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Abstract

Proteogenomics methods have identified many non-annotated protein-coding genes in the

human genome. Many of the newly discovered protein-coding genes encode peptides and

small proteins, referred to collectively as microproteins. Microproteins are produced through

ribosome translation of small open reading frames (smORFs). The discovery of many

smORFs reveals a blind spot in traditional gene-finding algorithms for these genes. Biologi-

cal studies have found roles for microproteins in cell biology and physiology, and the poten-

tial that there exists additional bioactive microproteins drives the interest in detection and

discovery of these molecules. A key step in any proteogenomics workflow is the assembly

of RNA-Seq data into likely mRNA transcripts that are then used to create a searchable pro-

tein database. Here we demonstrate that specific features of the assembled transcriptome

impact microprotein detection by shotgun proteomics. By tailoring transcript assembly for

downstream mass spectrometry searching, we show that we can detect more than double

the number of high-quality microprotein candidates and introduce a novel open-source

mRNA assembler for proteogenomics (MAPS) that incorporates all of these features. By

integrating our specialized assembler, MAPS, and a popular generalized assembler into our

proteogenomics pipeline, we detect 45 novel human microproteins from a high quality pro-

teogenomics dataset of a human cell line. We then characterize the features of the novel

microproteins, identifying two classes of microproteins. Our work highlights the importance

of specialized transcriptome assembly upstream of proteomics validation when searching

for short and potentially rare and poorly conserved proteins.

Introduction

Genetic studies in flies led to the discovery of an 11-amino acid peptide that control embryo

and limb development named tarsalless (tal) or polished rice (pri) [1–4]. Unlike classical pep-

tide hormones, such as insulin or glucagon, that are produced from the proteolysis of a longer

prohormones, tal/pri comes from ribosomal translation of a small 33-nucleotide open reading

frame (ORF). The conserved tal/pri peptide demonstrates direct ribosomal production of pep-

tides and small proteins, or microproteins, with fundamental biological activities from small

ORFs (smORFs).
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The discovery of tal/pri led triggered a rush to systematically discover non-annotated

smORFs and microproteins in different organisms. The removal of a length cutoff for gene-

finding algorithms led to the prediction of thousands of additional smORFs [5], provided early

evidence in support of smORF discovery projects. Ribosome sequencing (Ribo-Seq)—a ribo-

some footprinting technique that measures the position of the ribosome on RNA that is used

to infer translated sequences—and proteogenomics revealed the greatest number of smORFs.

Using these methods, hundreds to thousands of smORFs have been discovered in flies [1, 6],

mice [7], and humans [8–11]. In aggregate, the discovery of so many non-annotated smORFs

revealed a blind spot in gene finding algorithms for protein-coding genes less than 100 codons.

Furthermore, some of these newly discovered smORFs have been characterized and shown to

have cellular and physiological functions, supporting the idea that smORFs produce many

functional microproteins [12–16].

Proteogenomics is unique among microprotein discovery strategies because this approach

provides direct evidence for the microprotein translation through proteomics detection of the

resultant peptide. Proteogenomics refers to methods that combine mRNA sequencing (RNA-

Seq) and proteomics to the detection non-annotated protein expression. For example, applica-

tion of proteogenomics to microprotein discovery led to the identification of 365 micropro-

teins in several human cell lines and tissues [8, 9, 17] (Fig 1).

The key computational step for successful microprotein discovery is the creation of a pro-

tein database from RNA-Seq data [8, 17]. After collecting high-quality paired end RNA-Seq

data, which consists of several hundred million pairs of 100–150 nucleotide sequences from

each end of a transcript fragment, the data must be assembled into mRNA transcripts. Tran-

script assembly begins by alignment of RNA reads onto a reference genome using a splice

aware aligner such as STAR [18]. The output from the aligner is converted into mRNAs by

transcript assemblers such as Cufflinks [19]. Three frame translation of these mRNAs in silico
generate a custom proteomics database [20, 21], which is used to build a collection of reference

spectra that can be matched to recorded spectra from mass spectrometry runs [9, 17]. Because

of the central role of mRNA assembly in this process, we set out to understand and optimize

transcript assembly for microprotein detection.

We test the influence of RNA-Seq transcriptome assembly on the proteogenomics discov-

ery of microproteins by developing our own assembler, mRNA Assembler for Proteoge-

nomicS (MAPS). MAPS is a specialized transcript assembler which allows us to optimize for

both transcript accuracy and transcriptome diversity, an important factor for downstream pro-

teomics spectral searching. In addition, MAPS extends open reading frames up and down-

stream to the nearest stop codon, and uses the aligned read sequences to account for cell-line

specific mutations to improve the accuracy of open reading frames. Working with simulated

realistic RNA-Seq data and published high-quality mouse ENCODE RNA-Seq data, we show

that MAPS can improve the diversity of the assembled transcriptome, allowing for a larger

recall at the cost of a lower precision. Integration of MAPS into a proteogenomics pipeline led

to the discovery of 23 novel microproteins (S1 Table).

Materials and methods

HEK293T library preparation and sequencing

Total RNA was isolated using Pure-Link RNA Mini Kit (Life Technologies) according to the

manufacturer’s protocol. On-column digestion of genomic DNA was performed using DNase

I (NEB). The Agilent Bioanalyzer or Tape Station was used to determine RNA integrity num-

bers (RIN) prior to library preparation. Total RNA (1ug) was prepared to generate Illumina-
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and Cufflinks are available from https://data.
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compatible sequencing libraries using three different methods: 1) Illumina Stranded mRNA-

Seq, 2) Illumina Total RNA-Seq, and 3) KAPA Total RNA-Seq.

Stranded mRNA-Seq libraries were prepared using Illumina TruSeq Stranded mRNA

Library Prep Kit according to the manufacturer’s instructions. Briefly, poly-A RNA was iso-

lated using magnetic beads conjugated to poly-T oligonucleotides. The mRNA was then frag-

mented and reverse-transcribed into cDNA. dUTPs were incorporated, followed by second

strand cDNA synthesis. dUTP-incorporated second strand was not amplified. The cDNA

library was then end-repaired, index adapter-ligated and PCR amplified. AMPure XP beads

(Beckman Coulter) were used to purify nucleic acid after each steps of the library prep.

Total Stranded mRNA-Seq libraries were prepared using the Illumina TruSeq Stranded

Total RNA Sample Prep with Ribo-Zero Gold Kit following manufacturer’s instructions. First,

cytoplasmic and mitochondrial ribosomal RNA (rRNA) was depleted using biotinylated oligo

probes complementary to ribosomal transcripts. Depleted RNA was then prepared into

stranded RNA-Seq libraries using same protocol as mentioned above starting at the RNA frag-

mentation steps.

KAPA Total RNA-Seq libraries were prepared using the KAPA Stranded RNA-Seq Kit with

Ribo-erase (KAPA Biosystems). Protocol is like the total RNA-Seq libraries, except prior to

RNA fragmentation, rRNA was hybridized to DNA oligos, then treated with RNase H and

DNase to remove RNA-DNA duplexes, as well as original DNA oligos. All sequencing libraries

were then quantified, pooled and sequenced at paired-end 150 base-pair using the Illumina

NextSeq 500 at the Salk NGS Core. Raw sequencing data was demultiplexed and converted

Fig 1. Proteogenomics microprotein discovery pipeline. High quality RNA-Seq data is assembled and three-frame translated to create an in silico custom proteomics

database. The database is then used to search MS2 spectra to obtain peptide candidates. Short un-annotated peptides with a high quality MS2 spectra are manually

curated to produce a list of novel confident microproteins. Since peptide discovery depends on the assembled transcriptome, we propose to optimize transcriptome

assembly for peptide discovery.

https://doi.org/10.1371/journal.pone.0194518.g001
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into FASTQ files using CASAVA (v1.8.2). Libraries were sequenced at an average depth of 519

million paired reads per library.

Sequenced read alignment

Sequenced reads were quality-tested using FASTQC (http://www.bioinformatics.babraham.ac.

uk/projects/fastqc) and aligned to the hg19[22] human genome using the STAR aligner[18]

version 2.4.0k. Mapping was carried out using default parameters (up to 10 mismatches per

read, and up to 9 multi-mapping locations per read). The genome index was constructed using

the gene annotation supplied with the hg19 Illumina iGenomes collection (http://support.

illumina.com/sequencing/sequencing_software/igenome.html) and sjdbOverhang value of

100. Reads mapping to more than one location in the genome were removed prior to transcript

assembly. Reads from each method were combined prior to alignment to improve transcript

diversity. Published paired RNA-Seq mouse datasets were obtained from the Encyclopedia of

DNA elements[23]: ENCSR554PHF, ENCSR164BAZ, ENCSR394YLM, ENCSR518GDK,

ENCSR870AQU, ENCSR216KLZ, ENCSR248XKS, ENCSR170SVO, aligned to the mm10 [24]

reference genome as described above.

Transcriptome assembly and database generation

Aligned reads were assembled into transcripts by Cufflinks[19] using default parameters, frag-

ment bias correction, multi-read correction, fr-firststrand library construction, and the hg19

human genome (or mouse mm10 genome) sequence as a guide, or assembled using our new

assembler, MAPS, which is described below. MAPS assembly consists of four parts: 1) loading

and sorting reads into memory, 2) assembling reads into exons and junctions, 3) assembling

exons and junctions into transcripts, 4) outputting transcripts and 3-frame translated peptide

sequences for downstream proteomics search. Steps 1 and 2 are straightforward except for two

important points: a) read sequences are used to build a consensus sequence database, which is

used to improve the accuracy of generated open reading frames by using the read sequence in

place of the annotated genome sequence, b) junctions are used to subdivide all contiguous

read-covered regions to account for reads in introns which may arise from technical noise or

from potentially meaningful biological heterogeneity. This results in the generation of all pos-

sible exons with read coverage, split across junction points. All junctions and exons are filtered

according to count-based heuristics, which remove artifacts associated with intron definition

(only the most probable intron endpoints are kept), read count (all exons and junctions must

meet minimum requirements for read support), gaps in read coverage (internal reads are

extended to fill gaps), and length (biologically unlikely introns with length> 1,000,000 nt are

removed). Transcript assembly then proceeds in an ordered sequence for each exon, adding

exons across junctions while optimizing for both read support and distance such that:

Piþ1 ¼ argmaxp2PðEiÞ
CðEi; pÞ

P
f CðEi; f Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DðEi; pÞ

p

 !

;

Eiþ1 ¼ argmaxe2EðPiþ1Þ
XðeÞ;

where C(Ei,p) is the read count supporting the junction from the current exon Ei and the

endpoint p, D(Ei,p) is the distance of the junction from the end of Ei to p, Pi+1 is the start point

of the new exon, Ei+1, E(Pi+1) is the set of all exons starting at Pi+1 and X(e) is the length-nor-

malized read count of exon e. This process is repeated in this “greedy” fashion to generate

the list of the most supported transcripts for any given starting exon while controlling for
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combinatorial explosion of the solutions using both probability-based filters when selecting

candidate exons and endpoints, as well as by filtering the final transcripts. Transcript filtering

is based on several factors: number of exons (transcripts are sorted by the number of exons

they contain), average exon expression (transcripts must have an average normalized expres-

sion higher than a modulated threshold), and similarity to previous transcripts (transcript that

show similar internal exon structure are filtered again based on a modulated threshold). These

features of exons and transcripts were chosen as filtering criteria to ensure a level of read sup-

port for transcripts, while maximizing the diversity of the supported isoforms that were identi-

fied, and controlling for overall transcriptome size. The full MAPS code, sample dataset, and

instructions are available from (http://www.bitbucket.org/shokhirev/MAPS)

Testing assemblers using published and generated RNA-Seq

Simulated realistic hg19 reads were generated using the flux-simulator v1.2.1 tool[25] from the

RefSeq hg19 gene set assuming 1e7 molecules, an expression K of 0 to increase the number of

expressed genes, default reverse transcription, UR RNA fragmentation, default PCR amplifica-

tion with an error rate of 0.05, no size filtering, 76 nt paired end reads, and 1e8 simulated

reads, which were mapped and assembled using Cufflinks or MAPS. Published paired-end 100

nt reads from the Encyclopedia of Genomic Elements consisting of samples from various

mouse tissues were mapped and assembled using Cufflinks and MAPS. Comparison to the

mouse mm10 RefSeq transcript annotation was carried out by finding the total number of

transcripts that were assembled uniquely by Cufflinks or MAPS, or by both assemblers. Since

identifying the fraction of overlapping transcripts between two or more transcriptomes

requires a threshold for transcript similarity, we defined a transcript that had at least one or

more exons that overlapped with the exons of another transcript in a transcriptome as recov-

ered/assembled.

Microprotein annotation and hierarchical clustering

The average hg19 PhastCons [26] 100-way conservation value was calculated across all exon

bases to define average conservation scores (value between 0 and 1000). Average RNA-Seq

expression and Ribo-Seq expression values were calculated analogously using CPM normal-

ized read counts from the HEK293T datasets described. All microproteins that started with a

methionine start were annotated as having canonical start sites. Hierarchical clustering was

carried out using the R v 3.2.2 using the heatmap.2 function assuming distance d = 1 − cor(M),

where M is a log-transformed matrix of the conservation, expression, and length of micropro-

teins and linear AUG-start flag vector. Clustering was performed using the modified Ward

method ward.D2.

Cell culture and small proteome enrichment

HEK293 cells (GE Dharmacon cat#HCL4517) were cultured using DMEM supplemented with

10% fetal bovine serum (FBS). Cells were grown under an atmosphere of 5% CO2 at 37˚C until

confluent. Before cells lysis and enrichment of small proteome, the media was removed from

adherent cells by aspiration HEPES-buffered saline (pH 7.5) was used to wash the cells to

remove residual media and FBS. Small proteome was enriched from HEK293 cells using two

complementary enrichment methods. 1) Cellular proteomes from 4 x 107 cells were extracted

by lysis with boiling water. After cooling the samples on ice, the cells were sonicated for 20

bursts at output level 2 with a 30% duty cycle (Branson Sonifier 250; Ultrasonic Convertor).

Then the proteome was acid precipitated by addition of acetic acid (to a final concentration

of 0.25% by volume), followed by centrifugation at 14,000 x g for 20 min at 4˚C. This step
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precipitates larger proteins to reduce the complexity of the supernatant and enriches lower

molecular weight proteins that are then analyzed by LC-MS/MS proteomics for microproteins.

2) Total proteome of 4 x 107 cells were extracted using 50 mM HCl, 0.1% β-mercaptoethanol

(β-ME); 0.05% Triton X-100 at room temperature (lysis buffer). The extracts were centrifuged

at 25,000 g for 30 min, and supernatants filtered through 5 μM syringe filters. The flow

through was then enriched for microproteins by binding and elution using Bond Elute C8 sil-

ica cartridges (Agilent Technologies, Santa Clara, CA). Approximately 100 mg sorbent was

used per 10 mg total lysate protein. Cartridges were prepared with one column volume metha-

nol and equilibrated with two-column volumes triethylammonium formate (TEAF) buffer,

pH 3.0 before the sample was applied. The cartridges were then washed with two column vol-

umes TEAF and the microprotein enriched fraction eluted by the addition of acetonitrile:

TEAF pH 3.0 (3:1) and lyophilized using a Savant Speed-Vac concentrator. BCA protein assay

(Thermo Scientific) was used to measure protein concentration of each sample after extraction

and enrichment.

Digestion and sample preparation for LC-MS/MS

An aliquot of 100 μg of enriched samples was precipitated with chloroform/methanol extrac-

tion. Dried pellets were dissolved in 8 M urea/100 mM TEAB, pH 8.5. Proteins were reduced

with 5 mM tris 2-carboxyethylphosphine hydrochloride (TCEP, Sigma-Aldrich) and alkylated

with 10 mM iodoacetamide (Sigma-Aldrich). Proteins were digested overnight at 37˚C in 2 M

urea/100 mM TEAB, pH 8.5, with trypsin (Promega) using 1 ug per 50 ug of protein (1:50).

Digestion was stopped with formic acid, 5% final concentration.

Q-Exactive mass spectrometry analysis

Digests were analyzed by LC-MS using an Easy-nLC1000 (Proxeon) and a Q Exactive mass

spectrometer (Thermo Scientific). An EASY-Spray column (Thermo Scientific) 25 cm by

75 μm packed with PepMap C18 2 μm particles was used. Electrospray was performed directly

from the tip of the analytical column. Buffer A and B were 0.1% formic acid in water and ace-

tonitrile, respectively, and the solvent flow rate was 300 nl/min. Each sample was run in tripli-

cate. The digested samples were loaded onto the column using an autosampler, and the

samples were desalted online using a trapping column. Peptide separation was performed with

6-hour reverse phase gradient. The gradient increases from 5–22% B over 280 min, 22–32% B

over 60 min, 32–90% B over 10 min, followed by a hold at 90% B for 10 min. The column was

re-equilibrated with buffer A before injection. The Q Exactive was operated in a data-depen-

dent mode. Full MS1 scans were collected with a mass range of 400 to 1800 m/z at 70k resolu-

tion. The 10 most abundant ions per scan were selected for MS/MS with an isolation window

of 2 m/z and HCD energy of 25 and resolution of 17.5k. Maximum fill times were 60 and 120

ms for MS and MS/MS scans, respectively. An underfill ratio of 0.1% was utilized for peak

selection, dynamic exclusion was enabled for 15s and unassigned and singly charged ions were

excluded. Data was collected with sensitive setting for AGC of MS and MS/MS scans at 5e6

and 5e6, respectively, and maximum injection times of 120 ms and 500 ms for MS and MS/MS

scans respectively.

Data analysis to identify microproteins

Tandem mass spectra were extracted from raw files using RawConverter 1.0.0.0 and searched

with ProLuCID using Integrated Proteomics Pipeline–IP2 (Integrated Proteomics Applica-

tions). We used four custom databases created from the in silico 3-frame translation of RNA-

Seq data from HEK293 cells described above. The search space included all fully-tryptic and

The influence of transcript assembly on the proteogenomics discovery of microproteins
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half-tryptic peptide candidates. Carbamidomethylation on cysteine was considered as a static

modification. Data files from technical triplicates were combined and searched by ProLuCID.

Data was searched with 50-ppm precursor ion tolerance then filtered to 10-ppm, and 50-ppm

fragment ion tolerance with a maximum of two internal missed cleavages using the custom

databases. Identified spectra were filtered and grouped into proteins using DTASelect. Pro-

teins and microproteins required, at least, one peptide to be identified with a setting of less

than 1% FDR.

To identify microproteins, data files from technical duplicates were combined and searched

by ProLuCID. Data was searched with 50-ppm precursor ion tolerance then filtered to 10-ppm

fragment ion tolerance with a maximum of two internal missed cleavages using only the cus-

tom database. The results from the custom database search were then filtered against the

Swiss-Prot release date December 2013 human protein database using a string-searching algo-

rithm to remove any annotated peptides. We visually inspect the MS2 spectra for all the

smORF/microprotein peptides to validate the assignment. In particular, we required that any

critical amino acid residues that uniquely distinguish the peptide detected in the MS2 data.

The next step is to determine whether the non-annotated peptides are from smORFs or

not. The non-annotated peptides are searched against NCBI Human Reference Sequence

Database (RefSeq) using tBLASTn, which identifies an annotated transcript that could have

produced the microprotein. After identifying an RNA and sequence that encodes the peptide,

we annotate the downstream in-frame stop codon, and then try to identify the upstream in-

frame start codon.

We assign start codons to any in-frame ATG. If there is no in-frame ATG, we look for an

in-frame near-cognate codon (i.e. ACG, AAG, CUG, etc.) in a Kozak sequence to assign as the

start codon. Lastly, if an in-frame ATG or near-cognate start codon cannot be found, we iden-

tify the upstream in-frame stop codon, and if the distance between the upstream and down-

stream in-frame stop codons is less than 150 codons, we annotated the gene as a smORF. If the

peptides did not match to any RNA sequences with the RefSeq RNA database, it means that

they were derived from RNAs that were present in the RNA-Seq data but not in the RefSeq

database. For these peptides, we repeat these steps for assigning the smORF using RNAs from

the RNA-Seq database. Full list of microproteins detected are presented in S1 Table. For candi-

date verification, synthetic peptides were purchased from JPT at ~30 nmol crude. The peptides

were reconstituted in water and mixed to have final concentration of 50 fmol/ul for each pep-

tide in the mixture and ProLucid was used to search the synthetic data with the same parame-

ters as described above. MS2 spectra of the synthetic peptides were manually validated to show

that the fragmentation patterns are the same as the endogenous peptides detected. Annotated

MS-Spectra and corresponding spectra from synthetic controls are shown in Fig F in S1 File.

Additional methods details are described in previous studies [8,9].

Results and discussion

MAPS for tunable mRNA transcript assembly

Proteogenomic identification of novel microproteins relies on identifying putative small open

reading frames (smORFs) from assembled transcripts, which can be in silico translated and

cross-referenced against measured mass spectra. Inspiration for MAPS came after we tested

the overall quality of assemblies from several generalized transcript assemblers, Cufflinks [19],

genome-guided Trinity [27], and StringTie [28] on our high-depth 293T RNA-Seq datasets

(Paired-end 150, ~ 500 million reads). After optimizing each assembler for our data, we found

that while in general all three assemblers were able to reconstruct annotated highly expressed

transcripts, there were many examples where low-expressed transcripts were misassembled

The influence of transcript assembly on the proteogenomics discovery of microproteins
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(Fig A in S1 File). Given that these assemblers are not designed explicitly for proteogenomics

and had trouble assembling low-abundance annotated transcripts, we developed a novel tran-

script assembler, MAPS, which we designed from the bottom-up to assemble RNA-Seq data

into a collection of ORFs while optimizing for both accuracy and transcriptome diversity (Fig

1A). We selected Cufflinks as a comparison because of its popularity and overall ability to

assemble transcripts across a wide range of read coverages. While the goal of this study is to

point out the importance of transcript assembly features in the context of proteogenomic dis-

covery of microproteins, an in-depth analysis across a panel of assemblers and across multiple

proteogenomics datasets is outside the scope of this study.

Extant de novo and genome-guided assemblers such as Cufflinks, Trinity, or StringTie

were developed for transcript identification not proteogenomics. As a result, these general-

purpose transcript assemblers minimize false-positives of the assembly at the cost of transcrip-

tome diversity and recall [28]. For example, Cufflinks finds the minimal set of transcripts that

describe the reads, omitting possible rare transcripts, which may encode microproteins [19].

Furthermore, they specifically remove typical experimental artifacts, which further limits the

diversity of the assembled transcriptome. For example, Cufflinks removes low-abundant tran-

scripts with retained introns [19].

In addition, general-purpose assemblers require post-processing to generate peptide data-

bases that can be used for proteomics searching. We hypothesized that incorporating informa-

tion from the read and flanking genome sequence should improve the accuracy of the in silico
translated peptides. For instance, some cell lines might contain point mutations in genes lead-

ing to differences in the sequence of a gene from RNA-Seq data from the sequence in the refer-

ence genome. For proteogenomics, genome mutations will lead to changes in the proteome

and should be incorporated during in silico 3-frame translation of assembled transcripts to

accurately reflect cell line specific peptides, and avoid misclassifying mutations in known pro-

teins as novel microproteins.

In addition, partial sequence coverage of low-expressed genes is a common problem for

mRNA-Seq [29]. As a result, extending assembled open reading frames up- and down-stream

at the ends of transcripts can help improve coverage by using the annotated genome sequence

to help impute ORF sequence to the nearest stop codon.

Finally, by design Cufflinks, StringTie, Trinity, and other generalized assemblers do not

explicitly control for the assembled transcriptome size, which is crucial for downstream prote-

omics searching. All parameters must be manually optimized for each dataset to avoid biasing

downstream searching, while maintaining accurate transcript reconstruction.

Therefore, we developed a new assembler called mRNA Assembler for ProteogenomicS

(MAPS) to explore the influence of these considerations on microprotein discovery (Fig 2A).

From RNA-Seq mapped reads, MAPS assembles a collection of open reading frames with a

tunable stringency (transcriptome diversity). Specifically, the diversity of the assembled tran-

scriptome is controlled by filtering the assembled exons and junctions based on the read

support, by filtering how many transcripts are assembled using the remaining exons and junc-

tions, and by filtering the final set of assembled transcripts based on similarity to other assem-

bled transcripts. With this feature, MAPS optimizes for read support as well as transcriptome

diversity. This is a key feature for downstream proteomics searching, which scores potential

peptide candidates on their spectral similarity to all other assembled peptides [30]. Further,

MAPS includes in silico translation and uses the read sequence to account for sample-specific

mutations (i.e. mutations in a cell line or tissue) providing a more accurate representation of

the proteome in the resultant database. MAPS also extends assembled open reading frames

up- and down-stream using the annotated genome sequence to enable the detection of micro-

proteins from smORFs at the ends of poorly expressing transcripts. Similar to Cufflinks and

The influence of transcript assembly on the proteogenomics discovery of microproteins

PLOS ONE | https://doi.org/10.1371/journal.pone.0194518 March 27, 2018 8 / 19

https://doi.org/10.1371/journal.pone.0194518


other genome-guided assemblers, MAPS relies on state of the art read mappers such as STAR

to solve the difficult problem of read alignment to the genome.

We next setup a global test for transcript assembly using a simulated RNA-Seq dataset, gen-

erated from the human RefSeq hg19 to mimic real RNA-Seq data and enable us to test the per-

formance of the different assemblers using the flux-simulator pipeline [25]. The data from

flux-simulator is assembled using MAPS and Cufflinks (Fig 2B). We evaluated the assemblers

by checking for any exon overlap between the assembled transcripts and the reference human

genes that were used to simulate the reads, and found that there was a higher fraction of over-

lap between MAPS assembled transcripts and human transcripts compared to Cufflinks

assembled transcripts. (Fig 2C, dark bars). Furthermore, we found that modulating the inter-

nal diversity parameter of MAPS allowed us to find a balance between recall (TP/TP+FN), pre-

cision (TP/TP+FP), and transcriptome size, and selected a MAPS stringency value of 0.3 for

these tests because it resulted in a transcriptome comparable to the reference human trans-

criptome. The tradeoff for a higher recall was a lower precision, which we felt was acceptable

since we use proteomics to verify protein-coding transcripts. Using this selected stringency

Fig 2. Building and testing a tunable ORF assembler. A) Overview of MAPS, A novel tunable ORF assembler. High-depth paired-end reads (i)

are used to identify all possible supported contigs and junctions (ii), which are then filtered (iii) and used to generate all possible supported exons

(iv). Transcripts are then assembled using greedy heuristics and filtered based on read support (v). The resulting transcripts are then in silico
translated for all frames to produce a set of supported ORFs using the consensus read sequence and the annotated genomes to further extend the

ORFs (vi). B) Workflow for determining precision and recall of the assembled transcripts using realistic simulated RNA-Seq reads generated from

annotated RefSeq genes. C) Simulated reads were assembled using a generalized assembler, Cufflinks, and MAPS with varying stringency

(diversity) settings, and the precision, recall, and relative size of the resulting transcriptomes are shown. D) Plot showing the relative fractions of

RefSeq transcripts assembled with MAPS (Stringency = 0.3) and Cufflinks using the simulated reads workflow in B). E) ENCODE paired end

mouse RNA-Seq datasets for varying tissues were assembled using MAPS and Cufflinks and fractions of shared transcripts are shown. Colors

represent transcripts overlapping between just MAPS assembly and RefSeq annotated genes (green), transcripts overlapping between just Cufflinks

and RefSeq annotated genes (pink), transcripts overlapping between RefSeq, MAPS, and Cufflinks (gray), and all other transcripts that are

assembled but not annotated in RefSeq (white).

https://doi.org/10.1371/journal.pone.0194518.g002
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parameter of 0.3, MAPS could assemble 3,463 more transcripts using the reads generated from

the RefSeq dataset. Compared to that, Cufllinks only generated 860 additional transcripts

using the same dataset (Fig 2D).

We also obtained, mapped, and assembled a collection of mouse RNA-Seq datasets from

ENCODE using both Cufflinks and MAPS, and quantified the overlap of each assembly as

compared to the annotated mm10 RefSeq transcriptome (Fig 2E). The results show that for all

mouse tissues, MAPS recalls a higher percentage of the annotated mouse genes (green bars),

compared to Cufflinks assembly (red bars). Therefore, we concluded that MAPS assembles a

higher fraction of the known transcripts in both simulated and biological high-quality RNA-

Seq datasets.

Using MAPS for microprotein discovery

We utilized MAPS and Cufflinks to analyze two proteomics datasets collected from HEK293T

cells [17] to detect microproteins. The two datasets published were from the same cells but

underwent different enrichment conditions to separate microproteins from the rest of the pro-

teome [17]. For one dataset microproteins were enriched using the acid precipitation method

(ACID) that kept microproteins in solution. In the second dataset, a C8 solid phase extraction

(C8-SPE) column was used to enrich microproteins (Fig B in S1 File).

We analyzed these proteomics datasets with a custom 3-frame translated database that

came from RNA-Seq data that was assembled using Cufflinks or MAPS (Fig 3A). Using the

Cufflinks transcriptome, we identified 3,688 and 5,840 unique peptides from the ACID and

C8-SPE proteomics datasets, respectively (Fig C panel A in S1 File). With the MAPS-assem-

bled database, we identified 3,713 and 5,968 unique peptides from the ACID and C8-SPE pro-

teomics datasets, respectively (Fig C panel A in S1 File). Most of the detected peptides were

shared between the MAPS-derived and Cufflinks-derived databases, with 81% (ACID) and

80% (C8-SPE) of the total detected peptides shared between the MAPS- and Cufflinks-derived

databases (Fig C in S1 File). This large overlap in the overall detected peptides suggested that

in general both MAPS and Cufflinks could reconstruct comparable protein databases for pro-

teomics searching.

We observe the biggest differences between MAPS and Cufflinks when we look at novel

microproteins. Combining the ACID and C8-SPE results, there are a total of 37 new micropro-

teins detected using MAPS, and 22 non-annotated microproteins identified by using Cufflinks

(Fig 3B). Unlike the case with the entire proteome, where 80% of the peptides were detected by

MAPS and Cufflinks, only 14 novel microproteins out of a total of 45 overlapped between the

MAPS and Cufflinks database searches (31%). Furthermore, 23 microproteins were only

detected using the MAPS database and eight were only detected by Cufflinks (Fig 3B).

These differences emerged for several reasons. Of the eight Cufflinks-specific microproteins

discovered, two did not make it into the MAPS assembly because they came from short single-

exon transcripts (<1000 bp), which are required to have a higher read support in MAPS com-

pared to longer or multi-exon transcripts (Fig 3C, left). This filter was added to MAPS to dra-

matically decrease the database size, which would otherwise consist primarily of single-exon

low-abundance transcripts. Three of the other Cufflinks-specific microproteins were from

alternate exon assemblies, where an alternate splice junction was found, that was specific to

the Cufflinks assembly (Fig 3C, left). The last three microproteins that were only detected in

the Cufflinks analysis were part of the MAPS assembly but not called during the proteomics

search due to the presence of similarly scoring peptides (Figs 3C and 4A).

In comparison, only three of the MAPS-specific microproteins were not present in the Cuf-

flinks assembly due to low read count, while six had unique splicing patterns due to alternate
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junction usage (Fig 4B), three came from assembly of a longer exon, 10 were present but not

detected during the proteomics search likely due to the presence of similarly scoring peptides

being assembled (Fig 3C, right). Finally there was one MAPS-specific microproteins detected

that is coded for by an anti-sense transcript coming from the opposite strand, which was not

part of the Cufflinks assembly (Fig 3C, right).

To further explore the benefit of extending open reading frames up or downstream to the

next stop codon, as well as the benefit of using the read consensus sequence to account for cell-

line specific mutations, we tested what would happen if we removed these features from the

MAPS assembly process. When extending ORFs to the nearest STOP codon up and down-

stream, we observed that 3 of the detected microproteins were directly affected. One micropro-

tein was detected only because the ORF extension included the detected LC-MS peptide, and

the two other microproteins were identified because the extension included an upstream

methionine start site (Fig 5A). In addition, there were five microproteins detected in the

Fig 3. MAPS and Cufflinks find complementary micropreteins. A) Proposed microprotein discovery workflow incorporating Cufflinks and

MAPS assemblies to improve microprotein discovery B) Total number of unique curated microproteins detected by mass spectrometry in

HEK293T cells. Cell lysate was enriched using ACID or C8-SPE Column (data combined), and proteomics data was searched against Cufflinks

or MAPS assembled transcriptome that was translated in three frames. C) Distribution of microproteins uniquely detected in Cufflinks database

search (eight microproteins, left) and MAPS database search (23 microproteins, right), describing reasons why they were not detected in the

alternate. Alt. Threshold: microprotein-containing transcript was filtered from one assembly while kept in the other due to differences in

abundance thresholds, Alt. splicing: microprotein was translated from a transcript with alternate splicing event, Proteomics search:

microproteins were not detected due to similar sequence present during MS search, Alt. exon usage: microproteins arise from extension of

exons, Anti-sense: transcript on only one strand is assembled.

https://doi.org/10.1371/journal.pone.0194518.g003
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MAPS assembly due to mutations in the HEK293T cells that differed from the reference

genome. One of these microproteins was novel and would not have been detected otherwise

(Fig 5B), while the four others were cell line specific mutants of annotated proteins, differing by

one amino acid from annotated sequence but originating in frame of an annotated exon, which

allowed us to remove them from our final curated list as false positives (Fig 5C). Furthermore,

while the detected peptide did not contain an SNP, using the read consensus sequence allowed

us to correct the sequence of 2 detected microproteins (Fig 5B, MCFGW_M microprotein).

Analysis of detected smORFs and microproteins

We next evaluated the length, expression, ribosome occupancy, conservation, and start-codon

presence of the 45 smORFs detected with the new pipeline. In general, detected smORF RNAs

have average expression levels similar if not higher than those of average RefSeq genes, and

there was no detectable difference in expression level between smORF RNAs detected using

MAPS or Cufflinks assembly approaches (Fig 6A). Detected smORFs also showed similar or

higher levels of average normalized Ribo-Seq occupancy compared to RefSeq annotated genes

(Fig 6B).

While most RefSeq genes show a relatively flat distribution of average PhastCons 100-way

conservation scores between 0 and 500, smORFs of detected microproteins tended to have

either low (0–50, compare to KTRAP19) or high (300–500, compare to GAPDH or TGFB)

average conservation scores, and smORFs discovered using the MAPS assembly tended to

Fig 4. Examples of two microproteins that were uniquely detected in the Cufflinks or the MAPS (right) assemblies. Tracks show HEK293T RNA-Seq, Ribo-Seq

read coverage and RefSeq genes, Cufflinks and MAPS assembled transcripts, colored boxes represent exons, dotted lines represent intronic regions, and double white

arrows represent continuation of the transcript. Orange arrow represents where microproteins are translated and a blue box within the arrow shows where the detected

peptides are. Detected peptides and their MS2 spectra are shown. A) An example of a microprotein that was uniquely detected in Cufflinks assembled transcriptome but

not MAPS. Cufflinks assembled a transcript that is unique microprotein translation, where part of the microprotein extends into intronic region of an annotated gene.

B) An example of a microprotein that was uniquely detected in MAPS assembled database. The microprotein is translated from a transcript with alternate splicing of a

known gene assembled by MAPS, while Cufflinks failed to assemble this transcript.

https://doi.org/10.1371/journal.pone.0194518.g004
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have more low-conservation scores compared to smORFs discovered using the Cufflinks

assembly (Fig 6C). Similar to other smORFs reported in previous studies, we find that two-

thirds of smORFs encoding detected microproteins do not have an AUG start codon [7, 8, 17]

(Fig 6D). Finally, while we detected microproteins between 16 and 149 aa using our micropro-

tein discovery pipeline, the median microprotein length was 62 amino acids and more than

two thirds of microproteins were less than 100 amino acids in length (Fig C in S1 File).

Next, since there were 14 microproteins that were detected using both assembly methods,

we wanted to further explore how the characteristics of these overlapping microproteins dif-

fered from microproteins in general. Our analysis revealed that while most microprotein

mRNAs tend to have a similar distribution of RNA-Seq expression and normalized Ribo-Seq

expression compared to the distributions of annotated RefSeq genes, the overlapping smORFs

tend to have higher RNA-Seq and Ribo-Seq normalized average expression (Fig D in S1 File).

Fig 5. Examples of improvement in accuracy of microprotein detection due to ORF extension and consensus read

sequence. A) Examples of ORF extension improving the accuracy of detected microproteins. Without extension, a

truncated microprotein would be inaccurately reported with a non-AUG start site. B) Examples of cell-line specific

SNPs improving the accuracy of detected microproteins. C) Examples where cell-line specific SNPs resulted in the

filtering of two seemingly novel SEPs, which are actually cell-line specific mutants of annotated proteins.

https://doi.org/10.1371/journal.pone.0194518.g005
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Microprotein analysis using a hierarchical clustering approach (Fig E in S1 File) revealed

primarily two groups of microproteins: those that have high levels of conservation and expres-

sion, and tend to start with a canonical AUG, and those that show low levels of conservation,

expression, and tend to start from non-canonical codons, suggesting that microproteins may

play both general well-conserved roles, or specialized roles as all detected microproteins had

RNA-Seq and proteomics support. We also found that conserved microproteins separate into

three main groups: those with moderate length and high RNA-Seq and Ribo-Seq coverage;

those that are short, have relatively low expression; and those that are long and have moderate

levels of expression. While most of the microproteins detected using both Cufflinks and

Fig 6. smORF/microprotein annotation. A-B) Distribution of total normalized expression in A) RNA-Seq and B) Ribo-Seq datasets. C) Distributions of average

PhastCons 100-way conservation scores are shown. D) Proportion of canonical AUG start sites for detected microproteins. A near cognate start codon (one

nucleotide difference from AUG) was assigned if it was in a Kozak consensus sequence. Example RefSeq genes are highlighted for reference.

https://doi.org/10.1371/journal.pone.0194518.g006
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MAPS-derived assemblies tend to have higher expression and are more highly conserved on

average (9/14), there were five that showed relatively low levels of expression and three that

showed very low conservation levels, suggesting that this variability in microprotein detection

is due to more than just assembler choice. Annotated MS2 spectra for all the detected unique

peptides have high sequence coverage (Fig F in S1 File), finally we also purchased synthetic

peptides to validate some detected peptides by MS2 spectral matching (Fig F in S1 File).

Conclusions

Microproteins represent a novel class of potentially functional peptides and small proteins

which have already been shown to be essential for fly development [1, 3], mitochondrial func-

tion [31], and muscle function [12, 32]. Discovering microproteins and the smORFs that

encode them is challenging, however, because smORFs can start from non-canonical codons,

may be translated from the same genomic sequence as well-characterized annotated ORFs, and

microproteins are difficult to detect because they only generate a few peptides for proteomics

detection and are at low levels. Thus, a reliable microprotein and smORF strategy is a continu-

ing problem. Computational studies have predicted that potentially thousands of microproteins

may be lurking in the human genetic code based on sequence conservation studies [5]; however,

these predicted smORFs likely contain false positives. Since we are interested in characterizing

the biological activity of microproteins, we believed that the microproteins of the greatest inter-

est to us would be stable and long-lived enough to be detected by proteomics. Therefore, we

opted for a proteogenomics approach since this would identify stable microproteins, and simul-

taneously validate the translation of a smORF. We have optimized several experimental steps in

this platform including the microprotein isolation and fractionation and mass spectrometry

proteomics methods to identify additional microproteins and smORFs [8, 17].

General-purpose transcript assemblers are designed to provide a picture of the transcrip-

tome and contain several key steps to minimize false positives [33]. For example, for a given

threshold, Cufflinks produces only the most-supported transcripts, often omitting other possi-

ble but less likely transcripts. While this ensures that abundant transcripts are assembled, rare

transcripts that have an alternate splice pattern and lower abundance may be missed.

We hypothesized that an ORF assembler that optimizes for transcriptome diversity and

takes the sequence information into account could provide the ability to discover additional

smORFs and microproteins by proteogenomics. To test this, we developed MAPS, a novel

assembler for proteogenomics applications (Fig 2A). The two primary differences between

MAPS and general-purpose assemblers is the optimization for transcriptome diversity during

transcript assembly, thereby allowing MAPS to find rare transcripts, and the additional post-

processing steps that utilize mRNA sequence in conjunction with genomic sequence to

account for cell-line specific mutations and extend open reading frames.

In addition, by not imposing assumptions on the start codon usage, conservation, or pep-

tide usage a priori, instead relying directly on the data to build a case for each peptide, MAPS

produces a list of short non-annotated smORFs that are validated as microproteins by high-

quality proteomics. Our approach revealed that MAPS (Fig 2A) assembles a larger proportion

of the true transcriptome while controlling for transcriptome size at the cost of a slightly lower

precision (i.e. more false positives). Also, MAPS tends to recover a higher proportion of the

mouse genome from publically available ENCODE RNA-Seq datasets compared to a general-

purpose assembler (Fig 2). The greater number of false positives is tolerable because the result

of the pipeline is a microprotein, such that every smORF will have genomic and proteomic

data to support its existence and translation. This means that MAPS may be more appropriate

when one is looking to assemble low abundant or alternatively spliced transcripts from the
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RNA-Seq data by relying on orthogonal datasets to control the false-positive rate (i.e. proteo-

mics or Ribo-Seq).

Our data shows that optimization of transcriptome diversity, extension of open reading

frames up- and down-stream based on genomic sequence, and using SNP information

encoded in the RNA-Seq reads, as well as applying multiple assemblers can increase the num-

ber of microproteins discovered, the goal underlying the development of MAPS in the first

place. Most assembled peptides are identical between Cufflinks and MAPS (Fig C in S1 File),

but MAPS does find an additional 23 microproteins compared to Cufflinks (23 vs 8). Combin-

ing both assemblies further expanded the pool of microprotein candidates to 45, 37 from

MAPS and 22 from Cufflinks, with 14 assembled by both (Fig 3 and S1 Table). In addition to

microproteins arising from novel splice-isoforms (Figs 3C and 4), there were three micropro-

teins which were discovered due to use of an extended exon, three that did not pass the Cuf-

flinks abundance thresholds, and one that came from an anti-sense transcript being assembled

by MAPS (Fig 3C), suggesting that this approach may be better suited for finding proteins

coded by unconventional ORFs. Imputing the full length ORF by extending the sequence to

the nearest stop codon up- and down-stream also improved MAPS microprotein discovery

and allowed more accurate identification of the start codon (Fig 5A). In addition, we observed

that taking the read sequence into account improves both microprotein discovery, and poten-

tial downstream validation, enabling cell-line specific microprotein detection (Fig 5B and 5C).

Combined with results from the general-purpose Cufflinks assembler, we feel that MAPS

improved the accuracy of our proteogenomic microprotein discovery pipeline.

Our analysis of the identified microproteins revealed dichotomies in the characteristics of

detected microproteins. We observed microproteins that had either low or uncharacteristically

high expression (both mRNA and ribosome footprinting), as compared to all RefSeq anno-

tated genes (Fig 6A and 6B). We also observed that large proportion of microproteins showed

relatively low conservation scores compared to typical genes, while another set seemed to

show higher than average conservation signatures, again suggesting that there may be two clas-

ses of microproteins detected. Furthermore, we again confirmed that many microproteins that

were detected did not start with an AUG start codon, suggesting that alternate codon usage

may play an important role in microprotein translation and further highlighting the impor-

tance of an unbiased search (Fig 6D). Finally, we reveal that microproteins detected with both

assembly methods are typically more conserved and have higher average expression (orange

bars, Fig D in S1 File), but include microproteins that are poorly expressed and conserved (Fig

E in S1 File), further highlighting the need for specialized assembly methods and orthogonal

dataset cross-validation for novel microprotein discovery.

Importantly, while the pipeline was designed for short peptide discovery, it can be arbi-

trarily adapted for use for detecting longer proteins, and the new MAPS tool can be directly

applied to non-coding RNA detection, rare isoform detection, and novel transcript detection,

and includes standard features for transcript abundance estimation and SNP detection. Mov-

ing forward, directly integrating LC-MS/MS spectral matching into MAPS and the incorpo-

ration of other pre-filtering steps should further improve microprotein detection.
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