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Ascending bacterial pyelonephritis, a form of urinary tract infection (UTI) that can

result in hospitalization, sepsis, and other complications, occurs in ∼250,000 US

patients annually; uropathogenic Escherichia coli (UPEC) cause a large majority

of these infections. Although UTIs are primarily a disease of women, acute

pyelonephritis in males is associated with increased mortality and morbidity, including

renal scarring, and end-stage renal disease. Preclinical models of UTI have only

recently allowed investigation of sex and sex-hormone effects on pathogenesis. We

previously demonstrated that renal scarring after experimental UPEC pyelonephritis is

augmented by androgen exposure; testosterone exposure increases both the severity

of pyelonephritis and the degree of renal scarring in both male and female mice.

Activin A is an important driver of scarring in non-infectious renal injury, as well as

a mediator of macrophage polarization. In this work, we investigated how androgen

exposure influences immune cell recruitment to the UPEC-infected kidney and how

cell-specific activin A production affects post-pyelonephritic scar formation. Compared

with vehicle-treated females, androgenized mice exhibited reduced bacterial clearance

from the kidney, despite robust myeloid cell recruitment that continued to increase

as infection progressed. Infected kidneys from androgenized mice harbored more

alternatively activated (M2) macrophages than vehicle-treated mice, reflecting an earlier

shift from a pro-inflammatory (M1) phenotype. Androgen exposure also led to a sharp

increase in activin A-producing myeloid cells in the infected kidney, as well as decreased

levels of follistatin (which normally antagonizes activin action). As a result, infection in

androgenized mice featured prolonged polarization of macrophages toward a pro-fibrotic

M2a phenotype, accompanied by an increase in M2a-associated cytokines. These data

indicate that androgen enhancement of UTI severity and resulting scar formation is

related to augmented local activin A production and corresponding promotion of M2a

macrophage polarization.
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INTRODUCTION

Urinary tract infections (UTIs) are extremely common,
affecting millions of people worldwide. Uropathogenic strains
of Escherichia coli (UPEC) cause over 80% of UTIs, including
both bladder infections (cystitis) and ascending infection of the
kidneys (pyelonephritis). UTIs predominantly affect females,
though infant and elderly males exhibit higher rates of UTI
compared to similarly aged females (1–6). Males also exhibit
higher morbidity and mortality than females in the setting of
complicated UTI (4, 7). Upper-tract UTI in childhood carries risk
for renal scarring, which in turn correlates with risk of chronic
kidney disease, and end-stage renal disease later in life (8–14).
Our prior studies in mice demonstrated enhanced UTI severity
and scar formation in males compared with females, phenotypes
shown to be dependent on androgen exposure (15, 16).

Macrophage recruitment, polarization, and function are
important for the proper resolution of many bacterial infections.
In a typical response, circulating monocytes are recruited to
the site of infection upon signaling by damage-associated and
pathogen-associated molecular patterns (DAMPs and PAMPs),
and proinflammatory cytokines such as IL-6, IFNγ, and TNFα;
these arriving monocytes initially differentiate, or polarize,
toward proinflammatory (M1) macrophages (17–25). These M1
cells further secrete proinflammatory cytokines and chemokines,
exert phagocytic activity, and induce neutrophil apoptosis (25–
30). Reduction of local DAMP and PAMP quantities, along
with an increase in neutrophil debris, and accumulation of TH2
cytokines, including cytokines such as CXCL1, G-CSF, and IL-
10 (27, 31–33), subsequently encourages these M1 macrophages
to polarize toward alternatively activated M2 macrophages (34–
38). M2a macrophages are activated by IL-4 and IL-13, and
are considered pro-fibrotic (39–42). These cells secrete TGFβ1
and are involved in cell growth, repair, and matrix deposition.
Immune complexes and IL-1β stimulate M2b polarization, which
is involved in regulation of the immune and inflammatory
responses (43, 44). M2c macrophages are stimulated by IL-
10, are involved in phagocytosis and matrix remodeling, and
typically signal resolution of the inflammatory response to an
injury (45–49).

Activin A, a TGFβ superfamily member that is a homodimer
of inhibin βA, has been shown to be upregulated in several
different systemic infection or injury models (50–56). In models
of non-infectious renal injury, activin A signaling promotes renal
scarring and fibrosis (55–59); in other systems, activin A has
been shown to exert varying effects on macrophage polarization.
For example, it encourages an M1 phenotype on unstimulated
monocytes and macrophages in vitro (60–63) but pushes these
cells toward a M2 polarization state when they are primed with
LPS (64–68).

Testosterone signaling increases susceptibility to, and severity
of, experimental pyelonephritis and renal scars in both male
and female mice (69), while anti-androgen treatments are
protective against UTI in mice and in women with polycystic
ovary syndrome (16, 70, 71). Sex differences are also evident
in the immune response to infection, and vary somewhat by
model. Males tend to have more circulating M1 macrophages

during infection (72), and dihydrotestosterone (DHT) can induce
a prolonged M1 macrophage polarization state in vitro (73).
Females typically exhibit more intense inflammatory responses to
multiple microbial stimuli (including vaccines), and have more
efficient phagocytic macrophages and increased levels of Toll-
like receptors (TLRs) and pro-inflammatory cytokines (74, 75).
In contrast, women taking oral contraceptives demonstrated a
decrease in several pro-inflammatory cytokines (IFNγ, TNFα)
after LPS stimulation (75), and testosterone stimulation has been
shown to decrease the production of TLR4 in mice (76).

In mouse models of non-infectious renal injury, aberrant
wound healing in males is characterized by increased leukocyte
infiltrate and enhanced proteolysis of ECM, while castration
promotes favorable wound healing (77, 78). Renal fibrosis in
these models is also strongly associated with the presence
of M2 macrophages (79–83); in fact, adoptive transfer of
M2 macrophages after unilateral ureteral obstruction (UUO)
promoted the accumulation of αSMA+ cells (indicative of
fibrotic scarring), a phenotype that involved signaling by
members of the TGFβ superfamily (84).

Here, we used C57BL/6 females treated with testosterone
cypionate (TC) in order to investigate how activin A influences
macrophage polarization during ascending pyelonephritis in the
androgenized host. Although several studies have investigated
how activin A affects macrophage polarization in vitro in
the presence of LPS, data are sharply lacking on how these
interactions transpire during in vivo infection. We determined
that during ascending UPEC pyelonephritis, androgen exposure
results in increased local activin A and promotes recruitment
of activin A-producing leukocytes, particularly activin A+
monocytes and macrophages. Further, androgenized mice
exhibited decreased local IFNγ and TNFα along with increased
CXCL1 and G-CSF, associated with decreased local M1:M2
macrophage ratios throughout infection. In particular, androgen
exposure caused a persistent increase in pro-fibrotic M2a
macrophages during later stages of infection. This androgen-
dependent skewing toward M2a macrophages promotes an
environment of reduced bacterial clearance and enhanced
renal scarring.

MATERIALS AND METHODS

Bacterial Strains
UTI89, a clinical cystitis isolate of uropathogenic Escherichia coli
(UPEC) (85), was grown statically overnight in Luria-Bertani
broth (LB; Becton Dickinson, Sparks, MD) at 37◦C. Overnight
cultures were centrifuged for 10min at 7,500 × g at 4◦C before
resuspension in sterile phosphate-buffered saline (PBS) to a final
density of∼4× 108 colony-forming units (CFU)/mL.

Animals
All animal protocols received prior approval from the
Washington University Institutional Animal Care and Use
Committee. Experiments were conducted in female C57BL/6
mice (#000664; Jackson Laboratories, Bar Harbor, ME) or, for
immunofluorescence analysis, in female bigenic Gli1-tdTomato+

mice, which harbor a tamoxifen-inducible Cre for tdTomato
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production from the Gli1 promoter [kind gift of B. Humphreys;
(86)]. For androgenization, mice of either strain were given
weekly intramuscular injections of 150 mg/kg testosterone
cypionate (TC, Depo-Testosterone; Pfizer, New York, NY)
beginning at 5 wk of age, and continuing until sacrifice. UTI
was initiated by inoculation of the bladder with 1–2 × 107 CFU
of UPEC via catheter at 7 wk of age, as described previously
(87, 88).

Determination of Bacterial Loads
At the indicated time points, mice were anesthetized with inhaled
isoflurane (Patterson Veterinary, Greeley, CO) and terminally
perfused with 4◦C PBS through the left ventricle. Bladders and
kidneys were aseptically removed and homogenized in 4◦C PBS.
The resulting tissue homogenates were serially diluted and plated
on LB agar.

Tissue Preparation and Histology
Gli1-tdTomato+ Mice were euthanized as described above, and
aseptically removed kidneys were fixed in 4% paraformaldehyde
in PBS for 1 h at 4◦C, incubated overnight in 30% sucrose in PBS
at 4◦C, then embedded inOCT (Fisher Scientific, Hampton, NH).
Embedded kidneys were cryosectioned into 5–8-µm sections
and mounted onto Superfrost Plus slides (Fisher Scientific). For
immunofluorescence staining, sections were washed with PBS,
blocked with 10% fetal bovine serum (FBS) in PBS, then stained
with fluorescently conjugated primary antibodies against CD206-
Alexa Fluor 488 (1:200; Biolegend #141709) and CD80-APC
(1:200; Biolegend #104713). Sections were then washed with
PBS, stained with 1:5,000 4′,6-diamidino-2-phenylindole (DAPI)
and mounted with ProLong Gold (both from Life Technologies,
Carlsbad, CA). Images were captured digitally with a Zeiss LSM
880 Airyscan confocal microscope (Oberkochen, Germany).

Flow Cytometry
Kidneys were harvested as described above, and were manually
homogenized into cold RPMI (Gibco) before treatment with
RBC lysis buffer (155mM NH4Cl, 10mM KHCO3) at room
temperature to ensure complete lysis of any remaining RBCs.
After washing, cells were subjected to a Percoll gradient (Percoll
PLUS; GE Healthcare, Uppsala, Sweden) in FACS buffer [10%
FBS, 1%w/v sodium azide, 2mM ethylenediaminetetraacetic acid
(EDTA) in PBS] + 25mM sucrose for leukocyte enrichment,
then resuspended in 4◦C PBS and stained with Live/Dead
Fixable Yellow (ThermoFisher Scientific). Cells were washed
again, resuspended in 4◦C FACS buffer and blocked with Fc
Block (BD Biosciences, San Jose, CA) on ice, followed by staining
with fluorescently conjugated antibodies against the following
extracellular antigens: CD45-BV510 (1:200; BD Biosciences
#563891), NK1.1-AlexaFluor 700 (1:50; Biolegend #108730, San
Diego, CA), CD11c-AlexaFluor 700 (1:200; Biolegend #117320),
Ly6G-AlexaFluor 700 (1:200; Biolegend #127621), CD19-
AlexaFluor 700 (1:200; Biolegend #115527), CD3e-AlexaFluor
700 (1:100; BD Biosciences #557984), CD150-APC (1:100;
Biolegend #115910), CD206-PE-Cy7 (1:100; Biolegend #141719),
CD86-PE-Cy5 (1:100; Biolegend #105016), CD115-PE (1:100;

Biolegend #135506), CD80-FITC (1:50; Biolegend #104706).
After staining, cells were washed, fixed in 4% paraformaldehyde
in PBS, permeabilized on ice with Perm/Wash buffer (10%
FBS, 1% w/v sodium azide, 1.3mM saponin in PBS, pH 7.4–
7.6), and then stained with the intracellular antibody Inhibin
βA-MaxLight405 (1:20; US Biological #211496, Salem, MA).
All macrophages described are CD11b+ and Ly6C+. M1
macrophages are defined as CD80+, F4/80+, MHC-II lo. M2a
macrophages are defined as CD206+ F4/80+ and MHC-II lo/−;
M2b as CD86+, F4/80+/−, MHC-II lo/−; and M2c as CD150+,
F4/80+/−, MHC-II hi (data not shown). For flow cytometry of
whole-kidney activin A production, the kidneys were processed
as described above, but cell suspensions were not subjected
to the Percoll gradient. After blocking, cells were stained with
labeled antibodies against the following extracellular antigens:
E-cadherin (CD324)-PE-Cy7 (1:200, Biolegend #147309), and
CD45 (30-F11)-BV510 (1:200, BD Biosciences #563891) and
the intracellular antibody Inhibin βA-MaxLight405 (1:20; US
Biological #211496) as described above. Stained cells were
washed, resuspended in FACS buffer and subjected to flow
cytometry on a LSR II Fortessa instrument (BD Biosciences).
Results were analyzed using FlowJo software (BD Biosciences).
A representative gating scheme is provided in Figure S1.

Immunoblotting
Harvested kidneys were flash frozen in liquid nitrogen and
stored at −80◦C until use. Kidneys were homogenized in RIPA
buffer (50mM Tris-HCl, 150mM NaCl, 1% v/v Nonidet P-
40, 0.1% w/v SDS, 0.5% w/v sodium deoxycholate, pH 7.4)
containing PhosSTOP phosphatase inhibitor (Roche; Basel,
Switzerland) and complete Mini protease inhibitor (Roche).
The lysates were cleared by centrifugation (2 × 5 min at
max speed in a tabletop centrifuge), followed by total protein
quantification by BCA assay (Invitrogen, Carlsbad, CA). Eighty
µg of protein was run on SDS-PAGE gels and transferred to
PVDF membranes. Membranes were blocked with 5% w/v non-
fat milk (Carnation, Vaud, Switzerland) in PBS containing 0.05%
v/v Tween-20 (PBST), and probed with primary antibodies
against follistatin (1:500; Invitrogen # PA5-79284) and CoxIV
(1:20,000; Cell Signaling Technologies #4844, Danvers, MA) in
blocking buffer overnight at 4◦C. Membranes were washed and
probed 1:2,000 with the appropriate horseradish peroxidase-
conjugated secondary antibody (GE Healthcare #NAP34) in
blocking buffer for 1 h at room temperature. Membranes were
washed again and developed with the Clarity Western ECL Kit
(Bio-Rad, Hercules, CA).

Cytokine Quantification
Protein was extracted from flash-frozen kidneys as described
above, and diluted in PBS to 900µg/mL. The diluted protein was
analyzed with a customized Bio-Plex Pro Mouse Cytokine Group
I kit (Bio-Rad) according to the manufacturer’s instructions. The
plate was read with a Bio-Plex 200 system and analyzed using
BioPlex Manager 6.1 software.
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qPCR
mRNA was extracted from flash-frozen kidneys using RNA Stat-
60 (amsbio, Cambridge, MA) according to package instructions.
One µg mRNA was converted to cDNA using the iScript cDNA
Synthesis Kit (Bio-Rad) according to package instructions. qPCR
was performed with the SsoAdvanced Universal SYBR Green
Supermix (Bio-Rad), containing ∼20 ng of cDNA and 350 nM
primers. Thermal cycling was performed on a 7500 Fast RT-PCR
system (Applied Biosystems, Foster City, CA) with the following
protocol: 95◦C, 3min; 40 × (95◦C, 10 s; 60◦C, 30 s). A list of
primer sequences is provided in Table S1.

Statistical Analysis
Statistical analysis for CFU and Bio-Plex data was performed
using the non-parametric Mann-Whitney U-test. All other
statistics were performed with an unpaired t-test. P <0.05 were
considered significant.

RESULTS

Androgen Exposure Amplifies Renal
Activin Expression During Pyelonephritis
In agreement with our previous work (16, 69), TC-treated
(androgenized) mice maintained consistently high UPEC titers
in both bladders and kidneys, significantly higher than those
in vehicle-treated mice beginning 14 days post infection (dpi;
Figure 1). As infection progressed, kidneys of TC-treated mice
had increased global transcription of Inhba (encoding activin A)
beginning 14 dpi and continuing through 28 dpi (Figure 2A).
This increased transcription led to modest but statistically
significant increases in activin A production 28 dpi by both
epithelial (CD45– E-cadherin+; Figure 2B) and non-epithelial
cells (CD45– E-cadherin–; Figure 2C), as determined by flow
cytometry. This increase in activin A is consistent with similar
increases seen in other renal injury models (55, 56). Meanwhile,
the leukocyte (CD45+) population in TC-treated mice showed a

significant elevation of activin A production 14 dpi (Figure 2D).
This activin burst was of much greater amplitude than that seen
in the other cell populations, leading us to investigate further how
activin production by leukocyte populations could associate with
the reduced UPEC clearance and enhanced scar formation seen
in the androgenized host.

Follistatin Production Is Suppressed in
Androgen-Exposed Mice With UTI
Follistatin binds strongly to activin A in the circulation and
tissues, preventing its binding to its cellular receptor and thereby
rendering it inactive (89–91). We hypothesized that renal tubular
epithelial cell death associated with UPEC infection would
reduce local production of follistatin (16). Indeed, while whole-
kidney transcription of follistatin during UPEC infection was not
altered in TC-treated mice (Figure 3A), follistatin production
in whole-kidney homogenates was significantly reduced in TC-
treated mice 10 and 14 dpi, as measured by quantitative
immunoblot (Figures 3B,C). There wasmild (but not statistically
significant) reduction in follistatin production in androgenized
mice across the other sampled time points (Figure 3C). Taken
together, increased activin A production, coupled with decreased
follistatin production, would provide an environment in the
androgenized mouse kidney with increased activin A activity
during UPEC infection.

Androgenized Mice Harbor Increased
Activin A-Producing Myeloid Cells in the
Infected Kidney
Activin A has been shown to affect macrophage polarization in
vitro, encouragingM1 polarization in unstimulated macrophages
while promoting M2 polarization in LPS-stimulated models (56–
64). We examined leukocyte (CD45+) populations within the
kidneys of TC-treated mice at various time points in order to
interrogate the role of androgens in activin A-driven macrophage

FIGURE 1 | Androgenized mice exhibit severe UTI. Organ titers (CFU) were quantified in serially diluted bladder (A) or kidney (B) homogenates at the indicated time

points post UPEC infection of vehicle-treated mice (open triangles) or TC-treated mice (filled triangles). Dotted line indicates the limit of detection; dpi, days

post-infection. n = 4–10 mice per group. *P < 0.05, **P < 0.01, ***P < 0.001.
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FIGURE 2 | Activin A expression and production is increased in the kidneys of androgenized mice. (A) Relative whole-kidney mRNA expression of Inhba was

determined in vehicle-treated mice (open bars) and TC-treated mice (filled bars) by qPCR at various time points post UPEC infection. n = 4–8 mice per group. The

relative mean fluorescence intensity (MFI) of activin A in (B) epithelial cells (CD45− E-cadherin+), (C) non-epithelial cells (CD45− E-cadherin−), or (D) leukocytes

(CD45+ E-cadherin−) compared to the MFI in the total live cell population was determined by flow cytometry at the indicated time points in vehicle-treated mice (open

triangles) or TC-treated mice (filled triangles). n = 4–10 mice per group. *P < 0.05, ***P < 0.001.

polarization during pyelonephritis. After 14 dpi, TC-treated mice
consistently exhibited increased recruitment of CD45+ cells
to the kidneys compared to vehicle-treated mice (Figure 4A).
While most of these CD45+ cells were neutrophils (Ly6G+;
data not shown), TC-treated mice displayed a sustained increase
in both monocyte (CD19− CD3e− Ly6G− CD11c− NK1.1−
CD115+) and macrophage (CD19− CD3e− Ly6G− CD11c−
NK1.1− CD115−) populations in the kidneys starting 14 dpi
(Figures 4C,E). There were also more activin A+ leukocytes,
monocytes, and macrophages in the kidneys of androgenized
mice, indicating that both the monocyte and macrophage
populations were contributing to activin A signaling in the
infected kidney (Figures 4B,D,F).

Androgen Exposure Favors Polarization of
Renal Macrophages Toward the
Pro-fibrotic M2a Phenotype
To investigate how the increased levels of activin A affected
macrophage polarization during UPEC infection and resolution,
we quantified kidney macrophages in the M1 or M2 polarization

states at various time points. Compared with vehicle-treated
mice, androgenized mice harbored an increased population of
M1 macrophages (CD80+; Figure 5A) in the kidneys 14 and 21
dpi, and an even greater increase in M2 macrophages from 14
to 28 dpi (CD80−; Figure 5B). This led to an overall decrease
in the M1:M2 ratio, beginning 10 dpi and sustained throughout
the course of infection (Figure 5C). A prolonged reduction in
the M1:M2 ratio is reflective of aberrant wound healing and is
associated with fibrotic scarring (25).

Within the population of activated macrophages, the M1
phenotype predominated in both vehicle and TC-treated mice
throughout the course of infection; however, androgenized mice
showed a significant reduction at multiple time points in the
fraction of polarized macrophages that were M1 (Figure 6A).
Correspondingly, androgenized mice exhibited a significant
increase in M2a (CD206+, CD150−) macrophages, beginning
14 dpi and persisting through the remainder of the course
(Figure 6B). Both M1 and M2a macrophages were visualized
near populations of Gli1+ activated myofibroblasts, which are
the major producers of extracellular matrix proteins in fibrotic
injury (Figure S2) (86, 92). Vehicle- and TC-treatedmice showed
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FIGURE 3 | Follistatin production is reduced during pyelonephritis in

androgenized mice. (A) Relative whole-kidney Fst mRNA was measured by

qPCR at the indicated time points in vehicle-treated mice (open bars) and

TC-treated mice (filled bars). n = 4–8 mice per group. Whole-kidney protein

production of follistatin was determined by quantitative western blot

[representative blot shown in (B); quantitation in (C)] at the indicated time

points in vehicle-treated mice (open triangles) and TC-treated mice (filled

triangles). n = 4–5 mice per group. *P < 0.05.

equivalent increases in M2b (CD86+) macrophages at later
time points following infection (Figure 6C). Vehicle- and TC-
treatedmice also harbored similar proportions ofM2c (CD150+)
macrophages in the kidneys until 28 dpi, when androgenized

mice had significantly more (Figure 6D). These results indicate
that androgens promote activin A production by myeloid
cells responding to UPEC pyelonephritis, with a corresponding
increase in M2a polarization of renal macrophages.

Androgens Promote M2a-Associated
Cytokine Expression During Pyelonephritis
M2a macrophages have been associated with tissue fibrosis
after non-infectious injury (39, 40, 93, 94). These cells
secrete a number of cytokines and chemokines involved in
immunomodulation and repair, including TGFβ1, a chief
signaling factor in renal fibrosis (84, 95, 96). Further, adoptive
transfer of M2a macrophages led to reduced healing and
increased fibrosis of endometriotic lesions (97). We investigated
cytokine content in the kidneys of vehicle and TC-treated
mice throughout infection. Notably, among M1-associated
cytokines, IFNγ was significantly reduced in androgenized
mouse kidneys 10 dpi (Figure 7A), while TNFα was unaltered
by androgen exposure (Figure 7B). Meanwhile, M2-activating
cytokines CXCL1 and G-CSF were significantly increased in TC-
treated mice at multiple time points (compared with vehicle-
treated; Figures 7C,D), indicating that the cytokine profile of
the infected, androgenized kidney may help to drive recruited
macrophages toward the M2 polarization state. In line with the
flow cytometry data (Figure 6B), TC treatment did not alter the
level ofM2b stimulant IL-1β in the kidneys (Figure 7E) and acted
to depress production of the M2c stimulant IL-10 (Figure 7F).
This lack of increase in IL-1β and IL-10 may discourage
progression of M2a macrophages toward the M2b and M2c
phenotypes that would characterize an optimal healing process.

DISCUSSION

Our published studies showed that testosterone exposure favors
the development of severe pyelonephritis in both C3H and
C57BL/6 mice (16, 69), with exacerbation of post-pyelonephritic
scarring. The present work demonstrates that androgens
encourage a reduction in pro-inflammatory M1 macrophages
in the UPEC-infected kidney, conversely favoring the sustained
presence of pro-fibrotic M2a macrophages, prolonging UTI and
offering a cellular basis for the altered resolution and enhanced
scarring we demonstrated previously.

Activin A, a member of the TGFβ superfamily, is involved in
both healing and renal fibrosis in several models (55–59) and is
a major driver of macrophage polarization (56–64). TC-treated
mice demonstrated an increase in Inhba transcription and activin
A production throughout their kidneys, with a corresponding
decrease in follistatin. The cumulative result of these effects is
more active activin A in the kidneys of androgen-exposed mice.
Interestingly, the CD45+ leukocyte population in TC-treated
mice showed the most pronounced increase in activin A (14
dpi); correspondingly, infiltration of multiple myeloid lineages
was enhanced in androgenized mice, and the number of activin
A-producing cells in these groups also steadily increased.

Activin A signaling has been shown to encourage recruited
monocytes to differentiate into either pro-inflammatory M1
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FIGURE 4 | Androgenized mice have larger populations of activin A-producing leukocytes, including monocytes and macrophages, in the kidneys during UPEC

infection. The population of (A) total leukocytes (CD45+), (B) activin A+ leukocytes, (C) monocytes (CD45+ CD115+ CD19− CD3e− Ly6G− CD11c− NK1.1−), (D)

activin A+ monocytes, (E) macrophages (CD45+ CD115− CD19− CD3e− Ly6G− CD11c− NK1.1−), and (F) activin A+ macrophages as a percentage of the total

live cell population was determined by flow cytometry in vehicle-treated mice (open triangles) and TC-treated mice (filled triangles) at the indicated time points. n =

4–10 mice per group. *P < 0.05, **P < 0.01, ***P < 0.001.
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FIGURE 5 | Androgenized mice have increased populations of both M1 and M2 macrophages, but a reduced M1:M2 ratio. The populations of (A) M1 macrophages

(CD80+) and (B) M2 macrophages (CD80−) as a percentage of total live cells was determined by flow cytometry at the indicated time points in vehicle-treated mice

(open triangles) and TC-treated mice (filled triangles). (C) The ratio of M1 to M2 macrophages for each mouse was calculated from the data represented in (A,B). n =

4–10 mice per group. *P < 0.05, **P < 0.01, ***P < 0.001.

FIGURE 6 | Androgenized mice harbor an increased proportion of M2a polarized macrophages. The population of (A) M1 macrophages (CD80+), (B) M2a

macrophages (CD80− CD206+ CD150−), (C) M2b macrophages (CD80− CD86+), and (D) M2c macrophages (CD80− CD150+) as a percentage of the polarized

macrophage population was determined by flow cytometry at various time points in vehicle-treated mice (open triangles) and TC-treated mice (filled triangles). n =

4–10 mice per group. *P < 0.05, ***P < 0.001.
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FIGURE 7 | Kidneys of androgenized mice contain reduced M1- and increased M2-polarizing cytokines. The concentrations of (A) IFNγ, (B) TNFα, (C) CXCL1, (D)

G-CSF, (E) IL-1β, and (F) IL-10 were quantified by Bio-Plex assay from protein extracted from whole kidneys of vehicle-treated mice (open triangles) and TC-treated

mice (filled triangles) at the indicated time points post-infection. n = 4–10 mice per group. *P < 0.05, **P < 0.01.

macrophages or alternatively activated M2 macrophages (98).
This variance in polarization states appears to be environmentally
dependent, with unstimulated monocytes and macrophages
favoring an M1 phenotype (56–59), while LPS stimulation
before activin A treatment skews these cells toward an M2
phenotype (60–64). During active bacterial infection, as in our
model, the kidney is exposed to extensive LPS stimulation. This,
combined with the increase in activin A, caused androgenized
mice to have a sustained preponderance of M2 macrophages.
When we examined the specific polarization states of these
M2 cells, we found that TC-treated mice harbored significantly
more M2a macrophages at all time points beginning 14 dpi.
Macrophage polarization and proliferation occurs within the
injured kidney, and M2 macrophages are highly important for
repair of non-infectious renal injury (99–101). Specifically, M2a
macrophages are known to be pro-fibrotic, enhancing TGFβ1
expression, cell growth, tissue repair, and matrix remodeling
(39–42). During optimal recovery from tissue injury, this M2a
population subsides as they differentiate toward (and are replaced
by) immunoregulatory M2b and M2c macrophages, allowing
the inflammatory response to abate and the affected tissue to
return to a healed state (36, 96, 102, 103). In our model, while
M2b and M2c numbers increased slightly over time in both
TC- and vehicle-treated mice, the augmented M2a population in
androgenized mice did not subside. The persistence of these M2a
macrophages would act to prolong the pro-fibrotic state, prevent

resolution of inflammation, and favor the androgen-enhanced
renal scarring we have shown previously (15, 16).

Macrophage polarization is also highly dependent on secreted
cytokines that are secreted by the injured tissue and the
macrophages themselves (27, 96). M1 polarization occurs via
stimulation with several pro-inflammatory signals (e.g., LPS
and IFNγ, with ensuing TNFα, and IL-6 production) (15–23),
as are normally elicited early after bacterial infection of the
urinary tract (104–106). M2 macrophages are sensitive to a
variety of Th2 cytokines, including CXCL1, G-CSF and IL-10
(27, 31–33). The whole-kidney cytokine profiles following UPEC
infection aligned with the macrophage polarization states we
observed, with androgenized mice exhibiting suppressed IFNγ

and unaltered TNFα, accompanied by increased CXCL1 and G-
CSF. The depressed IL-10 levels during infection in androgenized
mice may hinder the adoption of M2b or M2c phenotypes,
restraining kidney macrophages in a prolonged M2a state.

In total, our data indicate that testosterone exposure
alters the typical response to renal UPEC infection, pushing
the kidney toward a dysfunctional healing process through
increased activin A signaling and altered cytokine release.
These signals encourage the recruited monocytes to polarize
toward and persist as M2a macrophages for weeks in the
kidney, preventing bacterial clearance and proper resolution
of inflammation. A deeper understanding of how testosterone
regulates these signals may allow us to modulate this immune
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response to help mitigate adverse long-term sequelae of
severe pyelonephritis.
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