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Natural Killer (NK) cells are cytotoxic innate lymphoid cells serving at the front line

against infection and cancer. In inflammatory microenvironments, multiple soluble and

contact-dependent signals modulate NK cell responsiveness. Besides their innate

cytotoxic and immunostimulatory activity, it has been uncovered in recent years that

NK cells constitute a heterogeneous and versatile cell subset. Persistent memory-like

NK populations that mount a robust recall response were reported during viral infection,

contact hypersensitivity reactions, and after stimulation by pro-inflammatory cytokines

or activating receptor pathways. In this review, we highlight recent findings on the

generation, functionality, and clinical applicability of memory-like NK cells and describe

common features in comparison to other recent concepts of memory NK cells.

Understanding of these features will facilitate the conception and design of novel NK

cell-based immunotherapies.

Keywords: memory, NK cell, IL-12 cytokines, IL-12/15/18, CD16, recall (memory), adoptive transfer,

immunotherapy

INTRODUCTION

NK cells were discovered in the 1970s, when it was concluded that NK cells are able to naturally
lyse certain tumor target cells without prior sensitization and mediate lysis of antibody-opsonized
tumor cells (1). NK cells were characterized to respond to cells that have a loss (“missing-self ”) or
reduced levels in cognate self-MHC class I molecules and, thus, are unable to engage inhibitory NK
cell receptors, contrary to the MHC class I–restricted recognition of foreign antigens by cytotoxic
T cells (2, 3). Nowadays, it is well-established that the threshold for NK cell cytotoxicity is dictated
by the surplus of activating over inhibiting signals from target cells and the microenvironment (4).
A multitude of NK cell activating and inhibitory surface receptors regulates target cell elimination
and the production of immunostimulatory cytokines like IFN-γ. Aside from their classical innate
immune functionality, NK cells can promote adaptive immune responses or elicit regulatory
functions under certain conditions (5). For instance, tissue-resident decidual NK cells can give
rise to a specifically enriched NK cell subset upon repeated pregnancies, exerting enhanced IFN-γ
and VEGF production, whichmight improve placentation (6, 7). The uncovering of immunological
memory has added to the complexity of NK cell biology (8). Following MCMV infection, murine
NK cells acquire traits of adaptive immunity such as expansion of virus/m157-specific NK cell
subsets and long-lasting enhanced secondary responses including improved protection against
MCMV compared to that of naïve NK cells (9). NK cells can exert antigen-specific memory against
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previously sensitized haptens or viruses in a T/B cell-independent
manner (10). In essence, virus and hapten-specific memory NK
cells in mice resemble antigen-specific immunological memory
of T and B cells to some extent with phases of expansion and
contraction but a more limited selection of antigen-specific recall
responses (11). Similarly, human NKG2C+ NK cells enriched
in patients with a history of HCMV infection, referred to as
“adaptive” NK cells, may rely at least in part on the specific
recognition of HLA-E–loaded HCMV peptides (12, 13). Besides
NK cells, allergen- or IL-33-experienced group 2 innate lymphoid
cells acquire antigen unspecific memory-like properties (14).

The cytokines IL-2 and IL-15 drive NK cell differentiation,
proliferation, and activation, while IL-15 trans-presented by
activated dendritic cells is critical for NK cell survival (15–17).
IL-2 has long been known to prime the cytotoxic function of
NK cells toward cancer cells (18). IL-2 produced by antigen-
specific memory CD4T cells has been implicated in NK cell
activation during anti-viral recall responses (19–21). IL-12 and
IL-18 secreted during viral infections by e.g., dendritic cells
induce potent NK cell IFN-γ production and cytotoxicity, in
particular in combination, and synergistically augment IL-2 and
IL-15–induced NK cell activation (20, 22–26). The direct effects
of cytokine-mediated NK cell activation may involve a reduced
threshold of activating receptor signaling (27–31), increased
expression of activating receptors (32, 33), a lower (but not
absent) responsiveness to cognate inhibitory MHC class I ligands
(34, 35), a ready-to-execute cytotoxic machinery by granule
convergence (36), and changes in NK cell metabolism (31, 37).

In addition to the direct effects of cytokines on NK cell
activation, there is emerging evidence that pre-activation by
IL-12 and IL-18 plus IL-15 can endow murine and human
NK cells with long-lasting enhanced NK cell functionality even
after discontinuation and in the absence of the initial stimulus
(Figure 1). This so-called memory-like functionality is antigen-
unspecific and characterized by an enhanced proliferative
capacity, prolonged persistence in vivo for up to 3 months, and
superior IFN-γ production and potent cytotoxic activity upon ex
vivo restimulation (8, 38). The generation, mechanistic insight,
physiological relevance and therapeutic potential of antigen-
unspecific memory-like NK cells are the prime focus of this
review.

PROPERTIES OF MEMORY-LIKE NK
CELLS

Cytokine-Induced Memory-Like
Functionality
In 2009, Cooper et al. demonstrated that mouse NK cells pre-
activated with the cytokine cocktail IL-12, IL-15, and IL-18
persisted at high numbers several weeks after transfer into
RAG-1−/− mice and produced higher levels of IFN-γ upon
restimulation ex vivo compared to control NK cells (39). Later,
our group and others showed that mouse and rat IL-12/15/18
pre-activated NK cells could mount a more robust and long-
lived anti-tumor response after adoptive transfer (40, 41). This
memory-like NK cell activity required extrinsic help from

IL-2 producing CD4T cells and was associated with intrinsic
demethylation of the IFNG locus, facilitating IFN-γ transcription
and production upon restimulation (42).

Analogous to murine NK cells, activation of human NK
cells with IL-12/18 plus IL-15 for 16 h conferred memory-like
functionality after in vitro re-culture in IL-15 or IL-2 for several
days. IL-12/15/18 pre-activated NK cells produced more IFN-γ
upon restimulation with cytokines, K562 cells or primary acute
myeloid leukemia (AML) blasts in comparison to control NK
cells, which had been pre-activated with an equivalent dose of
IL-15 (40, 43) or with low-dose IL-15 (44). Importantly, 6 days
after transfer into tumor-free T/B/NK cell-deficient NSG mice
(supplemented daily with IL-2), IL-12/15/18 pre-activated NK
cells were superior in IFN-γ production when restimulated ex
vivo with K562 cells or cytokines (24, 42, 44). In xenograft
mouse models, adoptively-transferred IL-12/15/18 pre-activated
NK cells significantly ablated melanoma growth in the lung
(42) and reduced systemic K562 tumor burden associated with
improved survival (44).

NK cells pre-activated with IL-12/18 +/− IL-15 were more
sensitive to low concentrations of IL-2 due to increased surface
density of the high-affinity IL-2 receptor α chain (CD25)
(Figure 1), resulting in more rapid proliferation and a higher
NK cell recovery upon IL-2 culture (24, 40). Accordingly, in
an immunocompetent tumor microenvironment, IL-12/15/18
pre-activated NK cells might be superior in competing for
low amounts of IL-2 with CD25+ regulatory T cells, which
restrain IL-2–dependent expansion of NK cells and T cells after
adoptive cell transfer (45, 46). Of note, IL-2 was critical for the
profound proliferation of IL-12/15/18 pre-activated NK cells,
their anti-tumor activity and persistence in several organs such
as blood, spleen, liver, and lung after adoptive transfer (42). IL-
2 may be provided by host CD4T cells activated by homeostatic
proliferation in tumor-bearing non-lethally irradiated mice (40).
Furthermore, the concerted activation of CD4T cells and
myeloid cells co-transferred within autologous PBMC could
substitute IL-2 injections after adoptive transfer (42).

Directly after cytokine stimulation, IL-12/15/18 pre-activated
NK cells mediated more potent cytotoxicity as compared to IL-
15 activated NK cells (42, 47). Of note, this difference may be
more pronounced against target cells displaying cognate self-
MHC class I ligands, since IL-12/15/18 pre-activation for at least
48 h has been shown to reduce inhibitory KIR expression (35)
(Figure 1). The difference compared to IL-15 pre-activated NK
cells might merely reflect a prolonged state of potent activation.
After in vitro re-culture, low-dose IL-15 pre-activated NK
cells exhibited lower DNAM-1-dependent cytotoxicity against
primary AML blasts than IL-12/15/18 pre-activated NK cells
(44). In contrast, degranulation of NK cells pre-activated with
IL-12/15/18 or an equivalent dose of IL-15 was comparable
against NK cell-sensitive K562 cells (43), which are mainly
recognized through the NK cell receptors NKG2D and NKp30
(48, 49). Thus, it remains to be resolved whether IL-12/15/18
pre-activated memory-like NK cells, i.e., when restimulated after
adoptive transfer or after re-culture with IL-2 or IL-15 in vitro,
indeed possess higher cytolytic activity, in particular against
target cells that are poorly killed by IL-2 or IL-15 pre-activated
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FIGURE 1 | Cytokine- and NK cell receptor-induced memory-like NK cells. Upon primary exposure to the cytokine combination IL-12/18 plus IL-15, murine and

human NK cells up-regulate the IL-2 receptor α chain (CD25), and undergo rapid proliferation and expansion in response to IL-2 or IL-15. Moreover, down-regulation

of the TGF-β receptor and certain inhibitory KIRs by IL-12/15/18 might contribute to the superior effector function of the cytokine pre-activated NK cells. After

restimulation with cytokines or tumor cells, these cytokine pre-activated NK cells have an enhanced capacity to produce IFN-γ and a more robust and sustained

anti-tumor activity in vivo. Epigenetic modification such as CpG demethylation and histone acetylation (Ac) induced by the cytokines might be crucial for the persistent

competence of enhanced gene transcription upon restimulation. Similarly, upon primary exposure to ITAM-associated NK cell activating receptors such as CD16,

human NK cells undergo in response to IL-2 or IL-15 more rapid proliferation and expansion in vitro. After restimulation with cytokines or tumor cells, these CD16

pre-activated NK cells have an enhanced capacity to produce IFN-γ and a more robust cytotoxic activity. Hence, both cytokine-induced and CD16-induced

memory-like functionalities are antigen-unspecific and share the property of “remembering” a previous activated state induced by cytokine or antibody exposure.
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or resting NK cells. Interestingly, IL-12, IL-15, and IL-18 are
known to down-regulated the TGF-β receptor and its signaling
pathway (Figure 1). Hence, resistance to TGF-β might add to
the potency of IL-12/15/18-induced memory-like NK cells (50).
Moreover, it has been reported that IL-12 and IL-18 injections
reversed the anergic phenotype of NK cells in tumor-bearing
mice (51). Whether this treatment would induce memory-like
properties in vivo in endogenous NK cells is unknown. In spite
of the up-regulation of several surface markers such as CD25,
CD69, KLRG1 on a more mature CD11bhighCD27low NK cell
subpopulation (40, 52) and down-regulation of the KIRs as
well as the TGF-β receptor, an unequivocal biomarker profile
is lacking to discriminate IL-12/15/18 pre-activated NK cells
in vivo.

NK Cell Receptor-Mediated Memory-Like
Functionality
Cancer cells might confer contact-dependent priming signals
through NK cell activating receptors that enhance NK cell
activation. It has been suggested that NK cells (cultured
without/with IL-2/15) displayed enhanced cytotoxicity after a
previous co-culture with certain tumor cells, although the exact
priming stimulus was not identified (53, 54). In this context, it
has been shown that pre-activation of NK cells with tumor cells
through CD2 and its ligand CD15 on tumor cells could enable
subsequent lysis of otherwise poorly susceptible target cells (55).
CD2 is a co-stimulatory receptor for ITAM-coupled NK cell
receptors like NKp46 and CD16 (29, 56). Upon cross-linking
CD2 can associate with CD3ζ signaling by forming a complex
with CD16 at the immunological synapse (57), and CD2 can lead
to STAT5 phosphorylation similar to IL-2 and IL-15 (58, 59).
While the adoptive transfer of these tumor cell-primed NK cells
has been tested in a phase 1 study in AML patients (60), it is
unknown whether priming of NK cells by tumor cells can occur
in vivo in an NK cell immunosuppressive microenvironment.

Recently, our group has revealed that FcγRIIIa/CD16
engagement by therapeutic (bispecific) antibodies can prime
enhanced memory-like NK cell functionality in addition to
direct activation known as classical antibody-dependent cellular
cytotoxicity (ADCC). Following 5-day IL-2 re-culture, CD16
pre-activated NK cells exerted enhanced antibody-independent
cytotoxicity and IFN-γ production upon restimulation with
cytokines or tumor cells compared to IL-2 cultured NK cells
(47) (Figure 1). Similar to cytokine-induced memory-like NK
cells, CD16 pre-activated NK cells up-regulate CD25 expression
(Figure 1) in particular in the presence of IL-12, resulting
in increased sensitivity to low-dose IL-2 and more vigorous
proliferation and expansion in response to IL-2 (47, 61, 62).
Potential commonmechanisms of cytokines and CD16-engaging
antibodies in inducing memory-like NK cells require further
investigation. Altogether, the concept of CD16-inducedmemory-
like functionality of NK cells needs to be investigated and
confirmed in experimental in vivo systems.

Since IL-12/15/18 pre-activated NK cells are sufficient in
antibody-mediated cytotoxicity despite partial CD16 shedding
(35, 47, 63), a scenario of NK cell activation through both

CD16 and IL-12 may synergistically improve NK cell activity
like IFN-γ production (64). It has been inferred from mouse
and human studies that tumor-reactive therapeutic antibodies
may promote uptake and presentation of tumor antigens by
dendritic cells, resulting in the formation of antigen-specific T
cell memory (65–67). In contrast, the physiological existence
and role of CD16-induced memory-like NK cells in vivo is
currently unknown. However, it would require the presence
of ADCC-sufficient therapeutic antibodies or killer engagers
applied in cancer patients (68). In this context, CD16-induced
memory-like NK cell functionality might be preferentially
induced in patients carrying the high affinity CD16-158V/V
genotype, which confers better clinical efficacy in cancer
patients treated with IgG-type therapeutic antibodies (69, 70).
Moreover, CD16-induced memory-like NK cells might support
T/B cell responses during primary infection or reinfection, when
endogenous IgG antibodies are produced e.g., against HCMV
(71–73). While (HCMV-specific) antibodies have been shown
to promote the expansion of pre-existing HCMV-associated
NKG2C+ “adaptive” NK cells (74–76), antibodies probably do
not mediate in the initial generation of NKG2C+ “adaptive”
NK cells in HCMV-seronegative individuals (76). In contrast to
the NKG2C+ “adaptive” NK cells (75), CD16-induced memory-
like NK cells maintained expression of FcεR1γ and NK cell
activating receptors and exerted enhanced IFN-γ in response
to IL-12 and enhanced antibody-independent cytotoxicity (47).
It is unknown whether HCMV-specific antibodies can induce
CD16-induced memory-like NK cell functionality. Finally, it is
unknown whether other ITAM-coupled activating receptors or
chimeric antigen receptors in human NK cells have the potential
to induce memory-like functionality similar to FcγRIII/CD16. In
this regard, engagement of the murine ITAM-coupled activating
receptor Ly49H has been shown to mediate the expansion of
virus/m157-specific memory NK cells in mice with long-lasting
enhanced responsiveness to secondary stimulation (9).

EPIGENETIC REGULATION

NK cells intrinsically “remember” a previous exposure to
cytokines, since IL-12/15/18 pre-activated NK cells pass their
enhanced IFN-γ producing capacity to daughter cells (39,
42). Epigenetic imprinting, e.g., demethylated CNS1 region of
the IFNG gene, was detected in HCMV-associated NKG2C+

“adaptive” NK cells (75, 77) and IL-12/15/18 pre-activated
NK cells (42) (Figure 1), which was shown to lead to a
remarkable stability of the IFN-γ-producing phenotype even
after adoptive transfer. Both IL-12 and IL-18 are essential for the
pronounced demethylation of the CNS1 region (42, 77), while IL-
15 might serve as a survival factor. Besides the IFNG gene, CpG
demethylation of the PRDM1/BLIMP1 and ZBTB32/TZFP genes
or hypermethlyation of FCER1G (Fc fragment of IgE receptor
Ig) were also detected in NKG2C+ “adaptive” NK cells (75, 77).
Recently, stable epigenetic changes were also found in MCMV-
specific memory NK cells, some of which are shared by memory
CD8T cells (78). Particularly, IL-12 during MCMV infection
induces epigenetic remodeling of the IRF8 gene, an important
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regulator for the proliferation of MCMV-specific NK cells (79).
This finding sheds light on NK cell deficiencies in individuals
with IRF8 mutations associated with severe viral infections (80).
However, it is not clear how IRF8 intrinsically/extrinsically affects
NK cell function (that is impaired in IRF8−/− patients), or the
formation and maintenance of the long-lived MCMV-specific
NK cell memory compartment including protection against re-
infection.

METABOLIC REGULATION

Metabolic regulation is pivotal for the development, maintenance
and recall responses of memory T cells (81). Similar to T cells,
activation of NK cells by cytokines such as IL-2, IL-15, IL-
12, and IL-18 or activating receptors lead to elevated oxidative
phosphorylation (OXPHOS) and elevated glycolysis (82, 83). The
in vitro IFN-γ production from IL-12/18 stimulated NK cells
was not affected by inhibition of glycolysis and mitochondrial
OXPHOS under certain in vitro activating condition (83). In fact,
increased rates of glycolysis are required for NK cell mediated
control of MCMV infection (84). Hence, it is of interest whether
increases in glycolysis regulate the generation and function of
IL-12/15/18-induced memory-like NK cells including their recall
responsiveness.

The Srebp-controlled increased citrate-malate shuttle is
required for elevated glycolysis and oxidative phosphorylation
in cytokine-stimulated NK cells (85). Anti-tumor activity of
adoptively transferred IL-12/15/18 pre-activated NK cells was
lost when Srebp inhibitors were present during NK cell
activation, suggesting the importance of the citrate-malate shuttle
in cytokine-induced memory-like function of NK cells. The
citrate-malate shuttle exports acetyl-CoA into the cytosol via
citrate. Of note, it was shown in a recent study that histone
acetylation was controlled by changing levels of nuclear acetyl-
CoA (86). This finding links the metabolic regulation to the
epigenetic modification, which might be crucial for the persistent
competence of enhanced gene transcription upon restimulation.
Further investigation of the impact of acetyl-CoA on histone
modification in NK cells would help to reveal the possible
association of the NK cell memory-like phenotype with cytokine-
induced metabolic changes (Figure 1).

Recently, it has been shown that the fundamental metabolic
regulator cMyc controls metabolic and functional activation
of NK cells upon cytokine stimulation (87). Whether cMyc is
involved in regulating NK cell memory similar as in memory
CD8T cells awaits further investigation (88).

PHYSIOLOGICAL RELEVANCE

The physiological relevance and existence of human memory-
like NK cells in vivo remains to be resolved. In mice, long-
lived NK cells were generated during respiratory syncytial
virus infection that undergo homeostatic proliferation or virus-
induced proliferation in the bone marrow but not at the primary
sites of infection like respiratory tissues (89). Inmice, IL-12, IL-18
are essential co-stimulatory factors for the generation of murine

CMV-specific Ly49H+ memory NK cells (11). Furthermore,
IL-12 and IL-18 are important for the expansion of HCMV-
associated NKG2C+ “adaptive” NK cells in vitro (12, 73). Hence,
a coordinated availability of IL-12, IL-15, and IL-18, derived
from dendritic cells and myeloid cells during viral infections
such as CMV or influenza (90), might support generation of
cytokine-induced memory-like NK cells in vivo. Of note, a study
of tracking the fate of NK cells upon MCMV infection showed
the induction of both antigen-specific memory Ly49H+ NK cells
and cytokine-activated antigen-unspecific long-lived Ly49H−

NK cells, and the differentiation of both subsets critically relied
on IL-12. This study highlighted the in vivo relevance of cytokine-
induced memory-like features in NK cells. These cytokine-
activated persistent Ly49H− NK cells were less responsive to
restimulation by activating receptors in vitro or tumor cells
in vivo but survived longer in an MCMV-free environment (91).

Interestingly, durable enhanced IFN-γ responses by NK cells
(and NKT cells) have been reported in humans up to 1 year
after Bacillus Calmette-Guérin (BCG) revaccination in response
to BCG restimulation, at a time point when BCG-specific IL-
2 producing CD4T cells were reduced (92). The enhanced NK
cell IFN-γ response involved IL-12 and IL-18, probably derived
from myeloid peripheral blood cells. The contribution of IL-
2 was low, suggesting that IL-2 producing memory T cells
were dispensable in BCG infection (92), unlike in certain viral
infections (19, 20). IL-21 can potentiate the expansion and
anti-tumor activity of IL-2 stimulated NK cells (93). In mice,
BCG vaccination was suggested to generate long-lived NK cells,
which possessed high proliferative capacity and anti-bacterial
activity when restimulated with the mycobacteria tuberculosis
antigen complex (94). Notably, this observation required the
presence of T/B cells or IL-21 during BCG vaccination. Overall,
it remains to be determined whether BCG-reactive NK cells
have indeed intrinsic memory-like functionality and/or require
the contribution of myeloid cells, which are known to undergo
epigenetic modifications and immune training (akin to innate
immune memory) in response to BCG vaccination (95, 96).
Mechanistically, it will be of relevance to determine whether
BCG-induced memory NK cells share regulatory mechanisms
such as epigenetic imprinting with cytokine-induced memory-
like NK cells or MCMV-specific memory NK cells (8, 78).

CLINICAL POTENTIAL

It has been demonstrated in different mouse and rat tumor
models that IL-12/15/18 pre-activated NK cells can confer
favorable therapeutic effects after adoptive cell transfer, such
as enhanced IFN-γ production, cytotoxicity, and long-lived
capacity for antigen-unspecific immunological memory (40–
42, 44) (Table 1). Importantly, IL-12/15/18 pre-activated NK
cells have been suggested to alleviate severe acute graft-vs.-
host disease (GvHD). In a mouse model of a fully mismatched
hematopoietic cell transplant, co-transfer of autologous IL-
12/15/18 pre-activated NK cells limited the severity of acute
GvHD by presumably restricting the proliferation of adoptively-
transferred allogeneic T cells while the graft-vs.-leukemia (GvL)

Frontiers in Immunology | www.frontiersin.org 5 November 2018 | Volume 9 | Article 2796

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Pahl et al. Memory-Like NK Cells

TABLE 1 | In vivo therapeutic application of memory-like NK cells.

System Tumor entity Type of NK

cells

Therapeutic strategy Therapeutic effect References

Rodent Mouse T-cell lymphoma

RMA-S

IL-12/15/18

NK

Day 7: TBI and 1 × 106

NK cells

+++ (40)

Mouse B16 lung metastasis IL-12/15/18

NK

Day 7: TBI and 1 × 106

NK cells

+++ (40)

Mouse B16 Melanoma IL-12/15/18

NK

Day 3, 7, 10: 1.2–2 × 106

NK cells

++ (85)

Mouse allo-HSCT and GVL

(B-cell lymphoma A20)

IL-12/15/18

NK

Day 0: 1 × 106 NK cells +++ (97)

Mouse allo-HSCT and GVL

(B-cell lymphoma A20)

IL-12/18

BM-NK

IL-12/15/18

BM-NK

Day 0: 5 × 106 NK cells;

or day 0, 7, 14: 5 × 106

NK cells

++/+++ (98)

Rat T-ALL/Roser Leukemia IL-12/15/18

NK

TBI and day 3, 6, 9: 4–6 ×

106 NK cells

+++ (41)

Xenograft Leukemia K562 IL-12/15/18

NK

Day 4: 5 × 106 NK cells

and IL-2 i.p.

+++ (44)

Melanoma SK-Mel-28 IL-12/15/18

NK

Day 0: 1–3 × 106 NK cells

and IL-2 i.p.

+++ (42)

Human AML phase I; 9 patients Allogeneic

IL-12/15/18

NK

FC and 0.5×, 1× or 10 ×

106 NK cells plus IL-2

5 clinical responses

including 4 complete

remission

(44)

IL-12/15/18 NK, IL-12/15/18 pre-activated NK cells; TBI, total body irradiation; GVHD, Graft-vs.-host disease; allo-HSCT, allogeneic hematopoietic stem cell transplantation;

BM-NK, bone-marrow derived NK; FC, fludarabine/cyclophosphamide.

effect of the T cells was retained (Table 1) (97). Still, the role
of IL-12/15/18 pre-activated NK cells on delayed or failed stem
cell engraftment and development of chronic GvHD remains
incompletely understood (97). Consistent with the previous
study it has been recently reported that adoptive transfer of
murine NK cells pre-activated with IL-12/18+/− IL-15, which
had been expanded with IL-2 before, suppressed severe acute
GvHD (Table 1) (98). However, IL-12/15/18 pre-activated NK
cells, in contrast to IL-12/18 pre-activated NK cells, did not
have a protective effect against mild acute GvHD. The absence
of a potent direct anti-tumor activity of IL-12/15/18 pre-
activated NK cells in these mouse studies might be due to
the lack of host CD4T cells and insufficient IL-2 that may be
instrumental in maintaining durable anti-tumor responses (40).
Hence, with respect to the variegated NK cell pre-activation
protocols, it needs to be refined how the different cytokine
pre-activation protocols, dosing regiments and in vivo cytokine
supplementation maximize GvL effects and minimize acute and
chronic GvHD.

In patients with AML it has been shown that alloreactive NK
cells generated from haploidentical hematopoietic stem cell grafts
reduced leukemia recurrence and lowered the risk for GvHD
while contributing to GvL effects (99). Recently, Romee et al.
has pioneered the adoptive transfer of haploidentical IL-12/15/18
pre-activated memory-like NK cells in a phase I clinical study
in nine heavily pre-treated relapsed/refractory AML patients
(Table 1). In this trial, IL-12/15/18 pre-activated NK cells
displayed an enhanced proliferative state, leading to increased
frequencies in the recipients after IL-2 supplementation in vivo

(44). Importantly, 7 days after adoptive transfer, IL-12/15/18 pre-
activated NK cells exerted potent anti-tumor activity ex vivo
after restimulation, correlating with improved survival in the
absence of GvHD in a subset of AML patients. Thus, adoptive
transfer of human IL-12/15/18 pre-activated memory-like NK
cells into AML patients with active disease is considered safe
and feasible, resulting in donor NK cell expansion, GvL activity
and favorable clinical responses. Thus, this study initiated a
promising translational immunotherapy approach for durable
NK cell anti-cancer responses not only for AML but also for other
NK cell-sensitive tumors. Overall, the use of donor NK cells for
adoptive transfer may be more favorable than autologous NK
cells from cancer patients, which are often functionally impaired
or less responsive to cytokine activation (25, 100, 101).

CONCLUSION

Pre-activation of NK cells by the cytokines IL-12/18 plus IL-15
or by engagement of FcγRIII/CD16 via therapeutic antibodies
can induce similar memory-like functionalities: an enhanced
proliferative capacity toward IL-2 due to CD25 up-regulation
as well as a strengthened responsiveness to restimulation by
tumor cells. Importantly, both memory-like functionalities are
antigen-unspecific and imply “remembering” a previous state
of heightened activation induced by cytokine exposure or
stimulation via activating NK cell receptors. These memory-
like functionalities have unveiled a previously unappreciated
potential for NK cell-based cancer immunotherapy. Several
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aspects may improve the translation of the recent findings into
clinical application. First, clear criteria for NK cell-sensitive
tumors are pivotal, which requires proper genetic and protein
markers. Second, optimal NK cell activation protocols as well as
pre-conditioning regimens of patients need to be established to
improve engraftment, expansion, persistence and durable anti-
cancer activity after adoptive transfer. Third, epigenetic and
metabolic parameters should be monitored and manipulated
during cancer therapy to sustain NK cell reactivity in the tumor
microenvironment. In future clinical studies, it remains to be
determined whether clinical responses by memory-like NK cells
may be augmented by the combination with therapeutic tumor-
reactive antibodies or checkpoint immunotherapy.
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