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ABSTRACT Genomic selection has been widely implemented in dairy cattle breeding when the aim is to improve
performance of purebred animals. In pigs, however, the final product is a crossbred animal. This may affect the
efficiency of methods that are currently implemented for dairy cattle. Therefore, the objective of this study was to
determine the accuracy of predicted breeding values in crossbred pigs using purebred genomic and phenotypic
data. A second objective was to compare the predictive ability of SNPs when training is done in either single or
multiple populations for four traits: age at first insemination (AFI); total number of piglets born (TNB); litter birth
weight (LBW); and litter variation (LVR). We performed marker-based and pedigree-based predictions. Within-
population predictions for the four traits ranged from 0.21 to 0.72. Multi-population prediction yielded accuracies
ranging from 0.18 to 0.67. Predictions across purebred populations as well as predicting genetic merit of
crossbreds from their purebred parental lines for AFI performed poorly (not significantly different from zero). In
contrast, accuracies of across-population predictions and accuracies of purebred to crossbred predictions for LBW
and LVR ranged from 0.08 to 0.31 and 0.11 to 0.31, respectively. Accuracy for TNB was zero for across-population
prediction, whereas for purebred to crossbred prediction it ranged from 0.08 to 0.22. In general, marker-based
outperformed pedigree-based prediction across populations and traits. However, in some cases pedigree-based
prediction performed similarly or outperformed marker-based prediction. There was predictive ability when
purebred populations were used to predict crossbred genetic merit using an additive model in the populations
studied. AFI was the only exception, indicating that predictive ability depends largely on the genetic correlation
between PB and CB performance, which was 0.31 for AFI. Multi-population prediction was no better than within-
population prediction for the purebred validation set. Accuracy of prediction was very trait-dependent.
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Genomic selection has been widely implemented in dairy cattle breed-
ing when the aim is to improve performance of purebred animals

(Berry et al. 2009; VanRaden et al. 2009; Hayes et al. 2009b). In pigs
and poultry, however, the final product is a crossbred animal. This
may affect the efficiency of methods that are currently implemented
for dairy cattle. In pig breeding, multiple sire and dam lines are used,
with a minimum of two lines (typically for crossbred sows) and often
additional sire lines to produce a three-way or four-way cross finisher
pig (Merks and De Vries 2002; Lutaaya et al. 2001).

Selection based on genomic estimated breeding values (GEBV) for
purebreds (PB) using phenotypes on crossbreds (CB) is expected to
increase the response to selection observed in CB compared to the
situation in which only PB phenotypes are used. This increased
response is expected when the genetic correlation between the PB and
CB trait is less than 1, especially when the genetic correlation is 0.7 or
less (Dekkers 2007). Genetic correlations between PB and CB perfor-
mance vary and can be considerably less than 1 (Lutaaya et al. 2001;
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Zumbach et al. 2007; Cecchinato et al. 2010). Adding CB individuals
to the training data is very expensive because, besides genotyping, it
also requires additional identification and individual recording of tar-
get traits. Breeding companies are not inclined to make these invest-
ments unless there is evidence that predictions yield greater gains and
higher accuracies. Simulation studies have shown that the response to
selection is greater when PB animals are selected based on CB per-
formance and that accuracy of prediction is high (Dekkers 2007;
Ibánez-Escriche et al. 2009; Kinghorn et al. 2010; Toosi et al. 2010;
Zeng et al. 2013). There is, however, a lack of studies using real data.
The number of genotyped CB is not yet large enough to test the
superiority of training on CB for PB selection. A first step toward
finding the optimal genomic selection scenario for pigs is to determine
predictive ability (accuracy), in real data, of GEBV for CB pigs based
on PB genomic and phenotypic data. This will show how CB perfor-
mance responds to the current practice of selection on GEBV in PB
pigs.

Recently, accuracies of within-population genomic prediction in
pigs have been reported (Cleveland et al. 2010; Forni et al. 2011;
Christensen et al. 2012; Tusell et al. 2013; Badke et al. 2014). These
studies have shown that all traits had more than zero predictive ability
within population in a variety of pig breeds using different meth-
ods. It has also been shown that using genomic information gen-
erally increased the accuracy of prediction compared to using only
pedigree information (Forni et al. 2011; Christensen et al. 2012;
Tusell et al. 2013). Using multi-population training might be a way
to increase the accuracy of prediction further. This is especially
relevant to enable genomic selection for small populations when
a closely related breed, or the same breed from another country, is
added to the training set (Lund et al. 2014). An unresolved ques-
tion is how to obtain accurate predictions from multi-population
datasets. The effectiveness of a multi-population genomic evalua-
tion depends on many factors, e.g., differences in allele frequency
and consistency of linkage disequilibrium (LD) between quantita-
tive trait loci (QTL) and single nucleotide polymorphism (SNP),
which could reduce the accuracy of prediction (Wientjes et al.
2013), whereas the larger reference population would potentially
improve the accuracy.

The objective of our study was to determine predictive ability
(accuracy) in CB pigs using real PB genomic and phenotypic data. The
outcome is a first step toward determining the optimal genomic
selection scenario to select PB for CB performance. As in cattle,
studying accuracy of prediction for multi-population datasets is
important for species in which population size imposes upper limits
to the training population size. Therefore, a second objective was to
compare the predictive ability of SNPs when training is done in either
single or multiple populations in pigs.

MATERIALS AND METHODS

Data
Genotypes were available from sows with own-performance informa-
tion of three pig populations born from 2005 through 2012: 1070
Dutch Landrace-based (DL) sows from 19 farms; 1389 Large White-
based (LW) sows from 14 farms; and 287 individuals from an F1 cross
between these two commercial lines (DL sire/LW dams) originating
from three farms. The genotyped CB animals had no specific family
structure and the majority of them were not offspring of the
genotyped PB animals, i.e., a number of generations separated PB
and CB. The 287 CB animals were offspring from 76 sires and 170
dams. Four female reproduction traits were analyzed: age at first in-

semination (AFI); total number of piglets born (TNB); litter birth
weight (LBW); and litter variation (LVR). AFI consisted of the age
at the second estrus, which was the time that the first insemination
was performed. TNB was the sum of all piglets born alive and still-
born. LBW was the sum of individual birth weights of all piglets born
in the same litter. Finally, LVR consisted of the standard deviation
(SD) of individual birth weight of the piglets from the same litter.

The PB and CB sows that were selected for genotyping have
phenotypic records from multiple parities on multiple traits and have
a large genetic contribution to future descendants. All PB sows were
breeding animals from nucleus farms, whereas the CB sows belonged
to farms where combined crossbred and pure line selection (CCPS) is
applied. There was no strong selection for first parity performance in
the genotyped sows, reducing any possible bias in TNB and LBW due
to culling after first parity.

Deregressed estimated breeding values (DEBV) were used as
response variable for each trait undergoing study. The estimated
breeding values (EBV) were deregressed for each trait separately using
the methodology proposed by Garrick et al. (2009). DEBVs, instead of
EBVs, were used to compute the GEBV accuracy because this removes
the influence of the parents’ EBVs and rescales the EBV according to
its accuracy, i.e., the DEBV of the animals reflect their genetic merit.
Ostersen et al. (2011) have shown that using DEBVs rather than EBVs
for genomic prediction yields higher GEBV accuracies. The number
of animals and records used to estimate the EBVs are in Table 1.
The EBV of each animal was obtained from the routine genetic
evaluation by Topigs Norsvin using MiXBLUP (Mulder et al.
2012) in a multi-trait model (including all measured reproduction
traits). The genetic evaluation was done across lines with pheno-
types from the different populations treated as the same trait. A
fixed line effect was included in the model for estimating EBVs.
In multi-population prediction scenarios, this line effect was added
back to the random additive genetic effect after estimating the EBVs,
and subsequently, the line effect was again included in the genomic
prediction model. Adding back the line effect allows the differences
of the level of EBV between-population to be maintained in the data.
Therefore, in the genomic prediction step, the mean differences
between populations are still present, and this allows SNP effects
(that differ in allele frequencies between lines) to explain these
differences between lines.

The model for obtaining the EBVs for AFI included genetic line
and herd-year-season as fixed effects and an additive genetic effect
(animal) as random effect. For TNB, the fixed effects were genetic line,
parity, interval between weaning and pregnancy (days), whether more
than one insemination procedure was performed (yes or no), and
herd-year-season. The random effects consisted of service sire, a

n Table 1 Number of phenotypes on crossbreds and purebreds
that were used to estimate the breeding values

Trait No. DL LW F1 Total

AFI Records 304,853 203,933 190,828 699,614
Animals 304,853 203,933 190,828 699,614

TNB Records 1,483,099 910,349 864,551 3,257,999
Animals 344,583 223,088 211,117 778,788

LBW Records 158,546 152,722 7051 318,319
Animals 46,221 43,403 2093 91,717

LVR Records 158,167 146,500 7037 311,704
Animals 46,124 42,350 2083 90,557

AFI, age at first insemination; TNB, total number of piglets born; LBW, litter birth
weight; LVR, litter variation.
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permanent effect to account for the repeated observations of a single
sow, and an additive genetic effect (animal). EBVs for LBW were
obtained with a model that included genetic line, parity number, TNB,
and herd-year-season as fixed effects and a permanent effect and an
additive genetic effect (animal) as random effects. The model used for
LVR was similar to the one used for LBW, except that TNB was
removed. The reliabilities per animal, needed for deregression, were
extracted from the genetic evaluation based on the methodology of
Tier and Meyer (2004). The heritabilities (h2) used for deregression
were estimated via restricted maximum likelihood (REML) using
a pedigree-based relationship matrix and were also obtained from
the routine genetic evaluation. The h2 of the traits were 0.30 for
AFI, 0.11 for TNB, 0.38 for LBW, and 0.14 for LVR. The genomic h2

of the DEBVs were estimated via REML using ASREML 3.0 (Gilmour
et al. 2009).

Sows were genotyped using the Illumina PorcineSNP60 BeadChip
(Ramos et al. 2009). SNPs with GenCall ,0.15, unmapped SNPs, and
SNPs located on either the X or the Y chromosome, according to the
Sscrofa10.2 assembly of the reference genome (Groenen et al. 2012),
were excluded. Quality control was performed in all populations
simultaneously, which involved excluding SNPs with call rate
,0.95, minor allele frequency ,0.01, and strong deviations of
Hardy-Weinberg equilibrium (x2 . 600). After quality control,
42,139 SNPs remained out of the initial 64,232 SNPs. Individuals
with missing genotype frequency.0.05 were also removed. Missing
genotypes of the remaining animals were imputed using BEAGLE
3.3.2 (Browning and Browning 2007).

Statistical analyses
GEBVs were computed based on the genomic best linear unbiased
prediction method (GBLUP). GBLUP uses a genomic relationship
matrix (G) instead of the numerator relationship matrix (A). The G
matrix contains genomic kinship indicating relatedness between ani-
mals and was used for prediction in all scenarios with the model:

y ¼ 1mþ Zgþ e;

where y is the vector of DEBVs, m is the overall mean, g is the vector
of random additive genetic effects assumed to be �N(0, Gs2

a), Z
is a design matrix allocating g to y, and e is a residual with hetero-
geneous variance due to differences in reliabilities of the DEBVs
(Garrick et al. 2009). In predictions where the training set contained
more than one population, the fixed line effect present in the model
for estimating EBVs was also included in the GBLUP model as
a fixed effect.

The Gmatrix for within-population prediction was built according
to VanRaden (2008), which was computed as G ¼ ZZ9 =2

P
piqi,

where Z is a matrix of centered genotypes and pi and qi are the allelic
frequencies of the ith marker based on observed genotypes. In predic-
tions where the training set contained more than one population, the
G matrix was built according to Chen et al. (2013), accounting for
differences in allele frequencies between populations.

We used ASREML 3.0 (Gilmour et al. 2009) to predict the GEBVs,
with the G matrix entered as a user-defined matrix. Animals assigned
to the prediction set had their DEBVs removed before predicting
GEBV.

All scenarios were also analyzed using the A matrix, which con-
tains the average additive genetic relationships of the animals based on
the pedigree (PED-BLUP). The model for these analyses was similar
to the GBLUP one; however, the g vector of the random additive
genetic effect was assumed to be �N(0, As2

a).

Genetic correlations between PB and CB performance were
estimated for the four traits. We used records for DL, LW, and F1
animals born from 2005 through 2012 (Supporting Information,
Table S1). Genetic correlations were estimated in bivariate analyses
using REML in ASREML 3.0 (Gilmour et al. 2009). The effects of
bivariate models were the same as those used to obtain the EBVs (see
above); however, to estimate genetic correlations, PB performance
and CB performance were treated as different traits (Falconer 1952),
which in matrix notation is:

�
y1
y2

�
¼

�
Z1 0
0 Z2

��
g1
g2

�
þ
�
e1
e2

�

where yi is the vector of observations with i being 1 for purebred and
2 for crossbred data, Zi is the incidence matrix for gi, which is
a vector of random additive genetic effects. The additive genetic
variance is expressed as:

var

�
g1
g2

�
¼ G05A

where A is the numerator relationship matrix and G0 is a 2·2 co-
variance matrix with the purebred and crossbred variances in the
diagonals and the covariances in the off-diagonals.

Scenarios and accuracy of prediction
Seventeen scenarios were investigated that can be divided into four
groups according to composition of the training and validation data
sets as follows:

• Scenarios 1–3: Training and validation data were subsets from the
same population, DL, LW, and F1, respectively, i.e., prediction was
within-population. These scenarios determine how well the within-
population prediction performs for the different traits.

• Scenarios 4–7: Same as scenarios 1–3 but the remaining PB pop-
ulation(s) was/were added to the training data, i.e., prediction was
multi-population. These scenarios determine whether adding data
from a different PB population to the training data would increase
the accuracy compared to the within-population prediction.

• Scenarios 8–11: One PB population was used for training to predict
the other PB population. F1 data were not used in these scenarios,
i.e., prediction was across breeds. These scenarios determine how
well across-population predictions would perform.

• Scenarios 12–17: PB populations were used for training and CB
animals were used for validation. These scenarios determine how
well CB genetic merit can be predicted from PB data alone, and
whether inclusion of more than one parental PB population
increases the accuracy.

The accuracy of prediction was estimated as the correlation
between the GEBV/EBV and the DEBV of the validation set animals
for GBLUP/PED-BLUP. Prediction bias was calculated by regressing
the validation variables (DEBV) on the prediction variables (GEBV/
EBV). Accuracies were the average of 20 random training-validation
populations in scenarios 1–7, 9, 11, 13, 15, and 17. For scenarios 1–7,
we randomly set aside part of the genotyped animals (N = 50) and
used those in a later step to determine the accuracy of prediction.
These 50 were not included in the training for those scenarios. In
scenarios 9, 11, 13, 15, and 17, not all the available animals were used
for training. Subsets of the training populations were sampled such
that the same number of animals was used from each population per
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trait undergoing study. Any differences in accuracies would then be due
to the different populations used, and not to differences in the number
of animals. Scenarios 8, 10, 12, 14, and 16 only had one estimate of
accuracy because all the animals were used in the training population to
maximize prediction accuracy of animals in another population.

RESULTS
Estimates of genomic h2 of the DEBVs across traits and populations
ranged from 0.04 to 0.58 (Table 2). Estimates of pedigree-based h2 of
the DEBVs across traits and populations ranged from 0.03 to 0.78
(Table S2). The genomic and pedigree-based heritabilities were similar
in general. Genetic correlations between PB performance and CB
performance for the four traits undergoing study ranged from 0.31
for AFI to 0.90 for LBW (Table 3).

Accuracies for within-population predictions for scenarios 1–3
ranged from 0.22 to 0.72 for GBLUP and from 0.21 to 0.64 for
PED-BLUP across the four traits and different training sets, indicating
a modest to good predictive ability (Table 4). The regression coeffi-
cient of the GEBV/EBV on the DEBV for scenarios 1–3 ranged from
1.03 to 1.70 for GBLUP and from 0.90 to 2.21 for PED-BLUP.

For multi-population prediction of PB populations (scenarios 4
and 5) the accuracies ranged from 0.18 to 0.67, whereas for multi-
population prediction (two PB + one CB) of the CB population
(scenarios 6 and 7) the accuracies ranged from 0.17 to 0.45 for
GBLUP and from 0.32 to 0.42 for PED-BLUP. When predicting PB
(scenarios 4 and 5; Table 5), the addition of the other PB population
resulted in lower accuracies for all four traits in comparison to within-
population prediction for GBLUP. When predicting CB (scenarios 6
and 7; Table 5), the addition of PB populations resulted in lower
accuracies for AFI and TNB but higher accuracies for LBW and
LVR. The regression coefficient of the GEBV/EBV on the DEBV for
scenarios 4 and 5 ranged from 0.86 to 1.18 for GBLUP, whereas for
scenarios 6 and 7 it ranged from 0.80 to 3.11 for GBLUP and from
0.97 to 5.00 for PED-BLUP. Accuracies and regression coefficients of
the EBV on the DEBV were not computed for PED-BLUP for sce-
narios 4 and 5 because the other PB population to be added is not
related according to the pedigree.

GEBV accuracy of across-breed prediction, i.e., predicting genetic
merit of one PB from a different PB population, performed poorly for
AFI and TNB (Table 6); accuracies were not significantly different
from zero (P. 0.05). Accuracies for LBW and LVR ranged from 0.13
to 0.26 across the different training sets for GBLUP. The regression
coefficient of the GEBV on the DEBV for AFI and TNB ranged from
20.71 to 1.37, whereas for LBW and LVR it ranged from 0.70 to 1.40.
Accuracies and regression coefficients of the EBV on the DEBV were
not computed for PED-BLUP because the two PB populations are not
related according to the pedigree.

Accuracy of prediction in scenarios 12–17 that predicted genetic
merit of CB using PB parental populations as training data performed
poorly for AFI (Table 7); accuracies were not significantly different
from zero for both GBLUP and PED-BLUP (P . 0.05). For the other
three traits, TNB, LBW, and LVR, however, predictive ability was
observed. Accuracies ranged from 0.11 to 0.31 for GBLUP and from
0.08 to 0.22 for PED-BLUP. The regression coefficient of the GEBV/
EBV on the DEBV for AFI ranged from 21.14 to 20.15 for GBLUP
and from 0.15 to 0.95 for PED-BLUP, whereas for TNB, LBW, and
LVR it ranged from 0.48 to 3.82 for GBLUP and from 0.53 to 7.76 for
PED-BLUP.

DISCUSSION
Accuracies of genomically predicted breeding values in CB and PB
pigs were estimated for four female reproduction traits in 17 scenarios
to optimize the use of genomic data for crossbred animals. We have
used DEBVs as a response variable with a moderate to high mean
reliability (ranging from 0.33 to 0.80) for the different traits and
populations. The SD of the accuracies in scenarios in which we had
replicates of training validation populations varied according to the
type of prediction (within, multi-, across, or PB to CB). Within-
population and multi-population predictions showed higher SDs
because the relationship between training and validation in each
replicate could substantially vary due to different degrees of relation-
ships within a population. For across-population and PB to CB
predictions, the relationship between training and validation populations
was naturally lower; therefore, in each replicate there was less variation.

Within-population prediction
LBW and LVR showed generally higher accuracies than AFI and
TNB. This difference between traits may occur due to the lower
reliability of the DEBV for AFI and TNB, which lowers the accuracy
when the number of observations is preset. Another possibility is
that there are non-additive genetic effects (e.g., dominance, epista-
sis) affecting AFI and TNB more, whereas LBW and LVR may be
regulated mainly by an additive action of the genes. Therefore, the
importance of non-additive effects needs to be further investigated.
Even with the low number of genotyped CB pigs, all traits showed
predictive ability within the CB. Therefore, a greater number of
genotyped CB should increase these accuracies. In general, GBLUP
outperformed PED-BLUP across populations and traits, which is
mainly a result of a better estimation of relationships among indi-
viduals by the markers. Similar results have also been reported in
other studies using pigs (Forni et al. 2011; Tusell et al. 2013). The
regression coefficients of the GEBV/EBV on the DEBV for both
GBLUP and PED-BLUP were, in general, close to 1, indicating that
the predictions were not severely biased, except for TNB, where
some of the them deviated considerably from 1.

The level of accuracy found here is concordant with those found
in other studies on pigs (Cleveland et al. 2010; Forni et al. 2011;

n Table 2 Estimated genomic heritability (h2) of the deregressed
estimated breeding values across traits and populations under
study

Heritability (SE)

Trait DL LW F1

AFI 0.18 (0.04) 0.07 (0.02) 0.64 (0.12)
TNB 0.04 (0.01) 0.05 (0.01) 0.12 (0.05)
LBW 0.58 (0.05) 0.57 (0.04) 0.43 (0.12)
LVR 0.21 (0.03) 0.11 (0.02) 0.17 (0.07)

DL, Dutch Landrace; LW, Large White; F1, cross between DL and LW; AFI, age at
first insemination; TNB, total number of piglets born; LBW, litter birth weight;
LVR, litter variation.

n Table 3 Genetic correlations between purebred and crossbred
performance for the four traits undergoing study

Trait Genetic Correlation (SE)

AFI 0.31 (0.02)
TNB 0.88 (0.01)
LBW 0.90 (0.05)
LVR 0.88 (0.06)

AFI, age at first insemination; TNB, total number of piglets born; LBW, litter birth
weight; LVR, litter variation.
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Christensen et al. 2012; Tusell et al. 2013; Badke et al. 2014). In
these studies, as well as in ours, many traits and breeds were studied
and within-population prediction always had predictive ability. One
of the studies (Tusell et al. 2013) also studied TNB for two PB
populations and their F1 cross and also found that prediction
within the F1 cross has greater accuracy than within-PB prediction.
They argued that this might be caused by the structure and effective
sample size of the populations undergoing study. Accuracies found
by Christensen et al. (2012) were not statistically different between
single-step BLUP (SS-BLUP) and GBLUP, but both were higher
than pedigree-based prediction and GBLUP was shown to be more
biased. The advantage of using SS-BLUP was an increase of accu-
racy for non-genotyped animals. Because our aim was to predict
genotyped animals, we studied accuracies of prediction using
GBLUP.

Multi-population prediction
Adding data from a different PB population to the training data
(scenarios 4 and 5) decreased the accuracy of prediction compared
with within-population predictions (scenarios 1–3) for GBLUP. Add-
ing data from the two PB populations to the CB training data (sce-
narios 6 and 7) had different results depending on the trait. LBW and
LVR that had high genetic correlation between PB and CB perfor-
mance had an increase in accuracy, whereas for AFI that had a low
genetic correlation there was a decrease in accuracy. TNB had a high
genetic correlation; however, the accuracy also decreased, which was
unexpected.

If traits are genetically very different (low genetic correlation
between PB and CB), then adding more animals with the other trait to
the training is not expected to increase the accuracy. When the trait is
the same, however (high genetic correlation), including more animals

n Table 4 GEBV accuracies from within-population prediction using GBLUP and PED-BLUP (scenarios 1–3)

N Training N Validation Accuracya (SD) Slopeb

Trait Scenario r2 DL LW F1 DL LW F1 GBLUP PED-BLUP GBLUP PED-BLUP

AFI 1 0.45 1017 — — 50 — — 0.26 (0.16) 0.25 (0.15) 1.21 1.13
2 0.45 — 1339 — — 50 — 0.22 (0.09) 0.21 (0.19) 1.25 1.08
3 0.33 — — 237 — — 50 0.37 (0.09) 0.30 (0.12) 1.04 0.90

TNB 1 0.45 1016 — — 50 — — 0.26 (0.12) 0.25 (0.12) 1.70 1.90
2 0.49 — 1333 — — 50 — 0.24 (0.15) 0.25 (0.15) 1.24 1.50
3 0.40 — — 231 — — 50 0.40 (0.11) 0.35 (0.14) 1.52 2.21

LBW 1 0.78 1020 — — 50 — — 0.64 (0.09) 0.58 (0.06) 1.08 1.06
2 0.80 — 1335 — — 50 — 0.72 (0.06) 0.64 (0.07) 1.03 1.05
3 0.77 — — 236 — — 50 0.40 (0.11) 0.39 (0.13) 1.10 1.27

LVR 1 0.50 1019 — — 50 — — 0.50 (0.11) 0.40 (0.10) 1.04 1.03
2 0.53 — 1335 — — 50 — 0.46 (0.09) 0.39 (0.15) 1.05 1.17
3 0.49 — — 235 — — 50 0.34 (0.09) 0.33 (0.11) 1.03 1.19

r2 is the mean reliability of deregressed estimated breeding values from the training population. SD, standard deviation, DL, Dutch Landrace; LW, Large White; F1,
cross between DL and LW; AFI, age at first insemination; TNB, total number of piglets born; LBW, litter birth weight; LVR, litter variation. Scenario 1, within-population
prediction for DL; scenario 2, within-population prediction for LW; scenario 3, within-population prediction for F1.
a
Estimate obtained by 20-random training-validation populations.

b
Regression coefficient of the GEBV/EBV on the DEBV.

n Table 5 GEBV accuracies from multi-population prediction using GBLUP and PED-BLUP (scenarios 4–7)

N Training N Validation Accuracya (SD) Slopeb

Trait Scenario r2 DL LW F1 DL LW F1 GBLUP PED-BLUP GBLUP PED-BLUP

AFI 4 0.45 1017 1389 — 50 — — 0.20 (0.13) — 1.18 —

5 0.45 1067 1339 — — 50 — 0.18 (0.13) — 1.11 —

6 0.41 1067 1389 237 — — 50 0.17 (0.09) 0.32 (0.12) 1.91 1.86
7 0.41 237 237 237 — — 50 0.27 (0.11) 0.35 (0.11) 3.11 2.17

TNB 4 0.47 1016 1383 — 50 — — 0.21 (0.15) — 1.12 —

5 0.47 1066 1333 — — 50 — 0.23 (0.17) — 1.11 —

6 0.44 1066 1383 231 — — 50 0.31 (0.18) 0.34 (0.11) 1.69 3.06
7 0.44 231 231 231 — — 50 0.37 (0.14) 0.33 (0.12) 3.02 5.00

LBW 4 0.79 1020 1385 — 50 — — 0.51 (0.13) — 0.86 —

5 0.79 1070 1335 — — 50 — 0.67 (0.07) — 1.09 —

6 0.78 1070 1385 236 — — 50 0.45 (0.11) 0.37 (0.09) 0.80 0.97
7 0.78 236 236 236 — — 50 0.41 (0.15) 0.37 (0.11) 1.03 1.10

LVR 4 0.52 1019 1385 — 50 — — 0.38 (0.12) — 0.99 —

5 0.52 1069 1335 — — 50 — 0.41 (0.12) — 1.11 —

6 0.51 1069 1385 235 — — 50 0.44 (0.10) 0.40 (0.14) 1.22 1.59
7 0.51 235 235 235 — — 50 0.38 (0.12) 0.42 (0.08) 1.33 1.88

r2 is the mean reliability of deregressed estimated breeding values from the training population. SD, standard deviation, DL, Dutch Landrace; LW, Large White; F1,
cross between DL and LW; AFI, age at first insemination; TNB, total number of piglets born; LBW, litter birth weight; LVR, litter variation. Scenario 4, multi-population
prediction for DL; scenario 5, multi-population prediction for LW; scenario 6, multi-population prediction for F1; scenario 6, multi-population prediction for F1 with
a reduced number of purebred animals.
a

Estimate obtained by 20 random training-validation populations.
b

Regression coefficient of the GEBV/EBV on the DEBV.
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with the other trait (PB vs. CB) is expected to increase the accuracy.
Besides having a high genetic correlation between the traits, the ad-
ditional animals also need to have some (genomic) relationship to the
validation animals. In addition to a low genetic correlation between
PB and CB performance, the degradation of accuracy might result
from differences in non-additive effects.

For PED-BLUP, adding the two parental PB populations in the
training also had different results depending on the trait. AFI and
LBW had an increase in accuracy, whereas TNB and LVR had a slight
decrease in accuracy. The regression coefficient of the GEBV/EBV on
the DEBV estimated to investigate bias for scenarios 4–7 was, in
general, close to 1, indicating that the predictions did not suffer from
a large bias, except for AFI and TNB in scenarios 6 and 7. For these
traits, whenever the PB parental populations were used as training and
CB used as the validation set, the regression coefficient of the GEBV/
EBV on the DEBV indicated that the estimates were severely biased.

A review regarding multi-population prediction in cattle (Lund
et al. 2014) has shown that combining populations, in general,
increases the accuracy of prediction when the breeds are the same
but from different countries, to a lesser degree when the breeds are
closely related, and has little or no benefit when the breeds are dis-
tantly related. Another study (Hayes et al. 2009a) has reported slightly
higher accuracies when using multi-population prediction compared
to within-population prediction in dairy cattle. Chen et al. (2013) used
Angus and Charolais steers to determine the accuracy of prediction
with GBLUP for within-population and multi-population predictions.
In their study, accuracies did not always increase, suggesting that noise
was being added to the predictions. The maximum increment in
accuracy that they obtained was 0.05, whereas a decrement of 0.07
was also obtained, which is within the same range as the differences
observed in the current study. These studies showed that adding
another PB population to the training data in cattle did not necessarily
increase the accuracy of prediction, similar to our current results in
pigs.

De Roos et al. (2009), using simulated data, also showed that in-
creasing the size of the training data by adding animals from a differ-

ent population does not always increase the accuracy. An increase in
accuracy higher than within-population was only found when the
populations were closely related, when marker density was high, or
when the size of the initial within-population training data set was
small. In our case, the number of markers was reasonable and in some
scenarios the size of the within-population training data set was small,
but we still did not have a great increase in accuracy of prediction.
This suggests that the marker density might not be sufficient to have
similar LD levels between QTL and markers in the different popula-
tions that are mixed. The genetic distance between the populations
was probably an important factor that limited the benefit of adding
training data from other populations.

Across-population prediction
Some predictive ability was observed when predicting across pop-
ulations for LBW and LVR, whereas for AFI and TNB all the
accuracies were null. Increasing the size of the training population
slightly improved the accuracies of prediction, on average by 0.05.
Greater accuracies were found when DL predicted LW genetic merit,
rather than the other way around (scenario 9 vs. scenario 11). The
regression coefficients of the GEBV on the DEBV for scenarios 8–11
were, in general, close to 1 for LBW and LVR, indicating that the
predictions did not suffer from much bias. For AFI and TNB, how-
ever, regression values greatly deviated from 1, sometimes with neg-
ative values, which we attribute to the very low accuracies we found.

In a study by Harris et al. (2008), the prediction across Holstein-
Friesian and Jersey cattle breeds was also investigated. Predictions
were not accurate, ranging from 20.1 to 0.3 for 25 traits. In another
study, Hayes et al. (2009a) predicted the GEBV of Jersey animals using
a Holstein population as training data and vice versa, resulting in
accuracies ranging from 20.06 to 0.23 for five traits. Both studies
report results that were very similar to ours that ranged from 20.05
to 0.26.

The simulation study by De Roos et al. (2009) indicated that
across-population prediction was substantially less accurate than
within-population or multiple-population prediction. These lower

n Table 6 GEBV accuracies from across-population prediction using GBLUP (scenarios 8–11)

N Training N Validation Accuracy (SD) Slopeb

Trait Scenario r2 DL LW F1 DL LW F1 GBLUP GBLUP

AFI 8 0.45 1067 — — — 1389 — 20.05 20.57
9 0.45 711 — — — 1389 — 20.04 (0.01)a 20.71

10 0.45 — 1389 — 1067 — — 20.02 20.27
11 0.45 — 711 — 1067 — — 20.02 (0.03)a 20.43

TNB 8 0.45 1066 — — — 1383 — 0.05 1.01
9 0.45 693 — — — 1383 — 0.04 (0.01)a 1.37

10 0.49 — 1383 — 1066 — — 0.03 0.56
11 0.49 — 693 — 1066 — — 0.00 (0.02)a 0.00

LBW 8 0.78 1070 — — — 1385 — 0.26 0.83
9 0.78 708 — — — 1385 — 0.23 (0.04)a 0.83

10 0.80 — 1385 — 1070 — — 0.22 0.73
11 0.80 — 708 — 1070 — — 0.16 (0.03)a 0.65

LVR 8 0.50 1069 — — — 1385 — 0.17 0.70
9 0.50 705 — — — 1385 — 0.15 (0.03)a 0.75

10 0.53 — 1385 — 1069 — — 0.20 1.40
11 0.53 — 705 — 1069 — — 0.13 (0.04)a 1.22

r2 is the mean reliability of deregressed estimated breeding values from the training population. SD, standard deviation, DL, Dutch Landrace; LW, Large White; F1,
cross between DL and LW; AFI, age at first insemination; TNB, total number of piglets born; LBW, litter birth weight; LVR, litter variation. Scenario 8, across-population
prediction for LW; scenario 9, across-population prediction for LW with a reduced number of DL animals; scenario 10, across-population prediction for DL; scenario
11, across-population prediction with a reduced number of LW animals.
a

Estimate obtained by 20-random training-validation populations.
b

Regression coefficient of the GEBV on the DEBV.

1580 | A. M. Hidalgo et al.



accuracies were due to differences in marker–QTL LD phase between
the populations. A marker may be in LD with QTL in a given pop-
ulation, but it is not necessarily in LD with those QTL in the other
population, resulting in poor predictions for the other population.
These simulation results suggested that, for our analyses, a higher
marker density would be required. However, results of Veroneze
et al. (2014) show that with the same 60K porcine SNP panel, the
density of SNPs is high enough to obtain reasonable levels of LD. This
would predict that our SNP panel should be able to capture marker
effects across breeds.

Using purebred training data to predict crossbred
genetic merit
Using only the PB population(s) to predict the CB genetic merit
with GBLUP has some predictive ability for TNB, LBW, and LVR,
whereas all the accuracies for AFI were null. Increasing the size of
the training data by adding another PB population increased the
accuracy for TNB and LBW, whereas for AFI and LVR it did not.
However, when we increased the size of the training population by
adding more animals of the same PB population, the accuracies
usually increased. The accuracy of prediction for predicting CB
animals based on PB animals appears to depend largely on the
genetic correlation between PB and CB performance. As our results
demonstrate, the greater the genetic correlation, the higher the
chances of having any or more predictive ability. AFI, for which the
genetic correlation between PB and CB was very poor, had zero
accuracy of prediction showing that selection on PB is expected to
have no effect on CB genetic merit.

For PED-BLUP, the accuracies were, in general, lower than
for GBLUP, especially for LBW and LVR. Adding the second PB
population in the training slightly increased the accuracy of
prediction.

The greater accuracies found for TNB, LBW, and LVR when
training with DL rather than LW population can be explained by the
slightly greater relationship between DL and F1 populations than
between LW and F1. This higher relationship is specific for the
animals included in this study. The F1 animals that were genotyped
are more closely related to the DL animals that were genotyped than
to the LW animals that were genotyped.

To test the impact of the relationship between training and
validation populations on the accuracy, we split the training data into
the 50% of animals that are MOST related to the validation set and the
50% that are LEAST related to the validation set (Table S3, Table S4).
For AFI, TNB, and LBW, using the 50% MOST related animals
resulted in greater accuracies, whereas for LVR it did not. This indi-
cates that if CB animals have closer genomic relationships to the PB
animals used as training, then higher accuracies for scenarios 12–17
could generally be expected.

In cattle, Harris et al. (2008) used PB populations (Holstein-
Friesian and Jersey) to predict the genomic breeding values of a cross
between these two breeds. They used data from 4500 sires genotyped
for approximately 44K SNPs. Their results show that using the two
breeds as the training population increased the accuracy by 5–10%
compared to using only one of the breeds to predict the cross. The
actual level of accuracy was not reported in their study. Our results
were similar to theirs for TNB, LBW, and LVR, where the genetic

n Table 7 GEBV accuracies from prediction of crossbred genetic merit from purebred training data using GBLUP and PED-BLUP (scenarios
12–17)

N Training N Validation Accuracy (SD) Slopeb

Trait Scenario r2 DL LW F1 DL LW F1 GBLUP PED-BLUP GBLUP PED-BLUP

AFI 12 0.45 1067 1389 — — — 287 20.07 0.09 20.75 0.81
13 0.45 356 356 — — — 287 20.03 (0.06)a 0.04 (0.06)a 20.40 0.53
14 0.45 1067 — — — — 287 20.02 0.07 20.15 0.95
15 0.45 711 — — — — 287 20.02 (0.05)a 0.05 (0.04)a 20.24 0.67
16 0.45 — 1389 — — — 287 20.07 0.06 21.14 0.73
17 0.45 — 711 — — — 287 20.06 (0.05)a 0.01 (0.05)a 20.95 0.15

TNB 12 0.47 1066 1383 — — — 281 0.20 0.21 1.51 3.02
13 0.47 347 347 — — — 281 0.18 (0.09)a 0.22 (0.05)a 3.82 7.76
14 0.45 1066 — — — — 281 0.18 0.19 2.29 3.62
15 0.45 693 — — — — 281 0.18 (0.04)a 0.19 (0.04)a 3.15 4.71
16 0.49 — 1383 — — — 281 0.13 0.10 1.17 2.23
17 0.49 — 693 — — — 281 0.11 (0.04)a 0.08 (0.04)a 1.72 3.06

LBW 12 0.79 1070 1385 — — — 286 0.31 0.14 0.62 0.54
13 0.79 354 354 — — — 286 0.18 (0.05)a 0.11 (0.05)a 0.52 0.60
14 0.78 1070 — — — — 286 0.26 0.10 0.65 0.53
15 0.78 708 — — — — 286 0.22 (0.04)a 0.14 (0.04)a 0.64 0.73
16 0.80 — 1385 — — — 286 0.22 0.11 0.55 0.63
17 0.80 — 708 — — — 286 0.17 (0.03)a 0.08 (0.05)a 0.48 0.59

LVR 12 0.52 1069 1385 — — — 285 0.27 0.15 0.90 0.91
13 0.52 353 353 — — — 285 0.21 (0.08)a 0.13 (0.07)a 1.16 1.44
14 0.50 1069 — — — — 285 0.31 0.11 1.18 0.84
15 0.50 705 — — — — 285 0.28 (0.04)a 0.14 (0.05)a 1.24 1.25
16 0.53 — 1385 — — — 285 0.15 0.11 0.74 1.33
17 0.53 — 705 — — — 285 0.11 (0.04)a 0.12 (0.05)a 0.75 2.43

r2 is the mean reliability of deregressed estimated breeding values from the training population. SD, standard deviation, DL, Dutch Landrace; LW, Large White; F1,
cross between DL and LW; AFI, age at first insemination; TNB, total number of piglets born; LBW, litter birth weight; LVR, litter variation. Scenario 12, purebreds predicting
F1 animals; scenario 13, purebreds predicting F1 animals with a reduced number of purebred animals; scenario 14, DL predicting F1 animals; scenario 15, DL predicting F1
animals with a reduced number of DL animals; scenario 16, LW predicting F1 animals; scenario 17, LW predicting F1 animals with a reduced number of LW animals.
a

Estimate obtained by 20-random training-validation populations.
b

Regression coefficient of the GEBV/EBV on the DEBV.
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correlation between PB and CB performance is close to 1, but not for
AFI.

Results indicate that using a PB population to predict CB genetic
merit can generate reasonable predictions. This, however, is not
consistent for all traits. Although these results do not reflect the actual
practice of genomic selection in pig breeding, they do provide an
estimate of the accuracy of genomic prediction between CB and PB
populations using real data. The results make a strong case for the
genotyping and recording of CB animals, at least for a subset of traits
where genetic correlations are away from 1.

The low genetic correlation between PB and CB performance for
AFI was also found in another study (Nagyné-Kiszlinger et al. 2013).
They have reported values of 0.28 and 0.39 for Hungarian Large
White and Hungarian Landrace with their reciprocal cross. Possible
reasons for this low genetic correlation were reported: 1) genes that
affect the trait might be different among populations; 2) this trait is
affected by non-additive effects or environmental factors due to dif-
ferent management of PB and CB animals (Nagyné-Kiszlinger et al.
2013). One clear environmental factor that probably reduces the ge-
netic correlation of AFI between PB and CB is the use of batch
farrowing systems in the production environment of CB sows. Sup-
pression of estrus is used to synchronize the heat of the CB gilts,
which impacts the measurement of the trait and leads to these low
correlations.

Standardized EBVs were used; therefore, a bias would possibly be
introduced during deregression due to different reliabilities between
breeds (Garrick et al. 2009). Additional sources for potential bias
affecting the SNP effect estimates are the differences in the population
mean of the breeds. The differences in the mean between populations
were remedied by reintroducing the line effect after deregression. To
test the impact of deregression on bias, we investigated all 17 scenarios
for the trait AFI by analyzing phenotypes, which are not standardized,
instead of DEBVs. The correlation between the accuracies obtained by
the two different approaches was 0.92, with a mean regression co-
efficient of the GEBV on the phenotype of 0.70. This correlation
shows that using the phenotypes has good agreement with the accu-
racies calculated using DEBVs; therefore, any bias due to the process
of standardization and deregression is expected to be limited.

The reasonable accuracy for PB predicting CB genetic merit shows
that in a current typical breeding program, selection in the PB does
result in a phenotypic response in CB. AFI was an exception in our
study, because the genetic correlation between PB and CB perfor-
mance was very low.

Further studies to compare the accuracy of genomic selection of
PB for CB performance are needed. Other genomic models including
breed-specific effects of SNP alleles or dominance (Ibánez-Escriche
et al. 2009; Zeng et al. 2013) were described and were found to out-
perform an additive model only in specific cases, e.g., with high dom-
inance levels or when the number of SNPs is small relative to the size
of the training population. Using these more complex models or
a multiple-trait model (Christensen et al. 2014) with real data is
needed.

In conclusion, there was predictive ability for purebred population
(s) predicting crossbred genetic merit using an additive model in the
populations studied when PB and CB traits have high genetic
correlation. For practical implementation, estimation of genomic
breeding values of PB animals for CB performance needs to be
further studied with models that take into account the crossbred
nature of training data. Multi-population prediction was no better
than within-population prediction for PB populations. Accuracy of
prediction was shown to be very trait-dependent; hence, for the utility

of data from other breeds in the application of genomic selection, each
trait needs to be studied separately and no generalizations should be
made. Finally, real data accuracies were lower than what simulation
studies have reported.

ACKNOWLEDGMENTS
A.M.H. currently benefits from a joint grant from the European
Commission (within the framework of the Erasmus-Mundus joint
doctorate “EGS-ABG”), Breed4Food (a public-private partnership in
the domain of animal breeding and genomics), and Topigs Norsvin. J.
W.M.B. was supported by PPP Breed4Food. Topigs Norsvin had a role
in study design, data collection, and preparation of the manuscript.

LITERATURE CITED
Badke, Y. M., R. O. Bates, C. W. Ernst, J. Fix, and J. P Steibel, 2014 Accuracy of

estimation of genomic breeding values in pigs using low-density genotypes
and imputation. G3 (Bethesda). Genetics 4: 623–631.

Berry, D. P., F. Kearney, and B. L. Harris. 2009 Genomic selection in Ire-
land. Interbull. Bull. 39:29–34.

Browning, S. R., and B. L. Browning., 2007 Rapid and accurate haplotype
phasing and missing-data inference for whole-genome association studies by
use of localized haplotype clustering. Am. J. Hum. Genet. 81: 1084–1097.

Cecchinato, A., G. de los Campos, D. Gianola, L. Gallo, and P. Carnier,
2010 The relevance of purebred information for predicting genetic
merit of survival at birth of crossbred piglets. J. Anim. Sci. 88: 481–490.

Chen, L., F. Schenkel, M. Vinsky, D. H. Crews, and C. Li, 2013 Accuracy of
predicting genomic breeding values for residual feed intake in Angus and
Charolais beef cattle. J. Anim. Sci. 91: 4669–4678.

Christensen, O. F., P. Madsen, B. Nielsen, T. Ostersen, and G. Su,
2012 Single-step methods for genomic evaluation in pigs. Animal 6:
1565–1571.

Christensen, O. F., P. Madsen, B. Nielsen, and G. Su, 2014 Genomic eval-
uation of both purebred and crossbred performances. Genet. Sel. Evol. 46:
23.

Cleveland, M. A., S. Forni, D. J. Garrick, and N. Deeb, 2010 Prediction of
genomic breeding values in a commercial pig population. In Proc. 9th
WCGALP, 0266.

De Roos, A. P. W., B. J. Hayes, and M. E. Goddard, 2009 Reliability of
genomic predictions across multiple populations. Genetics 183: 1545–
1553.

Dekkers, J. C. M., 2007 Marker-assisted selection for commercial crossbred
performance. J. Anim. Sci. 85: 2104–2114.

Falconer, D. S., 1952 The problem of environment and selection. Am. Nat.
86: 293–298.

Forni, S., I. Aguilar, and I. Misztal, 2011 Different genomic relationship
matrices for single-step analysis using phenotypic, pedigree and genomic
information. Genet. Sel. Evol. 43: 1.

Garrick, D. J., J. F. Taylor, and R. L. Fernando, 2009 Deregressing estimated
breeding values and weighting information for genomic regression
analyses. Genet. Sel. Evol. 41: 55.

Gilmour, A. R., B. J. Gogel, B. R. Cullis, and R. Thompson, 2009 ASReml
user guide release 3.0. VSN International Ltd, Hemel Hempstead, HP1
1ES, UK. www.vsni.co.uk.

Groenen, M. A. M., A. L. Archibald, H. Uenishi, C. K. Tuggle, Y. Takeuchi, M. F.
Rothschild, C. Rogel-Gaillard, et al., 2012 Analyses of pig genomes provide
insight into porcine demography and evolution. Nature 491: 393–8.

Harris, B. L., D. L. Johnson, and R. J. Spelman, 2008 Genomic selection
in New Zealand and the implications for national genetic evaluation.
Proceedings of Interbull Meeting, Niagara Falls 325–330.

Hayes, B. J., P. J. Bowman, A. C. Chamberlain, K. Verbyla, and M. E. Goddard,
2009a Accuracy of genomic breeding values in multi-breed dairy cattle
populations. Genet. Sel. Evol. 41: 51.

Hayes, B. J., P. J. Bowman, A. J. Chamberlain, and M. E. Goddard,
2009b Invited review: Genomic selection in dairy cattle: Progress and
challenges. J. Dairy Sci. 92: 433–443.

1582 | A. M. Hidalgo et al.

http://www.vsni.co.uk


Ibánez-Escriche, N., R. L. Fernando, A. Toosi, and J. C. M. Dekkers,
2009 Genomic selection of purebreds for crossbred performance. Genet.
Sel. Evol. 41: 12.

Kinghorn, B. P., J. M. Hickey, and J. H. J. Van Der Werf, 2010 Reciprocal
recurrent genomic selection for total genetic merit in crossbred individ-
uals. Proceedings of the 9th World Congress on Genetics applied to
Livestock Production, Leipzig, Germany, 0036.

Lund, M. S., G. Su, L. Janss, B. Guldbrandtsen, and R. F. Brøndum,
2014 Genomic evaluation of cattle in a multi-breed context. Livest. Sci.
166: 101–110.

Lutaaya, E., I. Misztal, J. W. Mabry, T. Short, H. H. Timm et al.,
2001 Genetic parameter estimates from joint evaluation of purebreds
and crossbreds in swine using the crossbred model. J. Anim. Sci. 79:
3002–3007.

Merks, J. W. M., and A. G. de Vries, 2002 New sources of information in
pig breeding. Proceedings of the 7th World Congress on Genetics applied
to Livestock Production, Montpellier, France, 30, 3–10.

Mulder, H. A., M. Lidauer, I. Strandén, E. A. Mäntysaari, M. H. Pool, and
R. F. Veerkamp, 2012 MiXBLUP Manual. Animal Breeding and Genomics
Centre, Wageningen UR Livestock Research, Lelystad, the Netherlands.

Nagyné-Kiszlinger, H., J. Farkas, G. Kövér, and I. Nagy, 2013 Selection for
reproduction traits in Hungarian pig breeding in a two-way cross. Anim.
Sci. Pap. Rep. 31: 315–322.

Ostersen, T., and O. F. Christensen, M. HenryonNielsen, B., G. Su, and P.
Madsen, 2011 Deregressed EBV as the response variable yield more
reliable genomic predictions than traditional EBV in pure-bred pigs.
Genet. Sel. Evol. 43: 38.

Ramos, A. M., R. P. M. A. Crooijmans, N. A. Affara, A. J. Amaral, A. L.
Archibald, J. E. Beever, C. Bendixen, et al., 2009 Design of a high
density SNP genotyping assay in the pig using SNPs identified and

characterized by next generation sequencing technology. PLoS ONE 4:
1–13.

Tier, B., and K. Meyer, 2004 Approximating prediction error covariances
among additive genetic effects within animals in multiple-trait and ran-
dom regression models. J. Anim. Breed. Genet. 121: 77–89.

Toosi, A., R. L. Fernando, and J. C. M. Dekkers, 2010 Genomic selection in
admixed and crossbred populations. J. Anim. Sci. 88: 32–46.

Tusell, L., P. Pérez-Rodriguez, S. Forni, X.-L. Wu, and D. Gianola,
2013 Genome-enabled methods for predicting litter size in pigs: A
comparison. Animal 7: 1739–1749.

VanRaden, P. M., 2008 Efficient methods to compute genomic predictions.
J. Dairy Sci. 91: 4414–4423.

VanRaden, P. M., C. P. Van Tassell, G. R. Wiggans, T. S. Sonstegard, R. D.
Schnabel et al., 2009 Invited review: Reliability of genomic predictions
for North American Holstein bulls. J. Dairy Sci. 92: 16–24.

Veroneze, R., J. W. M. Bastiaansen, E. F. Knol, S. E. F. Guimarães, F. F. Silva,
B. Harlizius, M. S. Lopes, and P. S. Lopes, 2014 Linkage disequilibrium
patterns and persistence of phase in purebred and crossbred pig (Sus
Scrofa) Populations. BMC Genet. 15: 126.

Wientjes, Y. C. J., R. F. Veerkamp, and M. P. L. Calus, 2013 The effect
of linkage disequilibrium and family relationships on the reliability
of genomic prediction. Genetics 193: 621–31.

Zeng, J., A. Toosi, R. L. Fernando, J. C. M. Dekkers, and D. J. Garrick,
2013 Genomic selection of purebred animals for crossbred performance
in the presence of dominant gene action. Genet. Sel. Evol. 45: 11.

Zumbach, B., I. Misztal, S. Tsuruta, J. Holl, W. Herring et al., 2007 Genetic
correlations between two strains of Durocs and crossbreds from differing
production environments for slaughter traits. J. Anim. Sci. 85: 901–908.

Communicating editor: G. A. de los Campos

Volume 5 August 2015 | Accuracy in Pure and Crossbred Pigs | 1583


