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We report and model a previously undescribed systematic error causing spurious excess correlations that
depend on the distance between probes on AffymetrixH microarrays. The phenomenon affects pairs of
features with large chip separations, up to over 100 probes apart. The effect may have a significant impact on
analysis of correlations in large collections of expression data, where the systematic experimental errors are
repeated in many data sets. Examples of such studies include analysis of functions and interactions in groups
of genes, as well as global properties of genomes. We find that the average correlations between probes on
Affymetrix microarrays are larger for smaller chip distances, which points out to a previously undescribed
positional artifact. The magnitude of the artifact depends on the design of the chip, and we find it to be
especially high for the yeast S98 microarray, where spurious excess correlations reach 0.1 at a distance of 50
probes. We have designed an algorithm to correct this bias and provide new data sets with the corrected
expression values. This algorithm was successfully implemented to remove the positional artifact from the
S98 chip data while preserving the integrity of the data.

Overview. DNA microarrays provide a means of measuring the concentrations of thousands of genetic sequences
in one experiment, and are used in many fields ranging from basic biological research to medical applications1–7.
In gene expression profiling8–12 experiments, microarrays are used to measure the mRNA concentration for large
numbers of genes.

This technology has produced thousands of experimental data sets that are available through online databases
such as the Gene Expression Omnibus (GEO)13. While expression profiling is now often done using RNA-seq
techniques, large collections of legacy microarray data are often analyzed to reveal functional relationships
between coexpressed genes, as well as to infer regulatory interactions, e.g.14–20. Inference from large datasets is
especially prone to systematic errors that might be repeated in every experiment. In the widely used Affymetrix
GeneChip platforms, several kinds of systematic errors have been reported, such as the order-dependence of
expression values21, correlated expression between probes containing runs of guanine22 and image artifacts that
enhance outliers23. In spotted microarrays, the systematic errors include positional effects that lead to spurious
correlations between the measured expression levels of the probes on the microarray24–26. This positional artifact
in the spotted arrays has been attributed to carryover during the transfer of presynthesized probes onto the chip24.

Position effect in AffymetrixH chips. In this paper we consider the Affymetrix microarray platforms, specifically
the Yeast Genome S98 Array, a popular whole genome platform for Saccharomyces cerevisiae. In order to
investigate systematic position effects, we analyzed the expression data available in the Gene Expression
Omnibus database. We observed that the data collected for experiments done using the S98 chip display long-
range excess correlations strongly dependent on the distance between the probes on the chip. Although the effects
are similar in appearance to the ones observed in spotted microarrays, the physical nature of the positional artifact
in Affymetrix chips must be different because the Affymetrix chips are fabricated using in situ synthesis of the
probes.

Systematic excess correlations may bias the inference of functional gene relationships from large numbers of
experiments. To describe and correct these effects, we modeled this artifact in S98 chips and designed an
algorithm to correct for it by reconstructing the unbiased expression values. Our model is derived based on a
large collection of array data and allows the removal of spurious correlations from any set of experiments that use
the same chip.
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Results
Evidence of positional artifact. The Affymetrix Yeast Genome S98
Array contains 9335 probe sets with a total of 285,156 probes. To
characterize the dependence of the correlations between different
probe sets on their physical location on the chip, we computed a
map of average correlation as a function of probe separation along
the x-axis (dx) and along the y-axis (dy). Every pixel in this
correlation map represents the average of all pairs of probes with a
given separation on the chip (with dimensions L and H); see
definition in Methods below. Therefore, if no positional effects
were present, one would expect this correlation map to be flat and
only random oscillations around the average correlation in the
genome would be observed; a small positive number, depending
on the collection of experiments used in the analysis.

The actual correlation map, created from 1383 samples is shown in
Figure 1a. One prominent non-random feature is the stronger cor-
relation between probes along the x-axis. This effect can be explained
by the fact that the probes with genes from the same chromosome are
typically laid out next to each other along the x-axis of the chip.
Figure 2a shows these bands of probes with the same chromosomal
targets. This kind of arrangement increases correlations between
probes along the x-axis since neighboring genes on one chromosome
are more likely to have the same expression pattern; they often share
the same transcription factor binding sites27,28.

The second prominent feature in the map in Figure 1a is that the
correlation between two probes is strongly dependent on their
Euclidean chip distance. Probes with smaller separation on the chip
tend to correlate more than probes with large chip separation,
regardless of chromosomal proximity; this effect extends to distances
in excess of 100 probes. Such a specific pattern on the chip is unlikely
to have a biological cause and we propose that it results from experi-
mental systematic errors. To demonstrate this, we recalculated the

correlation map for a simulated chip with probes shuffled into
random positions. The correlation coefficient between any two
different probe sets in the randomized chip was the same as in
the original configuration, but the average correlation map for the
simulated microarray was not dependent on chip distance (see
Figure 2b).

The positional bias is also present in other Affymetrix platforms
for yeast and other organisms. We confirmed it in the Yeast2 Array as
well as in two mouse platforms: Mouse Expression Array 430A and
Mouse Expression Array 430B. However, the artifact has the greatest
impact on interpretation of the correlations in the data in the Yeast
S98 Array owing to the particular design of this chip: probes to the
same gene are typically placed next to each other along the x-axis of
the chip. The spurious correlations in Yeast2, 430A, and 430B arrays
are an order of magnitude lower than in S98.

Further confirmation of the presence of the positional artifact,
independent of the correlation analysis, comes from studying the
mismatch probes on the microarray. Since the intensities measured
in the mismatch (MM) probes are typically lower than in the perfect
match (PM) probes, the effect is expected to result in PM signal
overflowing into the MM probes in their vicinity.

We measured this phenomenon using data from the Yeast2 micro-
array. Based on our model of the artifact, we predicted the intensity of
the spurious signal in each of the mismatch probes, and compared it
with the measured MM signal. We binned the observed MM intens-
ities vs. the predicted ones in the logarithmic scale and computed the
average in each respective bin. The correlation coefficient between
predicted spurious signal and the average MM measurement is 0.949,
with a p-value of 2.5e-7 (see Figure 3). This not only proves that the
positional bias does exist in the Yeast2 array, but also demonstrates
that it is responsible for a significant fraction of the signal in the
mismatch probes.

Figure 1 | Original S98 Array correlation map compared to the corrected one. The two dimensional map of the average correlation between two

different probes on the Affymetrix Yeast Genome S98 Array as a function of the separation (dx,dy) for the original data (a) and the corrected data (b). The

separation between two neighboring probes (24 mm) is used as a unit of distance.

Figure 2 | (a) The layout of probes with targets from the different 16 Yeast chromosomes. Each color band represents probes for one chromosome. (b)

The two dimensional map of the average correlation between two different probes on the Affymetrix Yeast Genome S98 Chip as a function of the

separation (dx,dy) for a simulated data with probes at randomized positions.
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Modeling and correcting the artifact. The positional artifact in the
microarray data extends over large distances on the chip, which
means that it originates via a long-range process. Elucidating the
physical mechanism behind this effect is beyond the scope of this
paper, but possibilities include the diffusion of fluorophores during
the washing stage of the experiment, diffusion of light while scanning
the array, or a combination thereof. In spotted microarrays, several
methods have been suggested to correct for similar positional
artifacts, either by correcting the expression values for all probes29,
or for the predicted correlations25. The latter method concentrates on
correcting correlations without justifying the effect of these
corrections on the expression values.

Here, we modeled the effect as partial diffusion of the signal in two
dimensions. Based on this assumption, the original, unaffected
expression values can be reconstructed from the data by using a
deconvolution procedure with a two-component model kernel
designed to remove any possible diffusive effects (see Methods for
detailed discussion). To this end, we implemented an algorithm for
optimizing the shape of the model kernel to best reconstruct the true
expression values, and used the corrected expression values to com-
pute the corrected correlation chip map, Figure 1b. Our model esti-
mates that approximately 26% of the signal gets diffused to
surrounding pixels. In the corrected data, we still observe the stron-
ger correlation along the x-axis but the positional artifact was
removed to a large extent (90% removed at a distance of 50 probes).
This map is now similar to the map generated for the randomized

data, (Figure 2b), with the exception that the average correlations in
the corrected maps are lower. Figure 2a shows that the correlation
coefficient depends on the radial chip distance for the original, ran-
domized, as well as the deconvolved (corrected) data.

Creating special software to model and remove the effect has
been necessary because existing preprocessing packages (like
Bioconductor30) do not include a procedure for modeling and cor-
recting such position artifacts. Also, our analysis shows that the
positional artifact persists in the S98 array even after applying pop-
ular processing packages such as MAS, RMA, GCRMA, or DChiP.

To demonstrate how our method improves smaller collections of
data, we computed the correlation map for a single series of experi-
ments; the Yeast Metabolic Cycle (YMC)31. The results are shown in
Figure 4. Again, deconvolving the observed data with our optimized
kernel did indeed remove the positional bias. This also shows that the
method can be applied to any new experiment done using the S98
chip.

Unlike other deconvolution methods previously used24,25,29, our
correction method is designed in such a way that it removes the
positional artifact while preserving the integrity of the original data.
Figure 5 shows a typical relationship between the original and cor-
rected data for one of the samples. The figure shows that the required
corrections in the expression are generally small. Again these char-
acteristics of the correction method hold true for any number of
experimental samples.

Significance of the correction. The positional artifact in the
microarray data may influence the interpretation of results based
on the analysis of a large number of genes such as gene annotation
or network inference. In such studies the repeated systematic effects
become significant even at low magnitude. In order to test the effects
of these corrections on our understanding of gene regulation, we
analyzed the expression of target genes of transcription factors
(TFs) in Saccharomyces cerevisiae. The targets of many TFs are
expected to share a mode of regulation and they exhibit
correlations in their expression profiles. There are several
published lists of Yeast TF’s with their targets. The assignments of
the targets of TF in these are based on different experimental and
computational techniques. Here we considered two different sets of
data, YEASTRACT32, and the work of Harbison et al.33. We tested
whether the expected co-expression of TF targets was more
prominent in the corrected or the original data. The targets of a TF
in these two sets (YEASTRACT and Harbison) were determined
using different query methods and experimental techniques
independent of the microarray expression data, which is important
in our testing to avoid circular reasoning. For each transcription
factor, we defined the centroid of the cluster of its targets as the
target with the highest average correlation with all other members
in the cluster. Next, we ranked the genes based on their strength of
correlation with the centroid of the cluster. This ranking algorithm

Figure 3 | The positional artifact contributes to the mismatch probes on
the Yeast2 array. The relation between the signal in the mismatch probes:

expected from the position artifact vs. observed. The data are divided into

bins according to the predicted value, and the median measured signal is

shown in each of the bins.

Figure 4 | The position effect in a single experiment. The two dimensional map of the average correlation between two different probes on the Affymetrix

Yeast Genome S98 Chip as a function of the separation (dx,dy) for the original Yeast Metabolic Cycle data (a) and the corrected data (b).
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was used to assess coexpression of genes before and after applying the
deconvolution correction. The results are summarized in Figure 6,
which shows the precision-recall (PR) curves of this algorithm for all
TFs, as well as for the sets of 50% and 25% TFs with the most tightly
correlated targets. In each case, the solid line represents the PR curve
from uncorrected data while the dashed ones show the PR curve from
the corrected data. This comparison indicates that coexpression in
the corrected data is slightly but consistently improved over the
original data. The improvement is stronger in the tighter clusters
than in the entire collections of TFs, and it is also more prominent
in the YEASTRACT than in the Harbison sets.

Discussion
The analysis of hundreds of expression microarray experiments
using the Affymetrix S98 yeast genome chip has led us to uncover
a systematic error that manifests in the form of excess correla-
tions between nearby probes on the chip. These spurious correla-
tions depend strongly on the distance between probes. This
positional artifact may interfere with interpretation of whole-gen-
ome gene expression studies. Removing this artifact is a necessary
step in inferring gene relationships from large-scale data sets. We
designed a computational method that removes the spurious cor-
relations by correcting the measured expression levels. Our
method is based on the assumption that the effect is consistent
with a diffusion effect that may be taking place either during the
washing or the scanning stage of a microarray experiment. Thus,
the measured expression level of each probe is convolved by
contributions from the diffused signal. We reconstructed the true
expression levels by applying deconvolution with a model kernel,

and show that this successfully removes the positional bias. This
method was implemented using the CUDA GPU computing tech-
nology, which allowed a 480-fold speed up of computations. The
corrected data are provided online at http://moment.utmb.edu/
S98/. Our model kernel can be used with no change to correct the
expression values in any experiment done with the S98 platform.
The computer program for performing the deconvolution is also
available on the website. Similar artifacts are also present in other
Affymetrix platforms, including the Yeast2 array and the mouse
arrays MOE430A and MOE430B. However, the way this artifact
manifests depends strongly on the design of the array, especially
on the relative positions of probes within a probe set. Specifically,
the excess correlations in the Yeast2, MOE430A and MOE430B
arrays are an order of magnitude lower than in the yeast S98
microarrays. We expect that our approach, with little or no modi-
fication, can detect, quantify and correct positional artifacts in
different platforms. In the future we intend to investigate the
underlying physical mechanisms of this positional artifact.

Methods
Source of data. The primary sources of data for this work are the microarray
datasets available from the GEO website for the Affymetrix Yeast Genome S98
Array. To describe and parameterize the positional effect, we utilized 1383
available data sets in the GPL90 platform family (the list is available on the
supporting webpage). We used the probe set data according to the GPL90
platform description file provided by AffymetrixE. The final result of this work,
data corrected for the artifact, has been created for 1494 samples. Affymetrix
Yeast2 Array was based on 670 samples of GPL2529 GEO platform. Two mouse
arrays were also analyzed: Affymetrix MOE430A and MOE430B. The analysis
was based on 4277 data sets of the GPL339 platform for the Affymetrix

Figure 5 | Comparison of the average correlation and the expression values. (a) The average correlation between two probes on the Affymetrix Yeast

Genome S98 Array as a function of the radial distance between the two probes for the original data (black), probes with randomized positions (red)

and deconvolved data (blue). (b) Comparison between the original expression levels, the x-axis, and the deconvolved data, the y-axis, for one sample,

(GEO accession number: GSM6711).

Figure 6 | The precision-recall curves for the assignment of TF target genes. The precision-recall curves for the assignment of target genes of multiple

Yeast transcription factors based on the YEASTRACT database (a) and the work of Harbison et al. (b). The precision-recall curves for the original

Affymetrix data are shown in solid lines and the deconvolved data in dashed lines. The curves are based on the average of all transcription factors (black),

the transcription factors with tightest cluster of targets, top 50%, (red), and top 25% (green).
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MOE430A and 959 data sets for the GPL340 platform for the Affymetrix
MOE430B array.

Computing the correlations on a GPU. The positional artifact was detected through
calculating the average correlation between probes at a given separation on the chip.
These data sets were first normalized as the different samples come from many
different experiments in a wide range of conditions. To this end we scaled the
expression values in each sample by dividing them by the sample mean.

To calculate the average correlation between probes at a given separation on the
chip, we calculated the Pearson correlation coefficient of the expression values
across 1,383 arrays for all pairs of genes, and then computed the arithmetic mean
for all pairs of probes with each given chip separation (dx, dy). When char-
acterizing the positional artifact, we omitted genes with both neighboring
chromosomal and neighboring chip locations, as these often share a regulatory
sequence.

Repeatedly computing the correlation coefficients for all pairs of probes over many
experiments is CPU-intensive. However, this problem is suitable for parallelization
and scales very well on a large number of computing cores. Rather than parallelizing
these calculations on a cluster of CPUs, we opted to run our calculations on a single
graphics processing unit (GPU). The computational power of GPUs has surpassed
that of CPUs and they come with a large number of cores at a much lower price per
core. All cores on the GPU share one global memory, which also cuts the commun-
ication time between them significantly.

We used the CUDA (Compute Unified Device Architecture) programming
interface from NVIDIA. In this work, we executed our algorithm on the NVIDIA
GeForce GTX 275 that has 30 multiprocessors with 240 computing cores and 869 MB
of memory. The most time-consuming step in our approach is the repeated cal-
culation of the correlation coefficients between all probe-sets. One such cycle takes
typically about 80 minutes on a single IntelH XeonH W3540 CPU core, and has been a
bottleneck in our optimization algorithm. The same calculation can be performed in
approximately 10 seconds on the GeForce GTX 275 GPU using CUDA programming
scheme (in single precision).

Modeling the artifact and deconvolution of microarray data. We propose that the
artifact results from a process in which a fraction of the signal overflows to other
probes on the microarray, and can be described mathematically as convolution. Thus,
the observed expression value, Eo, for each probe is expressed as

EO x,yð Þ~
ðL

0

ðH

0
K x{x’,y{y’ð ÞEt x’,y’ð Þdx’dy’, ð1Þ

where (x,y) is the position of the probe and K is a kernel function that convolves the
true expression value, Et. L and H denote the dimensions of the chip.

The kernel, K, consists of two components: a Dirac delta corresponding to the
signal remaining in its original position and a Gaussian component describing
the diffusion effect: The integration assumes Et 5 0 for (x9,y9) outside of the
chip.

K x,yð Þ~Ad x,yð Þz 1{A
2ps2

exp {
x2zy2

2s2

� �
ð2Þ

Here, A is the density amplitude of the Delta function (corresponding to the fraction
of unaffected signal) ands denotes the width of the Gaussian distribution. In practice,
we use measurements binned onto pixels on the chip, corresponding to integer values
of the position coordinates x and y. In this case, the Dirac delta is defined as d(x,y) 5 1
for (x,y) 5 (0,0) and d(x,y) 5 0 elsewhere. We optimized the shape of K in order to
find such values of the parameters A and s, for which deconvolution will remove the
positional artifact without destroying the original data.

Deconvolution using the model given in Equation (1) is applied to Eo(x,y) which is
obtained for each sample by converting the expression values into a two-dimensional
spatial matrix. The positions of the individual probes were used as indices for such
matrix where each matrix has 285156 entries (number of probes). The deconvolution
was performed in Fourier space and implemented on the GPU using the Fast Fourier
Transform. The deconvolution process was applied to all 1383 samples. Finally, the
corrected expression levels were rescaled to preserve their original distribution.

We optimized the parameters of the kernel function in order to obtain a possibly
flat average correlation map. The average correlation between probes separated by a
vector (x,y) in chip coordinates is defined as:

C x,yð Þ~ 1
npq

X
p2~p1zx

q2~q1zy

0vp1vp2vL

0vq1vq2vH

PCC Et p1,q1h i,Et p2,q2h ið Þ ð3Þ

Here, npq is the number of probe pairs (p1,q1), (p2,q2) with a given separation and
PCC() is the Pearson correlation coefficient between deconvolved signal at two
positions, computed over 1383 experiments. We characterized the flatness of the
correlation map using an objective function based on the square of the first spatial
moment of the average correlation:

T Cð Þ~
ðL

0

ðH

0
x C x,yð Þdxdy

� �2

z

ðL

0

ðH

0
y C x,yð Þdxdy

� �2

:

We optimized the parameters of K numerically by minimizing T using the Powell
method. In each step, first the observed expression measurements in each of the 1383
samples used were deconvolved as described above. Next, correlation coefficients
between all probe sets were calculated, and finally the average correlation map as
function of probe separation was used to evaluate the objective function T. As a result
of optimization, we obtained the following parameter values:

A~0:743,s~25:2

Using these kernel parameters, we obtained the final corrected expression values
Eo(x,y) for all experiments available in the GEO database.
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