to TGF- canonical and
non-canonical signaling pathways but are consistent with the previous identification that
also TGFPRI is a target for pVHL in ccRCC cells [66].
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Figure 3. A graphical illustration of normoxia and hypoxia. HIF-« is degraded by VHL under
normoxic conditions. Under hypoxic conditions, HIF-« is stabilized and induces the expression of
target genes that are associated with tumor promotion. SSB (single-strand break), CSC (cancer stem
cell). Adapted from [79].

4. Synergistic Cooperation between TGF-f3 and Hypoxia in Fibrosis

Fibrosis occurs in several organs as the outcome of wound healing following recurrent
tissue injury. It is defined by the dysregulated production and excessive accumulation of
collagen-rich ECM, as well as the replacement of normal functional tissue with fibrotic
tissue [80]. This process can affect the function of vital organs such as the heart, lungs, liver
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and kidneys and is involved in the pathological progression of different cancer diseases,
including clear-cell renal carcinoma [31,81,82]. Hypoxia and TGF-3 signaling synergize
in the regulation of fibrosis. In this review we used the following terms as defined below:
Synergistic cooperation is meaning effects greater than adding the sum of two individual
effects. Additive effects refer to the same as the sum of the two. A feedback loop between
hypoxia and TGF-{3 refers to connections between TGF-f and hypoxia in a linear pathway
(e.g., when the hypoxia effect is mediated by TGF-p or the other way around).

TGF-f signaling promotes the activation of fibroblasts and the remodeling of ECM.
Generally, local resident fibroblasts differentiate into myofibroblasts that express «-smooth
muscle actin (x-SMA), type I collagen, fibronectin and other ECM components [83]. Inter-
estingly, other mesenchymal cells can also be activated into a myofibroblast phenotype. In
the kidney, for example, TGF-3-Smad signaling transforms mesangial cells into fibroblasts,
a process that can be repressed by AMP-activated protein kinase (AMPK) [84]. TGF-$3
signals via activated Smad proteins promotes the transcription of the type I collagen genes
COL1A1 and COL1A2, a process that is partially abrogated by p53 [85]. These mRNAs
are targeted by several microRNAs, including miR-29, miR-96, miR-130b and miR-326,
whose expression is repressed by TGF-3, promoting collagen protein expression [31]. The
proper folding of collagen chains in the endoplasmic reticulum (ER), trafficking through
the Golgi and secretion require the chaperones Hsp47p and Fkbp10p, the expression of
which is induced by TGF-§3 [86,87]. The extracellular processing of collagen is also TGF-
-regulated. For example, the TGF-3-induced expression of Loxl4p, a lysyl oxidase-like
protein, contributes significantly to type I collagen crosslinking. TGF-{3 /hypoxia-induced
LoxI2p expression promotes collagen crosslinking, contributing to ECM remodeling in
fibrosis and metastasis [88-90]. It has been observed in dermal fibroblasts that hypoxia up-
regulates TGF-f3/Smad signaling via HIF-1«, promoting the expression and deposition of
type I collagen [91-93]. Besides collagen, TGF-f3 induces the expression of genes encoding
a-SMA and fibronectin, as well as many other ECM components, including plasminogen
activator inhibitor 1 (PAI-1) and tissue inhibitor of metalloproteinase (TIMP). Collectively,
TGEF-f regulates ECM remodeling by promoting the activation of myofibroblasts and the ac-
cumulation of ECM components, and hypoxia cooperates with TGF-f3 signaling to regulate
the synthesis and deposition of ECM [3,31].

TGEF-$3 signaling promotes fibrosis progression by inducing EMT and endothelial—-
mesenchymal transition (EndMT) in different organs. Epithelial cells lose their original
properties such as apical-basal polarity and cell-cell adhesion and acquire mesenchymal
features such as anterior-posterior polarity and a cytoskeleton that favors migration and
invasion. The expression of epithelial markers such as E-cadherin is repressed, while
the expression of mesenchymal markers such as N-cadherin, x-SMA, fibronectin and
vimentin is induced. EndMT is a similar process that occurs in endothelial cells, and TGF-f3
is recognized as the most important inducer of EMT/EndMT [94]. TGF-f signaling can,
through the Smad-dependent pathway, directly activate the expression of EMT transcription
factors such as SNAIL, TWIST and Zinc Finger E-Box Binding Homeobox (ZEB) and then
cooperate with them to regulate the expression of target genes. TGF-f3 signaling can also
induce EMT through the activation of non-Smad pathways such as Rho GTPase and via
the phosphorylated polarity protein PAR6, promoting cytoskeletal rearrangements and the
breakdown of epithelial cell junctions, respectively (Figure 1B) [52,53,95]. Tubular epithelial
cells in the kidney, epicardial cells, hepatocytes, cholangiocytes and alveolar epithelial cells
can undergo EMT to generate fibroblasts in response to injury or stress [96-98]. Hypoxia
has been demonstrated to synergize with TGF-f signaling during the induction of EMT,
to different degrees in different models. In alveolar epithelial cells, hypoxia induces
EMT in a TGF-p-dependent manner [99]. In a renal fibrosis model, TGF-f3 signaling
participates in, but is not required for, hypoxia-induced EMT and fibrogenesis [100]. In
hypoxic hepatocytes, hypoxia stimulates hepatocyte EMT by a HIF and TGF-f3-dependent
mechanism, where latent TGF-$31 is activated downstream of HIF signaling [101].
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TGF-f signaling exerts multiple effects on inflammation and fibrosis. Fibrosis is re-
garded as the final state of many chronic inflammatory diseases, while inflammation is
recognized as an early stage of fibrosis [96]. Macrophages, either resident or differenti-
ated from circulating monocytes, are recruited to the site of tissue injury or inflammation.
They are activated as pro-inflammatory M1 macrophages at the early stage of inflam-
mation, while the anti-inflammatory M2 macrophages later become dominant. Several
cytokines, including TGF-f3, promote the activation of M2 macrophages, and the acti-
vated M2 macrophages, in turn, produce profibrotic factors, including TGF-3 [102,103].
TGEF-$3 is generally recognized as an anti-inflammatory cytokine, as TGF-1-null mice
show excessive inflammatory responses [104]. This is consistent with the role of TGF-3
in promoting the generation of immunosuppressive T-regulatory cells [105]. In addition
to the production of TGF-f3, macrophages also contribute to the myofibroblast pool via
TGEF-f /Smad-induced macrophage-myofibroblast transition in a renal fibrosis model [106],
contributing to the myofibroblast population and fibrogenesis. Collectively, TGF-f plays
an important regulatory role during the inflammation—fibrosis transition.

Table 1. Tabulation of selected genes and proteins in different forms of cancer regulated by synergistic
cooperation between TGF-3 and hypoxia; and specific characteristics associated with them. See also

Figure 4.
. Upregulation/ Cancer Progression
Cancer Type Gene/Protein Downregulation Hallmark Reference
CA9 Upregulation pH control [67]
Kidney cancer
GLUT1 Upregulation Glucose transport [67]
VEGF Upregulation Angiogenesis [107]
Prostate cancer - :
CXCL13 Upregulation Metastasis [108]
Fibulin-5 Upregulation Protection from apoptosis [109]
. PKC«x Upregulation EMT [110]
Pancreatic cancer
Nestin Upregulation EMT and cell migration [111]
NOX4 Upregulation Metastasis [112]
NRF2 Upregulation Radio resistance [113]
Lung cancer EGFR Upregulation Radio resistance [113]
CD39 and CD73 Upregulation Immune regulation [114]
Liver cancer CA9 Upregulation pH control [115]
Treg Upregulation Immune regulation [116]
Gastric cancer - .
Foxp3 Upregulation Immune regulation [116]
Colorectal cancer DDB2 Downregulation Protects against EMT [117]
VEGF Upregulation Angiogenesis [2]
CXCR4 Upregulation Metastasis [2]
Breast cancer ITGB3 Upregulation Metastasis [118]
BRMS1 Downregulation Protect against EMT [119]
miR-191 Upregulation Cancer cell migration [120]
Cervical cancer PLOD2 Upregulation Collagen regulation/EMT [121]
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Figure 4. A graphical illustration of several organs where TGF-f3 and hypoxia contribute to tumor
aggressiveness; included are references to studies that have investigated synergistic cooperation
between TGF-f3 and hypoxia in respective cancer types. See also Table 1.

5. Synergistic Cooperation between TGF-3 and Hypoxia in Cancer
5.1. Kidney Cancer

Kidney cancer or renal cell carcinoma (RCC) constitutes about 2.2% of all the cancers
diagnosed worldwide [122]. We previously investigated the roles of TGF-f3 [65-67] and
hypoxia [67] in renal cell carcinoma and mainly focused on the ccRCC subtype [65,67].
Canonical (Smads) and non-canonical (via TGFBRI-ICD or ALK5-ICD) TGE-§3 signaling
was significantly positively associated with tumor progression and poor patient survival
in ccRCC [65]. As discussed previously in the introduction section, VHL is a common
ubiquitin ligase for both HIF-as [77] and TGFRRI/ALKS [66]; its absence leads to enhanced
crosstalk between the hypoxic and TGF-p pathways, consistent with the recent identifi-
cation of Smad3 as a target for pVHL, as described above [78]. Our studies on ccRCC
clinical samples show a positive correlation between components of TGF-f3 signaling and
hypoxia [67] (see Figure 4). RCC cell lines overexpressing TGFBRI/ALKS5 and treated with
TGF-p showed an increase in both TGF-f3 and hypoxia pathway targets. The absence of
VHL enhances this increase in a manner dependent on the kinase activity of TGFRI/ALKS.
Hypoxia treatment also increases the levels of TGF-§3 signaling components irrespective of
the status of VHL. As TGF-p3 and HIFs stimulate the expression of each other, we explored
a possible link between the upstream components of these two pathways with the aim to
identify the nexus points. Immuno-precipitation and a proximity ligation assay performed
in RCC cell lines revealed a physical interaction between TGF3RI/ALKS5 and HIF-1at/2x
(Figure 5) [67]. Another study investigated expression analyses in RCC cell lines and
revealed an extensive overlap between the TGF-f3 response and genes regulated by the
HIF [123].
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Figure 5. A graphical illustration of crosstalk between TGF-3 and hypoxia in renal cell carcinoma
and solid tumors. TGF-p and hypoxia pathways promote tumor progression in renal cell carcinoma
(A) and other solid tumors (B) through TGFBRI (TRRI) and HIF-1x /2« and enhances expression of
VEGF, CA9 and GLUT1 [2,67,73,123,124]. Adapted from [67].

5.2. Prostate Cancer

Patients with local non-metastasized prostate cancer have excellent survival rates.
Contrastingly, metastasized prostate cancer has a high mortality rate and is one of the
leading causes of cancer-related death in men in several countries [125]. A necessary event
in metastasis is angiogenesis, regulated by vascular endothelial growth factor (VEGF) [126],
a target of hypoxia [127,128]; TGF-$ also increases the expression of VEGF [129]. VEGF is
the major angiogenic cytokine expressed in normal human prostate epithelial cells [130],
and its overexpression is associated with an aggressive and invasive tumor phenotype [131].
Hypoxia and TGF-3 are major factors that increase VEGF production and thereby increase
angiogenesis, both independently and in cooperation [132-134]. Hypoxia enhances TGF-3
expression, and this produces a feedback loop that increases VEGFA production [107]. It
has also been shown that TGF-f3 is an autocrine regulator of hypoxia-mediated VEGFA 45
isoform secretion in prostate cancer cells [107] (see Figure 4). As discussed in this review,
TGF-p treatment also increases the levels of VEGF in gastric cancer [135] and breast can-
cer [136]. A study reported that TGF-f differentially influenced the expression of VEGFA
in kidney cancer cell lines [137]. TGF-$3 did not significantly influence expression of VEGFA
in OS-RC-2 cell lines, but slightly increased VEGFA in Caki-1 cell lines [137]. In contrast,
TGEF-f has been reported to suppress VEGFA-mediated colon cancer metastasis [138]. The
role of TGF-f3 in these contexts may be cell-line-specific and organ-specific.

Another mode by which hypoxia and TGF-f3 cooperate in promoting prostate cancer
aggressiveness is the activation of myofibroblasts through chemokine (C-X-C motif) ligand
13 (CXCL13) expression [108]. CXCL13 is a B-cell chemoattractant [139]. Its expression
in prostate cancer is correlated with disease severity [140]. Tumor myofibroblasts express
CXCL13, and TGEF-$ induced by hypoxia drives the expression of CXCL13, leading to ac-
celerated malignant progression and castration-resistant prostate cancer development [108]
(see Figure 4). Hypoxia and TGF-f3 stimulate each other to fuel these loops and contribute
to aggressive and invasive prostate cancer.

In accordance with a study on kidney cancer [67], which showed that TGF-f in-
creases HIF-1a and HIF-20c under normoxic conditions, a study on prostate cancer cell
lines revealed that TGF-f3 induces HIF-1&, HIF-2ax and VEGF production under normoxic
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conditions. This is brought about by the interaction between Smad3 and HIF-2a, in a SBE2
and hypoxia response elements (HRE) dependent manner [141]. Thus, TGF-§3 can activate
HIF target genes in normoxic conditions and even more in hypoxic environments, so that
they both contribute to further fuel these synergistic loops and promote the development
of aggressive and invasive prostate cancer.

5.3. Pancreatic Cancer

Pancreatic cancer patients have extremely poor survival rates, and this trend has not
changed significantly during the past few decades [142]. Hypoxia and TGF-f3 are both
increased in pancreatic cancer [143,144].

Fibulin-5 (Fbln5) is a matricellular protein that reduces microenvironmental reactive
oxygen species (ROS) and protects pancreatic tumor cells [145]. Hypoxia induces Fbln5
in endothelial cells and makes these cells resistant to hypoxia-mediated apoptosis [146].
TGEF-p also induces FbIn5 in vitro [147]. A study has revealed that hypoxia induces FbIn5
in a TGF-BRI/ALK5-dependent and Smad4-independent manner, and hypoxia and TGF-f3
increase the expression of FbIn5 in pancreatic cancer [109] (see Figure 4).

Increased protein kinase C-o« (PKCo) levels are an unfavorable indicator for patient
survival in pancreatic cancer [148] and are associated with EMT [149]. The activation of
PKCa by hypoxia and TGF-f3 leads to aggressive pancreatic cancer [110] (see Figure 4), and
TGEF-f3 also plays a role in PKCax-induced drug resistance in pancreatic cancer [150]. PKCax
also regulates HIF-1oc [151] and TGF-3 [152].

Nestin is a functional stem-cell marker. Recent investigations have revealed that
nestin is also a cancer stem-cell marker, and it contributes to pancreatic cancer develop-
ment [153]. Hypoxia increases TGF-f3 levels in pancreatic cancer cells, and TGF-3 in a
Smad4-dependent manner increases nestin expression, resulting in increased tumor-cell
migration and EMT [111] (see Figure 4).

NADPH oxidase 4 (NOX4) is an enzyme that increases the invasiveness and metas-
tasis of pancreatic cancer cells. Hypoxia induces NOX4 activation in a TGF-3-dependent
manner [112] (see Figure 4).

5.4. Lung Cancer

Lung cancer is a common cancer, accounting for more than 11% of all cancers diag-
nosed worldwide [154]. NF-E2 p45-related factor 2 (NRF2) is a redox-sensitive transcription
factor highly expressed in lung cancer [155]. Epidermal growth factor receptor (EGFR) is a
well-known oncogenic tyrosine kinase activated in lung cancer [156]. Combined TGF-f3 and
hypoxia treatment in lung cancer cells significantly increases the expression and transloca-
tion of NRF2 into the nucleus and the crosstalk between NRF2 and EGFR. Furthermore,
the combined treatment imparted radioresistance to lung cancer cells [113] (see Figure 4).
NOX4 has been described before in the pancreatic cancer section, and it is regulated by
hypoxia and TGF-f3 [112]; NOX4 regulates the expression of NRF2 [157].

Myeloid-derived suppressor cells, or MDSCs, are regulators of the immune sys-
tem [158]. Cluster of differentiation 39 (CD39) and cluster of differentiation 73 (CD73)
are ectonucleotidases, and MDSCs expressing CD39 and CD73 are increased in non-small-
cell lung cancer [114]. TGF-f and HIF-1« are capable of inducing CD39* /CD73* myeloid
cells [159,160]. A study has shown that TGF-f3 induces the expression of CD39 and CD73 in
MDSCs by activating the mechanistic target of rapamycin (mTOR)-HIF-1«x pathway [114]
(see Figure 4).

Another study revealed interesting findings with experiments on Lewis lung carci-
noma cells (LLCs) [161]. Short-term exposure to hypoxia had an inhibitory effect on the
transcriptional activity of TGF-f3 in LLCs compared to cells under normoxia. However,
when the cells were subjected to hypoxic conditions for a significantly longer time, the TGF-
-mediated responses via Smad phosphorylation were enhanced. Furthermore, hypoxia
increased Smad2/Smad4 interaction, TGF-8 mRNA expression, and Smad7 and SNAIL gene
expression. Importantly, TGFRI/ALKS expression was also increased by hypoxia, without
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TGF-f3 treatment. It is notable that TGF-§3 treatment did not affect HIF-1o signaling [161].
Similar alterations are observed in ccRCC [67] and prostate cancer [141]. Further, in these
two types of cancers, TGF-f increased the expression of HIF-1oc and HIF-2« as well [67,141].
A study on lung cancer cells showed that stabilized HIF-1cc had an inhibitory effect on
TGF-B-induced matrix production, in part, through protein-phosphatase activity [162].
This discrepancy may be due to the different cell lines used and the different time points at
which these cell lines were subjected to hypoxia.

5.5. Liver Cancer

Liver cancer is the sixth most common cancer globally and has the fourth highest
mortality rate worldwide. Hepatocellular carcinoma (HCC) is the primary liver malig-
nancy [163]. Even though the diagnosis and treatment of HCC have improved, the 5-year
survival rate is only 18%, making it the second lowest among cancers [164-166]. In HCC,
as in other cancers, EMT plays a crucial role in the generation of metastasis [167]. Both
TGF-f3 and hypoxia contribute to EMT [168]. It is also interesting to note that HCC is one
of the most hypoxic tumors [71].

Levels of TGF-f3 and HIF-1« are both increased in HCC and are positively correlated
with each other and contribute to poor prognosis [166]. A feed-forward loop was activated
due to TGF-p and hypoxia increasing each other’s expression, and this loop facilitated
tumor progression [166]. Like this observation in HCC cell lines, the ability of hypoxia
and TGF-f to stimulate the components of each other’s pathway has been documented in
ccRCC [67], prostate cancer [141] and lung cancer [161].

Carbonic anhydrase 9 (CA9) is a transmembrane protein that is often found to be asso-
ciated with aggressive cancers [169]. CA9 is an endogenous marker for hypoxic cells [170]
and regulates pH in hypoxic cancer cells [171]. TGF-f3, under hypoxic conditions, can
increase the levels of CA9 in the Hep3B liver cancer cell line. This increase is dependent on
phosphoinositide 3-kinases (PI3K) and the MAPK pathway [115] (see Figure 4). A different
study on the same cell line reported that extreme hypoxia caused the upregulation of HIF-
lac and CA9; TGF-p treatment along with extreme hypoxia almost doubled the expression
of HIF-1ox and CA9 [172]. A similar effect of TGF-f3 and hypoxia on the expression of CA9
is observed in ccRCC cell lines [67], underscoring the synergistic function of these two
factors in tumor progression.

5.6. Gastric Cancer

Gastric cancer is the fifth most common cancer and the third most lethal [173]. A study
used several gastric cell lines (OCUM-2MD3, OCUM-12 and OCUM-2M) and reported
interesting findings concerning their response to hypoxia and TGF-f [174]. TGF-$3 and
hypoxia rendered a spindle shaped morphology in these cell lines. Hypoxia differentially
altered the expression of different component of TGF-f3 signaling and its targets associated
with mesenchymal phenotype [174].

Regulatory T-cells or Tregs have an inhibitory effect on immune cells [175] and are
upregulated in several cancers, including gastric cancer [176]. A study investigated the
levels of HIF-1x and forkhead box protein P3 (Foxp3), a protein involved in immune
suppression implicating Tregs [116,175,177]. Immunohistochemistry of tumor tissues
revealed a strong co-expression between HIF-1«, Foxp3 and TGF-f3. Foxp3-positive cells
mainly assemble in hypoxic tumor regions, where cells also express high levels of HIF-1x
and TGF-3. Hypoxia increased the expression of HIF-1&, Foxp3 and TGF-f3 in gastric
cancer cell lines [116] (see Figure 4).

A study subjected HGC27 and MGC803 gastric cancer cell lines to normoxia, hypoxia
and severe hypoxia to study the effects on EMT [178]. Under severe hypoxic conditions, the
levels of proteins that are involved in EMT were significantly increased, and increased TGF-
B levels and enhanced autocrine TGF-f3 production in gastric cancer cells and activated
Smad2 and Smad3, and PI3K/Akt signaling was observed, which further augmented
EMT [178].
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All these studies on gastric cancer [116,174,178] are in accordance with studies explor-
ing the relation between TGF-f3 and hypoxia in ccRCC [67], prostate cancer [141], lung
cancer [161] and liver cancer [166], mentioned in their respective sections.

5.7. Colorectal Cancer

Colorectal cancer (CRC) accounts for 9% of all cancers diagnosed worldwide [179].

Damaged DNA-binding protein (DDB)-2 is involved in remodeling damaged chro-
matin in the early steps of nucleotide-excision repair [180], its deficiency increases the inva-
siveness and tumorigenicity of colon cancer cells, and its absence contributes to EMT [117].
The authors examined if DDB2 inhibited EMT induced by TGF-3 and hypoxia. Colorectal
cancer cells overexpressing DDB2 were subjected to TGF-f3 treatment and hypoxia. E-
cadherin was reduced due to TGF-p or hypoxia treatment; however, in the presence of
DDB?2, this reduction was not very significant [117] (see Figure 4), suggesting that DDB-2
counteracted TGF-B-induced EMT.

Sciellin or SCEL, an arterial intima-enriched protein that contributes to the stress prop-
erties of the stratified epithelium [181-183], was found to be highly expressed in CRC cell
lines that had liver metastasis, played a significant role in invasion and migration, and corre-
lated with CRC malignancy. Interestingly, SCEL participated in mesenchymal-to-epithelial
transition (MET) [183]. It has been reported that, for clonal outgrowth at metastatic sites,
MET is necessary for the proliferation and differentiation of cancer cells [184]. CRC cell lines
were treated with TGF-3 or subjected to hypoxia. These treatments induced the expression
of mesenchymal markers such as vimentin and reduced the levels of epithelial markers
such as E-cadherin. Both TGF-3 and hypoxia inhibited SCEL levels. However, when cells
were transferred back to normoxia, the expression of these markers was reversed [183].

In CRC, TGF-p and hypoxia cooperate to modulate EMT [117,183]. These two path-
ways also modulate EMT in ¢ccRCC [67], pancreatic [111], liver [168] and gastric can-
cers [178].

5.8. Breast Cancer

Breast cancer is the most common form of cancer in women in several countries [154].
A study investigated the roles of hypoxia and TGF-f3 in promoting bone metastasis in
breast cancer [2]. The overexpression and co-expression of HIF-1« and Smads increases
the expression of VEGF and C-X-C chemokine receptor type 4 (CXCR4) promoter activity
in response to hypoxia and TGF-f. TGF-f3 and hypoxia synergize to regulate VEGF and
CXCR4 transcription, and inhibition of HIF-1a or TGF-f3, or TGFBRI/ALKS, resulted in
reduced bone metastasis in a mouse model [2] (see Figure 4).

Breast cancer cell cultures in mesenchymal stem cells (MSC)-conditioned medium
under hypoxia showed higher growth rates, increased cell migration, EMT, and phos-
phorylation of Smad2. TGFBRI-inhibitor treatment diminished these tumor-promoting
properties in cells. The study further confirmed that hypoxia upregulated TGF-f3 expression
in MSCs and had a positive correlation with HIF-1a and TGF-3. HIF-1« also drives TGF-f3
expression by regulating TGF-3 promoter activity [185].

Integrin beta 3 (ITGB3) is a member of the integrin family, and it is associated with
malignant tumor progression and reprogramming the tumor microenvironment [186]. A
study investigated if ITGB3 modulated the TGF-3 pathway under hypoxic conditions in
breast cancer cell lines [118] (see Figure 4). Silencing ITGB3 reduced TGF-p-induced cell
migration and SNAIL expression, especially under hypoxia. Smad phosphorylation was
also not observed in cells with silenced ITGB3, as ITGB3 may interact with TGF-f receptors
in the early steps of the signaling pathway [118,187].

Breast cancer metastasis suppressor 1 (BRMS1) is a relatively novel metastasis sup-
pressor protein [119,188]. BRMS1 significantly reduced the TGF-3-induced expression of
SNAIL, TWIST1 and HIF-1«, and both cell invasion and EMT [119]. BRMSI1 restored the
E-cadherin levels downregulated by TGF-§3 in a HIF-1x-dependent manner. Furthermore,
BRMS]1 inhibited the TGF-f3-induced translocation of NF-kB subunits [119] (see Figure 4).
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microRNA-191 (miR-191) is a hypoxia-regulated miRNA that contributes to aggressive
breast cancer. The hypoxia-induced regulation of miR-191 is dependent on HIF, and miR-
191 induces TGF-f3 expression in breast cancer. The TGF-f induced by miR-191 is involved
in breast cancer cell migration. Therapy against miR-191 reduced the volume in breast
cancer cell line 3D tumor spheroids [120] (see Figure 4).

Like other organ cancers discussed in previous sections, TGF-f3 and hypoxia affect the
cancer hallmarks such as angiogenesis, EMT and metastasis to promote breast cancer.

5.9. Other Cancers and Cancer Cell Lines

Procollagen-lysine,2-oxoglutarate 5-dioxygenase 2 (PLOD2) is an intracellular enzyme
that primarily initiates the lysine hydroxylation of collagen molecules, migration and
invasion. In cervical cancer, PLOD?2 is expressed in response to TGF-f and hypoxia.
Subjecting cervical cancer cell lines to hypoxia increased the levels of HIF-1x and PLOD2,
and the migration and invasion of cells mediated by PLOD2 were dependent on HIF-1«.
Similarly, upon treatment with TGF-§3, the levels of PLOD2 were increased, and EMT was
induced, as indicated by the marker expression [121] (see Figure 4).

TRAF6, a component of non-canonical TGF-§3 signaling, shows several functional asso-
ciations with HIF-1«, as demonstrated in colon cancer and cervical cancer cells. When these
cells were subjected to hypoxia, it was observed that TRAF6 upregulated the expression of
HIF-1« at the post-transcriptional level. Knocking down or inhibiting TRAF6 reduced the
levels of HIF-1x and its targets. It is interesting to note that TRAF6 increased the expression
of HIF-1x even under normoxic conditions. Furthermore, TRAF6 interacts with HIF-1«
and ubiquitinates it in a K63-dependent manner [62].

Prostate transmembrane protein, androgen induced 1 (PMEPA1) is a hypoxia-responsive
gene. The levels of PMEPA1 were increased by exposure to hypoxia in colon cancer cells
and pancreatic cancer cells. Co-treatment with TGF-f3 along with hypoxia remarkably
increased PMEPAL levels, indicating synergistic cooperation between the two pathways.
Enrichment analysis also revealed that TGF- and hypoxia genes were associated with
PMEPA1-correlated genes [189]. Interestingly, a paper has revealed that PMEPA1 inhibits
TGF-f signaling via a negative feedback loop; therefore, in some cases, hypoxia through
PMEPA1 may provide a negative feedback loop to TGF-f signaling [190]. Further, a study
in lung cancer cells reported that TGF-f3 increases PMEPA1 expression, and it participates
in negative feedback control of the duration and intensity of TGF-f/5Smad signaling [191].

C-X-C motif chemokine 12 (Cxcl12) is a chemokine that is upregulated by hypoxia and
TGF-f in hepatocytes. The increment in Cxcl12 in mouse hepatocytes was dependent on
HIF-1a and TGF-$3 [192]. NOD-like receptor family, pyrin domain-containing 3 (NLRP3), is
associated with inflammasomes. TGF-f3 and hypoxia upregulate the expression of NLRP3
in lung cancer cells [193]. TGF-f and hypoxia upregulated EMT in ovarian cancer cells
and prostate cancer cells [194]. Multiple myeloma cells are hypoxic in the bone marrow
and possess stem-cell-like characteristics. TGF-f3 signaling contributes to the stemness in
multiple myeloma cells [195].

Several cell lines were used to study the synergistic action of TGF-f3 and hypoxia on
VEGF gene expression [134]. Hypoxia increased the expression of VEGEF, as did TGE-3 to
a lesser extent. However, when both TGF-f3 and hypoxia were combined, the increase in
VEGF was significantly higher. This increase in expression occurred at the transcriptional
level, at which the synergistic cooperation is mediated. HIF-1ox and Smads cooperate and
bind to the promoter region of VEGF, thereby increasing its expression [134].

TGF-p stimulation of liver cancer and fibrosarcoma cells leads to nuclear accumulation
of HIF-1«, which efficiently causes the transactivation of HRE. As TGF-f3 also inhibits PHD2
expression through the Smad signaling pathway, this confers stability to HIF-1a and partly
contributes to VEGF expression [196]. The effect of TGF- and hypoxia on VEGF in
other forms of cancers has been discussed before in the sections on prostate cancer and
kidney cancer.
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An interesting paper has delved into the inhibitory Smad, Smad? and its relationship
with hypoxia [197]. Hypoxia increased the levels of Smad7 in several cell types. TGEF-
 and hypoxia cooperated with each other to increase the expression of Smad7. The
expression of Smad?7 was increased in the absence of pVHL in RCC cell lines. The study
suggests that hypoxia-activated Smad7 inhibits TGF-f3 signaling. Interestingly, the study
also suggests that hypoxic conditions render Smad? a tumor promoter, even though it is a
tumor suppressor under normoxic conditions [197].

Recently, it has been shown that both HIF-1« and extracellular adenosine can coun-
teract tumor-reactive T-cells via A2A /A2B adenosine receptors. When cancer cells and
tumors are exposed to hypoxia, HIF-1« is stabilized, which subsequently leads to the in-
creased transcription of adenosine-generating ectoenzymes. These gene promoters contain
HREs. Adenosine binds to cAMP-elevating A2AR/A2BR on the surface of T-cells, initiating
protein-kinase-A-mediated (PKA-mediated) signaling cascades leading to the inhibition
of T-cell effector functions and immunosuppressive transcription via cAMP response ele-
ments. It is possible that HIF-1x acts in synergy with cAMP signaling by inhibiting T-cell
effector functions and, thereby, promoting the immunosuppressive transcription of TGF-f3
via HREs [198,199].

6. Conclusions

Key regulatory factors for tumor progression, fibrosis and hypoxia are the multifunc-
tional cytokine TGF-f3 and the transcriptional targets for HIFs. Increased levels of HIFs are
induced by intratumoral hypoxia, increased expression of oncogenes or loss of expression
of tumor suppressors due to genetic alterations as well as increased levels of growth factors.
In turn, and as a result of HIF’s transcriptional activity, an increased expression of growth
factors will be produced which further fuel tumor growth [73]. A number of therapeutic
agents targeting oncogenic growth factor signaling pathways regulated by HIF-1 have been
developed during the last decades and several of them have been demonstrated to exert
inhibitory effects on tumor growth [200,201].

To mention one example of a successful drug is Trastuzumab (Herceptin), an ERBB2/HER2
receptor tyrosine kinase inhibitor frequently used for treatment of breast carcinoma [202].
Another example of a successful cancer drug is Imatinib (Glivec) which targets BCR-ABL
and platelet-derived growth factor receptor PDGFR tyrosine kinases which are driving
hematopoietic malignancies and gastrointestinal stromal tumors [203]. As TGF-$ and
HIF-1x have been demonstrated to exert synergistic effects to facilitate tumor progression
as discussed in this review (summarized in Figures 4 and 5, Table 1), it would be of in-
terest to combine inhibitors targeting TGF-{3 signaling through TGFBRI with drugs such
as Galunisertib [204], a TGFBRI kinase inhibitor with drugs that specifically are targeting
HIF-1 [200]. An interesting and specific drug which specifically is targeting HIF-1 and
HIF-2 is acriflavine which by binding directly to HIFs can counteract dimerization of HIF-1
and thereby its transcriptional activity [205] has been shown to inhibit growth of prostate
cancer and colorectal cancer in preclinical models [206].

Acriflavine has been shown to inhibit growth of prostate cancer and colorectal cancer
in preclinical models. Acriflavine is a heteroaromatic dye with antibacterial and antiviral
effects [207] which also has been shown to inhibit TGF-f3-induced EMT [208]. Notably,
treatment with PT2385, a specific HIF-2a antagonist, was recently demonstrated to have
favorable effects in patients with ccRCC with low toxicity showing promise for a first
in class and specific HIF inhibitor in a clinical study [201]. A challenge for obtaining a
successful treatment response with drugs targeting HIF-1 alone or in combination with
other drugs is the distance between blood vessels in tumors and the hypoxic cancer cells
(Figure 2), which could prevent the drug from being able to reach its target.

Another possible treatment strategy could be to target HIFs and angiogenesis to
prevent tumor progression. Treatment with acriflavine with sunitinib or digoxin was
shown to reduce TGF-3 expression in a murine breast cancer model and lung metastasis,
respectively [209]. Since HIF-1 and TGF-3 evoke synergistic effects to facilitate tumor
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progression in part by activating similar target genes, the usefulness of a combination of
drugs that specifically inhibits HIF-1 and TGFBRI with treatment with drugs with a profile
similar with Galunisertib should be further explored as a possible way forward in the
development of more efficient treatment strategies in personalized medicine in the future.
It should, however, be noted that treatment with general TGF-f3 inhibitors in clinical trials
has not been as successful as expected, given that the results for preclinical cancer models
have been very promising [210].

Moreover, and interestingly, HIF-1oc and extracellular adenosine/A2 adenosine receptor-
mediated immunosuppression is a physiologic response which offers protection of tissue
damage induced during infections with antipathogen immune cells involved. Similar sig-
naling pathways make tumor cells thrive in hypoxic tumors rich in extracellular adenosine
and evolve resistance to our most common anti-cancer treatment drugs. Thus, a possible
treatment strategy could be to induce hyperoxic conditions within these kinds of tumors
by using specific oxygenation agents combined with specific inhibitors against HIFs as
suggested by Hatfield and Sitkovsky in their recent review [199]. In a recent clinical study
in treatment of patients with refractory ccRCC, adenosine A2A receptor blockade was
demonstrated to show beneficial effects [211]. In this situation, it should also, in theory, be
beneficial to inhibit the immunosuppressive effects induced by TGF-{3 [20].

In a recent study, ADAM17 was found to be overexpressed in liver fibrosis in a
preclinical study of non-alcoholic steatohepatitis (NASH) [212]. ADAM17 has also been
shown to be implicated in the proteolytic cleavage of TGFBRI, leading to aberrant TGF-3
signaling in prostate cancer cells [47]. As ADAM17 plays an important and functional
role in both cancer and fibrosis, it might be a potential drug target for treatment in these
diseases, although the specificity is expected to be low, as ADAM17 is known to have a
high number of substrates [213].

To facilitate development of novel, better and specific treatment strategies for tumors
dependent on oncogenic TGF-f3 signaling pathways or HIFs, it is important to continue
to search for novel drug targets and validate promising biomarkers to identify patients
who would benefit from treatment with drugs targeting these pathways. Given the recent
scientific progress within the field of personalized medicine, it is expected that, hopefully
soon, we will see some of them be successfully translated into clinical use to benefit
cancer patients.
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