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Movement behaviors of an indicator species, Daphnia magna, in response to contaminants have been implemented to monitor
environmental disturbances. Complexity in movement tracks of Daphnia magna was characterized by use of fractal dimension
and self-organizing map. The individual movement tracks of D. magna were continuously recorded for 24 hours before and after
treatments with toluene at the concentration of 10mg/L, respectively.The general complexity in movement tracks (10 minutes) was
characterized by fractal dimension. Results showed that average fractal dimension of movement tracks was decreased from 1.62
to 1.22 after treatments. The instantaneous movement parameters of movement segments in 5 s were input into the self-organizing
map to investigate the swimming pattern changes under stresses of toluene. Abnormal behaviors of D. magna are more frequently
observed after treatments than before treatments. Computational methods in ecological informatics could be utilized to obtain the
useful information in behavioral data ofD.magna and would be further applied as an in situmonitoring tool in water environment.

1. Introduction

Behavior is an organism response to environmental stimuli
defined as an action, a reaction, or a function of a system
under a specific circumstance [1]. Thus, behavioral response
is supposed to be an outward projection of central networks
of physiology pertaining to the individuals. Automatic detec-
tion of behavioral responses of water species has been applied
as an efficient tool for biomonitoring in aquatic environment,
because animal behaviors would be suitable as indicators for
various pollutants [2, 3]. A large number of behavioral studies
on chemical effects at low concentrations have been reported
subjected to various taxa including insects [4], crustaceans
[5], nematodes [6], snails [7], and fish [8]. The information
involved in animal movement behavior, however, has been
regarded as difficult to exact due to complexity residing in the
data, and so effective methods to analyze behaviors without a

priori knowledge are important in the behavioral monitoring
[9].

Motion segmentation would be useful to provide avail-
able information for computational analysis of animal move-
ment tracks.Thepurpose of segmentation is tomake complex
behaviors easy to analyze [10]. Motion segmentation was
widely applied based on the computer vision technique
[11, 12]. The movement tracks of water indicator species
could be accordingly segmented and patterned to detect the
abnormal behaviors occurring when individuals are exposed
to chemicals [13, 14].Movement segmentation andmovement
patterning, however, have never been used to comparatively
study animal behavioral data for different time scales.

Fractal dimension is generally used to characterize frac-
tal patterns by featuring the complexity as a ratio of the
change in detail to the change proportionally [15]. Fractal
dimensions are fractional numbers originating from filling
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of space, in which fractal number of area is integer 2
and that of volume is integer 3. Fractal dimensions are
commonly applied to determine the self-similarity properties
and natural structural patterns. Recently, fractal dimension
has been used to describe behavioral patterns of animals
such as fruit flies [16] and chironomids [17]. Self-organizing
map (SOM) is an artificial neural network that is trained
through unsupervised learning to obtain a low-dimensional
and discretized description of the input data and is therefore
a process to conduct dimensionality reduction [18]. SOM
has primarily been used in analysis of complex behaviors in
response to the extreme environmental stresses in ecological
risk assessment, because it can efficiently identify the patterns
of animal responses based on behavioral parameters [19, 20].
SOM was also applied to differentiate animal behaviors with
various genotypes in response to environmental pollutants
[4, 16]. In addition, behavioral classificationwith the SOMhas
been expanded for use of clinical applications [21]. Thus, the
twomethods, fractal dimension and SOM, have a prospective
application to study the movement behaviors of indicator
species exposed to chemical stresses and further to detect the
existence of pollutants in the water.

The zooplankton, Daphnia magna, is a fresh or brackish
water organismwidely used as a standard indicator species in
a variety of ecological studies.D.magnahas numerous advan-
tages as an experimental organism.ThisCladoceran species is
relatively easy to keep in the laboratory, has a fast generation
time, and can be maintained at high population densities in
limited storage [22]. Moreover, the body transparency of D.
magna helps in observations of its inner structure in response
to chemical treatments on anatomy, while its behavioral
sensitivity to a broad range of chemical stressors helps for
investigation on environmental monitoring [22, 23].

This study is aimed at (1) detecting chemical effects of
toluene on movement behaviors ofDaphnia magna based on
general shape and movement patterns of swimming tracks
after treatments of toluene in static water environment and
(2) verifying the fact that computational analyses (i.e., fractal
dimension and SOM) could be used to effectively reveal
the behavioral information of D. magna for longer and
shorter time units. As an important component of petroleum
hydrocarbons, toluene has been reported to be toxic to water
species, because it can produce negative effects on growth
and reproductive performance of aquatic animals [24]. The
individual movement tracks of D. magna before and after
the treatments of toluene were obtained through an image
processing system. Subsequently, the movement tracks were
segmented into a longer time unit (i.e., 10 minutes) and were
further cut into a relatively shorter time unit (i.e., 5 seconds).
The movement parameters of the two time units were input,
respectively, analyzed by two computational methods, by
fractal dimension to extract general movement complexity
from longer tracks and by SOM to investigate movement
pattern from shorter tracks.

2. Materials and Methods

2.1. Indicator Species and Test Chemical. Daphnia magna (1
day young) used in the experiment was cultured according to
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Figure 1: Behavior observation system for Daphnia magna.

the standard rearing procedure [25]. The young population
of D. magna was hatched at the South China Institute of
Environmental Sciences, China, and stocked in the labora-
tory with temperature at 25 ± 2∘C, pH at 7.0 ± 0.3 (average
± standard deviation), and photophase for 14 hours with
illumination from 3000–4500 lx and scotophase for 10 hours.
Toluene (Sigma-Aldrich Co.) at a concentration of 10mg/L
was added to the water in a confined observation cage,
because the 24 h LC50 or EC50 of toluene on D. magna was
reported as 53–500mg/L according to the previous studies
[26, 27]. Ten healthy individuals of D. magna were randomly
selected and individually transferred to a nontoxic acrid cage
(60mm × 50mm × 10mm) filled with filtered water that was
moved from the stock tank.The individuals ofD.magnawere
acclimated to the observation environments for a half hour
and then were individually vertically recorded continuously
for 24 hours before the treatments and after the treatments,
respectively. Food andoxygenwere not supplied to the system
during the entire observation to minimize the amount of
noise data.

2.2. Behavioral Observation System. The individual move-
ment tracks of D. magna were recorded and recognized
by a computer vision system with a CCD camera (Hitachi
KP-D 20 BU�), an acrid observation cage, a timer, an
Analog/Digital interface card (Matrox Morphis�), and image
recognition software (0.25 s/frame) (Figure 1). A robust back-
ground subtraction algorithm based on frame differencing
with filter was used to image recognition in this study
[28]. The snapshot was sent to the system to recognize
coordinates of target individuals in the spatial and time
domains. The interval of 0.25 s segment was considered as
sufficiently short in presenting information of movement
behavioral data in detail, while the response time for 24 hours
is generally enough to observe chemical effects for acute
toxicological treatment [29]. Meanwhile, the time frame was
also suitable in observing the behaviors of test organisms not
only at the open but also at the boundary area [30]. Some
response behaviors due to toxic effects such as compulsion
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and trembling might be expressed less than 0.25 s, but this
behavior in extremely short duration was not considered in
the present study.

2.3. Calculation of Movement Parameters. In order to charac-
terize activities and shapes of instantaneousmovement tracks
in response to chemical treatments, movement parameters
were automatically calculated based on individual locations
in each frame by the behavioral observation system. Based
on preliminary studies [29, 30], the following 7 param-
eters were screened to characterize the movement data
for each 5 s segment: speed (mm/s), acceleration (mm/s2),
locomotory rate (mm/s), stop number (𝑛), stop time (s),
turning rate (rad/s, angular change divide by time), and
meander (rad/mm, angle change per movement distance).
Speed (movement distance divided by the observation time),
acceleration (speed difference divided by time), and stop time
(total duration without movement) represent the general
linear activity of the test organisms.The locomotory rate was
additionally measured to show how fast the test organisms
move. The speed indicates the average movement distance
during the total observation time, while the locomotory rate
is the average movement distance when the organisms move,
excluding the total duration of the stop time. The turning
rate (angular change divide by time) and meander (rad/mm,
angular change divided by distance) were used to reflect the
turning behavior of the test organisms.

2.4. Fractal Dimension. The general complexity information
in the behaviors of D. magna was extracted from the images
of movement tracks using fractal dimension [15].

𝐷 = lim
𝑟→0

log (𝑁 (𝑟))
log (1/𝑟)

, (1)

where 𝑁(𝑟) is the least number of boxes of length 𝑟 with
points (positions of individuals) and 𝑟 is the size of boxes that
need to completely cover the object. Given a binary image of
𝑀 × 𝑀 pixels, where 𝑀 is a power of 2, fractal dimension
could be transferred to

𝐷 ≈
log (𝑁 (𝛿))
log (1/𝛿)

, (2)

where 𝛿 is box size, 𝛿 = 𝑟𝑀 (0 < 𝑟 < 1). The calculation
procedure could be conducted by three steps as follows. (1)
Set of box sizes 𝛿 for laying grids on the image of movement
tracks by using a samplingmethod is generated [31]. Each grid
becomes a box of size𝛿×𝛿. (2) For each𝛿, the number of boxes
𝑁(𝛿) containing positions of daphnia completely is counted.
(3) Fractal dimension 𝐷 is obtained from the slope of points
(log(1/𝛿), log(𝑁(𝛿))). Based on the definition of topological
dimension, while the dimension value of a line is 1.0 and that
of a surface is 2.0, the number of fractal dimensions would be
any value from 1.0 to 2.0, since the movements of D. magna
were tracked in two dimensions by the observation system.
The duration of the movement tracks was set to 10 minutes,
which was properly enough to show response effects based
upon the movement behaviors of other species such as fruit
flies [16] and chironomids [17].

2.5. Self-Organizing Map. The data matrix including 7 para-
meters of 1000 movement tracks (5 s), before and after treat-
ments, respectively, was randomly selected and input to train
the self-organizing map (SOM) [18]. The Euclidian distance
(𝑑𝑗(𝑡)) for the 𝑗th node between weight at iteration time 𝑡 and
the input vector was trained following the processes:

𝑑𝑗 (𝑡) =
𝑃−1

∑
𝑖=0

[𝑥𝑖 − 𝑤𝑖𝑗 (𝑡)]
2
, (3)

where 𝑥 is input vector of the 𝑖th variable, 𝑤𝑖𝑗(𝑡) is weight
between the 𝑖th variable and the 𝑗th node, and 𝑃 is the
number of the parameter.

The best-matching neuron with the minimum distance
was selected as the winner. The weight vectors between the
inputs and the nodes were calculated, when the data were
input to the networks.

𝑤𝑖𝑗 (𝑡 + 1) = 𝑤𝑖𝑗 (𝑡) + 𝑎 (𝑡) [𝑥 (𝑡) − 𝑤𝑖𝑗 (𝑡)] , (4)

where 𝑡 is iteration time and 𝛼(𝑡) is training rate. The weights
of the best-matching unit and its close neurons were updated
towards the input vector through an interactive calculation in
the lattice. Consequently, the similarity between the move-
ment segments is reflected on the output SOM map. Ward’s
linkage method was used to reveal the degree of association
between the movement data based on the dendrogram using
the Euclidean distance matrix [32, 33]. The learning process
of the SOM was conducted by the SOM Toolbox (The
Mathworks, R2011) [34].

2.6. Statistical Analysis. Paired-sample 𝑡-test was used to test
the significance of difference for the movement parameters,
fractal dimension, and amount of movement patterns before
and after treatments of toluene. SPSS 15.0 was used for
statistical analysis [35].

3. Results

3.1. Behavioral Activity. The general activity of D. magna can
be clearly seen from the recorded movement tracks before
and after the treatments of toluene, respectively (Figure 2). In
general, the individuals ofD. magnawere usually more active
before the treatments. The movement tracks spanned a large
area of the observation cage with smooth and linear shapes
with individual variations in activity (Figure 2(a)). The shak-
ing or zig-zag segments was rarely observed in themovement
tracks. On the contrary, typical tracks with more abnormal
irregular swirls or turns were showed after the treatments
under the chemical effects (Figure 2(b)). The degree of
activity decreased and swimming range was reduced accord-
ingly. The irregular turns in the movement tracks indicate
that behaviors of observed individuals were severely affected
by the chemical treatment. The toxic effects of toluene on
observed individuals were also presented with changes in
movement parameters. For example, speed decreased from
5.14 ± 0.98mm/s to 3.47 ± 0.85mm/s (one-tailed paired-
sample 𝑡-test, 𝑡 = 7.72, DF = 9, 𝑝 < 0.01), while turning
rate increased from 1.33 ± 0.51 rad/s to 3.73 ± 1.19 rad/s
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Figure 2: Movement tracks ofDaphnia magna treated with toluene at 10mg/L. (a) Before treatment and (b) after treatment. Colors on tracks
indicate movement segments in 10 s time interval.
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Figure 3: Fractal dimension ofmovement tracks (10minutes) before
and after treatments of observed individuals. ∗ indicates significant
difference, 𝑝 < 0.01.

(one-tailed paired-sample 𝑡-test, 𝑡 = −13.52, DF = 9, 𝑝 <
0.01) after the treatments.

3.2. Behavioral Complexity. Behavioral complexity in move-
ment tracks of D. magna was subsequently detected by the
fractal dimension in two dimensions (Figure 3). Fractal
dimension of the movement tracks being close to the maxi-
mum value 2 means that the individual searches and passes
by all the area evenly. Reversely, the fractal dimension less
than 2 indicates that daphnia chooses movement patterns in
a certain position. After the treatments, fractal dimension of
movement tracks of individuals in 10 minutes was signifi-
cantly decreased from 1.62 ± 0.24 to 1.22 ± 0.21 (one-tailed
paired-sample 𝑡-test, 𝑡 = 6.68, DF = 9, 𝑝 < 0.01). The results
overall indicated decrease in complexity of movement data
after treatments.

3.3. Movement Patterns. Movement segments (5 s) were pat-
terned by use of the SOM with seven parameters cal-
culated from the observation data. The movement tracks
were accordingly grouped on the SOM before and after
the treatments, respectively (Figure 4(a)). The movement
segments before treatmentswere dominated by themarks “C”
in the bottom of SOMmap, while the segments marked with
“T” were located in the top in a majority after treatments.
Six typical movement patterns were defined and identified
according to the linkage clustering. The clusters accordingly
were defined as the following movement patterns: (1) line
(Figure 5(a), P1 in cluster 1), long forward step, appeared to
be smooth and linear; (2) loop (Figure 5(b), P2 in cluster
2) was shorter than p1 in one direction with smooth shape
and fast speed; (3) cross (Figure 5(c), P3 in cluster 3), was
characterized by combination of p1 and p2; (4) shaking
(Figure 5(d), P4 in cluster 4), was alternatively left and right
turning with spanning a small area; (5) swirl (Figure 5(e), P5
in cluster 5) was small circular shape keeping a clockwise or
anticlockwise direction; and (6) stay (Figure 5(f), P6 in cluster
6) was to be a movement pattern with the lowest speed.

The profiles of the parameters in 5 s segments were visu-
alized based on the grouped SOMunits (Figure 4(b)).Thedis-
tance between clusters was provided based upon the weights
or thresholds of closeness in dendrogram (Figure 4(c)). The
movement pattern P1 was primarily featured by linear move-
ments with the highest speed, the shortest stop time, and
the smallest stop number. P2 indicated a loop characterized
with high speed, relatively high locomotory rate, and middle
acceleration. P3 presented the highest acceleration, turning
rate, and the low stop time. The shaking pattern P4 at the
middle right of the map was characterized as relatively low
speed and acceleration, high stop number, and turning rate,
while swirl in P5 showed parameters with long stop time, low
speed, and acceleration comparedwith P4. Remarkably being
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Figure 4:Themap trained by using the SOM for pattering movement segments ofD. magna in 5 s. (a) Six clusters classified by the SOM (“C”
represents movement segments before treatments, while “T” stands for movement segments after treatments). (b) Profile of the parameters
matching the clusters based on the trained SOM.The values in the vertical bar in the top row indicate normalized parameters. (c) Dendrogram
according to Ward’s linkage method.

different from other patterns, P6 stay was the most nonactive
movement with the greatest level of stop time, stop number,
and the lowest speed and acceleration.

3.4. Proportion of Movement Patterns. The compositions
of movement patterns in 1000 segments, before and after,
respectively, were summarized as shown in Figure 5. In
general, the percentages of active movement patterns (P1, P2,
and P3) were significantly increased, while the proportions
of inactive movement patterns were universally decreased
under the chemical stresses. The dominant patterns were P1
and P2; in particular, p1 holds 25.4% of the total number
of segments. The continuous movements (P3) and stay (P6)
were also dominant before the treatments, while P4 and P5
occurred with minimal frequency.

The proportion of the movement patterns was signifi-
cantly changed by the chemical effects after the treatments.
The percentage of active movement patterns (i.e., linear or
continuous direction in movement sequence, P1, P2 and
P3) decreased, while those of nonactive movement patterns
(i.e., zig-zag type movements, P4 and P5, or stay, P6)
increased after the chemical treatments. It was notable that
the proportion of linear movement (P1) decreased distinc-
tively from 25.4% to 17.1% after the treatments. The stop
pattern (P6), however, substantially increased from 14.7% to
22.5%. The change in pattern frequency indicated that the
chemical effects were accordingly projected onto the spatial-
time domain of the movement data. The paired-sample 𝑡-
test accordingly showed statistical significance in each pattern
at 𝑝 < 0.01 (𝑡 values: 30.56 (P1), 21.45 (P2), 22.38 (P3),
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Figure 5: Diagrammatic sketch of movement patterns in 5 s segments based on the trained SOM (a) line (P1); (b) loop (P2); (c) cross (P3);
(d) shaking (P4); (e) swirl (P5); and (f) stay (P6).

−24.42 (P4), −27.58 (P5), and −26.91 (P6)) before and after
the treatments.

4. Discussion

Automatic monitoring based on behavioral data of indicator
species has attracted much attention in risk assessment in
water ecosystems, because the monitoring methods could
fill the gap between macroscale (e.g., community structure)
and microscale (e.g., molecular response) measurements.
Detection of stressor with early signals through behavioral
changes of indicator organisms is ecologically more relevant,
faster, and cheaper than chemical detection [36]. Compared
to survival as an endpoint, behavioral parameters have been
proven to be often between 10–100 times more sensitive to
the chemicals [1, 37]. Once a determined behavior can be
quantified, it has the potential to be used as a biomarker
in the assessment of stress [38]. A remarkable advantage
of behavioral monitoring is that any human process is not
required during the observation period. However, behavioral
data are considered to be difficult to analyze, because numer-
ous biological factors are involved in a complexmanner.With
the rapid development of computer computational ability
of personal computer, a longer term automatic real-time
monitoring becomes true through the behavioral observation
system, including data collection, data analysis, and decision
making for early warning, which is nearly impossible by

human process. Behavioral monitoring could be conducted
on the real-time basis without much demanding observation
efforts and facilities; however, the application of the automatic
monitoring system in the natural water environment is easily
affected by many factors (e.g., individual variance, environ-
mental conditions), and this problem should be solved by
improving system robustness step by step in the future.

Considering that location density information is embed-
ded in fractal dimension, the fractal dimension could be
naturally used to present the activity information in animal
movement behaviors (Figure 2). The complexity involved in
movement behaviors reflected by the change of fractal dimen-
sion was accordingly elucidated in differentiating effects
of internal and external stimuli even in two-dimensional
tracks. Obviously, it would be more useful in quantifying the
movement data if higher dimension could serve to reveal
more complex behaviors. In this study, we applied two-
dimensional data as an initial step of the study, and fractal
dimension would be more suitable in presenting diverse
behavioral changes if three-dimensional observations are
used in the future.

Because of the complexity residing in a huge amount
of data in two-dimensional movement, finding an efficient
method to determine the pattern changes in movement
behavior with conventional methods was not easy. Notably,
the SOM process provides useful information on movement
patterns regarding this type of complex behavioral data.
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ments with toluene at 10mg/L. ∗ indicates significant difference,
𝑝 < 0.01.

Movement segments were clearly clustered on the output
SOMmap based upon inputting movement parameters (Fig-
ure 4), and the movement patterns were clearly differentiated
to represent normal and abnormal behaviors (Figure 5). The
proportion of linear or long step movement segment (p1, p2,
and p3) decreased, while those of zig-zag movements (p4
and p5) or stay (p6) increased after the chemical treatments
(Figure 6). Illustrations of changes in the movement patterns
will be helpful for further characterizing the movement
mechanisms of indicator species.

SOM was reported to be superior to conventional feature
extraction methods such as empirical orthogonal functions
or principal components analysis, with many advantages
[39]. This is because the nonlinear SOM could minimize
Euclidian distance between learned pattern vectors and
data vectors and preserve the data topology rather than
the variance. Through the training process, weights (i.e.,
movement parameters) of all neighborhoods are pushed
to the same direction and similar items (i.e., movement
segments) tend to occupy adjacent neurons. Therefore, SOM
forms a trustable visualized map where similar samples are
clustered close together and dissimilar ones apart. For the
present study, through SOM analysis, the movement patterns
of D. magna could be clustered into a certain number of
groups that are maximally close to the “real patterns” under a
specific circumstance. Thus, the differences in the movement
tracks of D. magna were efficiently revealed before and after
the treatments of toluene. Complex behavioral data could
be extracted through the SOM and could be accordingly
patterned to illustrate the overall view of behavioral response
to chemical stressors. The SOM further suggested that
objective characterization of complex behavioral data by the
computational methods could effectively serve as the real-
time and online monitoring tools.

Most movement parameters used in the present study
mainly concern the instantaneous locomotion, while fractal
dimension represents general movement complexity. We
would like to focus on how the test organisms behave
instantaneously and continuously in relatively short distances
in a confined cage (Figure 1). Considering for practical use for
monitoring in situ, small size arena would be more feasible.

Since the individuals are reared in a limited area in the
arena, the individuals occasionally stayed near the boundary
area. Behaviors near the boundary area could be different
from the movements of the individuals in the middle of
the arena. In this study, however, a relatively low proportion
of the observation time was spent near the boundary area.
Considering that the boundary area could be determined
as 2mm inside the boundary [40], the specimens usually
stayed less than 5% of the total observation time on average
in the boundary area. In the future, however, a definition
of behavioral states near boundary area should be checked
further, because behavioral states in the boundary area might
be characterized differently [41].

5. Conclusion

Thetoxic effects of toluene onD.magna could be expressed by
the increase number of abnormal behaviors in the movement
tracks for different time scales, for 10 minutes and 5 s long
in the present study, respectively. The general complexity
in movement tracks was clearly characterized by fractal
dimension, while instantaneous movement patterns could
efficiently extracted by SOM. Computational analysis on
movement behaviors of D. magna could be an alternative
monitoring tool to automatically detect chemicals in aquatic
environment.
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