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Abstract: Activity recognition can provide useful information about an older individual’s activity
level and encourage older people to become more active to live longer in good health. This study
aimed to develop an activity recognition algorithm for smartphone accelerometry data of older people.
Deep learning algorithms, including convolutional neural network (CNN) and long short-term
memory (LSTM), were evaluated in this study. Smartphone accelerometry data of free-living
activities, performed by 53 older people (83.8 ± 3.8 years; 38 male) under standardized circumstances,
were classified into lying, sitting, standing, transition, walking, walking upstairs, and walking
downstairs. A 1D CNN, a multichannel CNN, a CNN-LSTM, and a multichannel CNN-LSTM model
were tested. The models were compared on accuracy and computational efficiency. Results show that
the multichannel CNN-LSTM model achieved the best classification results, with an 81.1% accuracy
and an acceptable model and time complexity. Specifically, the accuracy was 67.0% for lying, 70.7% for
sitting, 88.4% for standing, 78.2% for transitions, 88.7% for walking, 65.7% for walking downstairs,
and 68.7% for walking upstairs. The findings indicated that the multichannel CNN-LSTM model was
feasible for smartphone-based activity recognition in older people.
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1. Introduction

Being physically active is critical for older people to reduce their risk of developing comorbidities,
and extending quality life years [1]. The physical activity (PA) guidelines for older Australians [2]
recommends engaging in moderate-intensity PA for at least 30 min every day. However, Australia’s
health report indicates that 75% of Australians aged 65 and over do not meet these physical
activity guidelines [3]. PA monitoring under free-living conditions can help determine whether
the accumulation of PA meets the recommended levels, which can be used for feedback. Moreover,
older people tend to increase their activity levels when monitoring PA, likely because monitoring
increases motivation to achieve a PA goal [4].

An activity classification method with high accuracy is key to providing appropriate feedback to
older people. Although many classification algorithms have been proposed for sensor-based activity
recognition, most studies have targeted younger adults. Due to potential differences in movement
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features between the two age groups, the algorithms trained on young people may not be as accurate
when applied to data from older people [5]. Therefore, there is a need to develop a classifier tailored
for older people. As a small number of studies have specifically focused on older people using inertial
sensors fixed to the trunk [6–9]. These studies utilized a combination of accelerometry, gyroscopes,
and magnetometers, which were processed using neural networks, support vector machines, decision
trees, or random forests to achieve accuracies of 82–93% [6–9]. These studies highlighted that accurate
activity classification in older people is feasible.

However, despite high accuracy, a major downside of the abovementioned methods is that they
adopted approaches which require extracting features manually based on domain knowledge and
expertise. Because these hand-crafted features only contain some of the available discriminative
information, their ability to differentiate activities is likely suboptimal [10]. Artificial neural networks
based on deep learning techniques have been proposed for activity recognition without the need for
hand-crafted feature extraction. Among all deep learning techniques, the convolutional neural network
(CNN) and long short-term memory (LSTM) are commonly used for activity recognition [9,11,12].
Ignatov [13] proposed a 1D CNN model for simple physical activity classification based on
triaxial acceleration data with six activity classes, and the model achieved a high accuracy of
93%. A multichannel CNN model has been designed in [11] to process data from multiple inertial
measurement units (IMUs) in parallel channels. LSTM was combined with a CNN in [14], and compared
to a CNN alone, with the hybrid model (DeepConvLSTM) improving the result by six percent. Due to
their flexibility, neural networks with various architectures have been developed and have achieved
state-of-the-art results. Unfortunately, there is no direct comparison of the performance among neural
networks with different architectures for activity recognition. Moreover, how these deep learning
algorithms work for an older cohort is worth investigating.

Another important consideration in the development of an activity recognition algorithm is the
acceptability of the data collection method to users. To be specific, when using a wearable device to
monitor PA in daily life, in order to achieve accurate insight in one’s behavior, older people must
wear the device for at least four days [12], which may cause discomfort and inconvenience. On the
contrary, smartphones with built-in inertial sensors can be used to gain insight into PA: while users
are performing daily activities, the built-in sensors can reliably capture kinematic features [15] for
activity recognition. In addition, the increasing popularity of smartphones in older people [16] makes it
possible to use their own devices to perform activity monitoring. Smartphone PA monitoring does need
to consider battery life, and the strain associated with certain sensing modalities such as gyroscopes.
Hence, an accelerometry-based activity recognition method seems most appropriate.

This study aims to develop a classifier for accelerometry-based activity recognition in older people.
Several common types activities, including lying, sitting, standing, transition, walking, walking down
and walking up stairs were investigated. Among these activities, because transitioning, walking down,
and walking up are closely related to the balance and the risk of falls in older people [11,13,14], we paid
special attention to the classification performance of the algorithms on these activities. Four models,
including a 1D CNN, a multichannel CNN, a CNN-LSTM, and a multichannel CNN-LSTM were built
to explore the best architecture for this task. These models were trained on a dataset collected from
older people using a smartphone. The classification and computing performance of these models was
compared. Finally, the hyperparameters of the best performing model were tuned for an improved
classification result, and the trained model is openly provided for further validation and use by
the community.

2. Materials and Methods

2.1. Dataset Description

A dataset of free-living activities conducted by 53 older people (83.8 ± 3.8 years, 38 male
and 15 female) at Neuroscience Research Australia [5] was used in this study. In this dataset,
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body accelerations were registered in the smartphone reference frame while participants performed a
continuous series of daily-life activities, including sitting and lying on a couch, walking on level ground,
standing while making a coffee, walking upstairs and downstairs (protocol in Table A1). Performance
of these activities was captured with a video camera at 25 frames per second and annotated by a trained
experimenter. Activities performed by the participants were annotated as lying, sitting, standing,
walking, walking down, walking up, and transitions. Transitions were defined as periods during
which the performed activity changed from lying to sitting, sitting to standing, standing to sitting
and/or sitting to lying. Triaxial acceleration data were recorded at 100 Hz by a smartphone (Samsung
Galaxy Nexus) placed in their right hand pants pocket.

2.2. Data Pre-Processing

2.2.1. Segmentation

The continuously-sampled sensor signals were segmented using a sliding window of 2 s
(i.e., 200 data points per segment) and an overlap of 1 s. Labels for each segment were assigned
following the majority rule when more than one activity presented in a window.

2.2.2. Training and Testing Sets

Because the algorithm developed in this study was expected to be able to cope with unknown
users, a user-independent system was created. Specifically, data from 5 participants (i.e., ~10%) were
randomly selected as the testing set, and the neural network was trained with data from the remaining
48 participants. The class distributions for the training and testing sets are listed in Table 1. The dataset
had a skewed class distribution, and the majority classes of walking, sitting, and standing were
overrepresented. This can be an issue, as models trained on an imbalanced dataset will tend to be
biased towards the majority classes [17] while the free-living protocol may not provide an accurate
reflection of their representation in daily life. To deal with the imbalanced dataset, a cost-sensitive
learning technique was introduced: each class was mapped to a proportional weight weighting the
loss function, and because the minority classes gained large weights, the importance of these classes
were increased when minimizing the loss [18].

Table 1. Class distributions for the training and testing sets.

Activity Training Set (N = 43) Testing Set (N = 5)

Segments
(2 s Each)

Percentage of
Total (%)

Segments
(2 s Each)

Percentage of
Total (%)

Lying 1576 5.0 243 4.9
Sitting 2007 26.7 1365 27.5

Standing 2480 18.0 755 15.2
Transition 1907 6.1 246 5.0
Walking 12,405 39.7 2158 43.5

Walking Down 681 2.2 90 1.8
Walking Up 748 2.4 100 2.0

2.3. Implementation

The neural networks developed in this study were coded in Python (version 3.7.6). PyCharm
(version 2019.3.5) [19] was used as the integrated development environment (IDE). Anaconda (version
4.8.3) [20] was set as the virtual environment for Python, and the packages installed for this study
were: Numpy (version 1.18.1), Pandas (version 1.0.1), Scikit-learn (version 0.22.1), Keras (version 2.3.1),
Tensorflow (version 2.1.0), Matplotlib (version 3.2.0). All analyses were carried out on a desktop with
an Intel i7-8550U CPU, and 8 GB RAM.
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2.3.1. Neural Networks

A 1D CNN, a multichannel 1D CNN, a CNN-LSTM hybrid model and a multichannel CNN-LSTM
model (Figure 1) were tested to investigate the best structure for processing data. In developing the
models, we omitted the pooling layer for a faster computation, as suggested in [21]. The “Conv1D” and
“Dense” layers represent the one-dimensional convolutional layer and the fully connected layer in Keras,
respectively (Figure 1). The neural networks are explained in more detail in the following sections.
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Figure 1. Structures of the neural networks: (a) 1D CNN, (b) CNN-LSTM, (c) multichannel CNN,
(d) multichannel CNN-LSTM. x, y, z represent the triaxial accelerometer data. Abbreviations: CNN,
convolutional neural network; LSTM, long short-term memory.

1D CNN

Since the 1D CNN in Keras requires a 3-dimensional input, data were shaped in a way that
can be described as: input shape = (samples, steps, features), where ‘samples’ represents the total
number of segments from all axes, ‘steps’ represents the sensor data at each timestamp in a segment,
and ‘features’ refers to the number of axes from all the sensors used in data collection.

To compute the model, one-hot encoding was performed to convert the activity labels into
dummy variables. The output of the last fully connected layer of the neural networks is the predicted
label in one-hot encoding form. The hyperparameters for this model are summarized in Table A2
(see Appendix A).

Multichannel CNN

For the multichannel CNN model, multiple parallel channels were designed to perform
convolutions on data from different axes individually. Referring to Section “1D CNN”, segments with
respect to each feature in the input shape were projected to separate channels and processed by kernels
with different sizes. Kernels with size of 3 and 5 were applied to the independent channels, in order to
extract features from local and global fields. After the convolutional layers, the extracted feature maps
for each channel were flattened and concatenated before being projected into the fully connected layer.
The hyperparameters of this model are listed in Table A3 (see Appendix A).
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CNN-LSTM Hybrid Model

The CNN-LSTM hybrid model processes input segments differently from the CNN models.
To allow the LSTM to learn temporal structures from a sequence, the segment input to the CNN
model was first broken into smaller sequences; the original segment (including 200 steps, which
corresponds to 2 s of data sampled at 100 Hz) was divided into 10 sub-sequences, and every
sub-sequence included 20 sub-steps. After the CNN extracts the local features from these sub-sequences,
the LSTM interprets these features and learns the temporal relations within the entire segment.
In the hybrid model, time distributed layers were used to warp the convolutional part of the
model, so that each of the sub-sequences would be processed separately by the same CNN
model with the same kernel weights. The shape of input for the first layer can be described as:
input shape = (samples, sub_sequence, sub_steps, features), where ‘sub_sequence’ represents the
number of pieces that a segment is broken into, and ‘sub_steps’ are the data points at each timestamp.
The hyperparameters of the hybrid model are shown in Table A4 (see Appendix A).

Multichannel CNN-LSTM Hybrid Model

The multichannel CNN-LSTM model processed sub-sequences from different axes in separate
channels. The input shape for this model was the same as described in Section “CNN-LSTM Hybrid
Model”. Feature maps were extracted from the sub-sequences by the CNN model warped in the time
distributed layers. The feature maps were subsequently flattened and projected to the LSTM layers in
each channel. The outputs from each channel were merged, and the labels were predicted at the last
fully connected layer. Table A5 (see Appendix A) lists the hyperparameters for this model.

2.3.2. Training Algorithms

Having the structures of the neural networks defined, the training process was implemented,
aiming to find a set of weights and biases that minimizes the loss during prediction. The training process
involved two algorithms: forward propagation and backward propagation. Forward propagation
processed the data from the first layer to the last layer. The principles and equations for forward
propagation in convolutional, LSTM, and fully connected layers can be found in [17,18,22].

Every time a batch of samples completed the forward propagation, the loss was calculated using
the predefined optimization and loss function to evaluate how far the predicted results were from
the expected results (i.e., the prediction error). Once the loss was determined, the gradients with
respect to every weight and bias were calculated backwards from the last layer to the first layer using
the backpropagation algorithm. The new weights and bias were updated through the optimization
algorithm in the opposite direction to the gradients, aiming to minimize the loss. The process of
propagating forward and backward were repeated until the training epoch reached the predefined
number (i.e., 30 epochs as all models converged before reaching this limit), representing the end of
training. All the models were trained and tested 10 times and averaged results are reported.

2.4. Evaluation

The classification performance of the classifiers was compared by calculating the overall
averaged accuracy and macro F1-score, in order to find the most accurate model. In addition,
since the computational efficiency is a key factor that affect the feasibility of real-time monitoring on
computationally limited platforms such as mobile applications [23–25], the computing performance of
these models was also taken into account. As suggested in [23,25] the network size (i.e., the number of
parameters of the neural networks) was measured as the criterion for consideration of installation on
devices with limited resources in memory, energy, and computational capacity. The averaged training
speed (i.e., the time it takes for each training epoch) and testing time were used to determine the
time complexity.
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3. Results

3.1. Classification and Computing Performance

The CNN-LSTM and multichannel CNN achieved a higher accuracy than the 1D CNN (74.0% and
75.5% vs. 73.4%, respectively; Table 2). When combining both multichannel and hybrid architectures
in our multichannel CNN-LSTM model, the overall accuracy and macro F1-score was the best at 77.4%
and 66.7%, respectively. Interestingly, the two hybrid models had a significantly smaller network size
with 100,507 trainable parameters for CNN-LSTM, and 153,487 for multichannel CNN-LSTM compared
to the CNN (443,619 trainable parameters) and multichannel CNN (568,279 trainable parameters),
while still yielding a better classification result.

Table 2. Classification and computing performance of the deep learning models (averaged results for
10 runs with standard deviation).

Model 1D CNN Multichannel
CNN CNN-LSTM Multichannel

CNN-LSTM

Trainable parameters 443,619 568,279 100,507 153,487
Training speed (s/epoch) 8.69 16.95 10.42 16.63

Testing time (s) 0.39 0.83 0.68 1.19
Accuracy (%) 73.4 (3.8) 75.5 (3.4) 74.0 (2.3) 77.4 (2.8)

Macro F1-score (%) 62.5 (2.3) 59.3 (2.2) 63.4 (2.3) 66.7 (3.1)

When focusing on computing time, however, the models with multichannel architecture were
trained at a slower speed compared to other models. As for the testing time, the multichannel
CNN-LSTM took 1.19 s to recognize all 4957 testing samples, which means that theoretically it could
classify 4165 samples per second; since each sample contain data for 2 s at 100 Hz, the model seems to
be sufficiently time efficient for real-time recognition, at least on the CPU used here.

Figure 2 summarizes the accuracy of each class predicted by these models. As we can see, among
all these classifiers, the multichannel CNN-LSTM performed approximately equally on each class.
Although larger weights were assigned to the minority classes to aid the training, walking up and
down were classified with a lower accuracy irrespective of the kind of classifier used. This is also
illustrated by the confusion matrices in Tables A6–A9 (see Appendix A), which illustrates that walking
up and down were mostly misclassified as level walking, with false negative rates of 28.8%, 36.30%,
25.5%, and 13.3% for walking up; and 37.0%, 55.6%, 19.7%, and 16.8% for walking down for the 1D
CNN, multichannel CNN, CNN-LSTM, and multichannel CNN-LSTM models, respectively. Sitting,
as one of the majority class, also had a lower classification accuracy with an average of 58.3% over
all the classifiers, and this activity was mostly confused with lying (see Tables A6–A9). The cause for
this observation may be that these two activities did not involve motion and cause the smartphone
in the pants pocket to have a similar sensor orientation, so it would be challenging to differentiate
them using acceleration data. In addition, since the lying activity was always followed by the sitting
activity (see Table A1 in Appendix A), the 200 data points in segments for lying might contain data for
sitting, confounding the features. This notion is strengthened by the fact that the other static activity,
standing, was assigned to a smaller weight but achieved a high accuracy (93.6% for 1D CNN, 88.5% for
multichannel CNN, 86.3% for CNN-LSTM, and 88.9% for multichannel CNN-LSTM). This is promising
because instead of standing quietly, participants actually performed daily-life tasks such as filling a
glass of water, washing their hands, etc., which involved bodily motions analogue to their habitual
performance in daily life.
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3.2. Tuned Model

Because priority was given to the classification result over the computational efficiency,
the multichannel CNN-LSTM was selected as the best option and tuned for a better classification
performance. As suggested in [26], batch normalization layers were added to each channel and were
placed after the flattening layer. After tuning the hyperparameters, the model achieved a higher overall
accuracy of 81.1% (standard deviation, SD 1.5) compared to 77.4% (SD 2.8) before tuning, and the
macro F1-score increased from 69.2% (SD 3.0) to 67.0% (SD 3.1). The confusion matrix of the tuned
multichannel CNN-LSTM is shown in Table 3. Similar to the untuned results, most confusion occurred
between lying and sitting, with false negative rates of 25.8% and 23.8%, respectively. In addition,
a proportion of walking up and walking down tended to be misclassified as walking (22.5% and 23.5%
for walking up and down respectively).

Table 3. Confusion matrix for the tuned multichannel CNN-LSTM (in percentage; darker blue indicates
higher values).

Predicted

Lying Sitting Standing Transition Walking Walking Down Walking Up

Actual

Lying 67.0 25.8 2.5 3.7 0.2 0.4 0.4
Sitting 23.8 70.7 3.4 1.8 0.2 0.1 0.0

Standing 0.1 3.7 88.4 0.9 6.3 0.5 0.2
Transition 1.9 5.4 6.1 78.2 4.9 1.6 2.0
Walking 0.0 0.0 5.6 1.2 88.7 2.6 2.0

Walking Down 0.0 0.0 3.7 5.0 23.5 65.7 2.0
Walking Up 0.0 0.0 0.7 5.7 22.5 2.5 68.7

In terms of the computing performance of the tuned model, the model size decreased from 153,487
trainable parameters before tuning to 137,887, but the training speed was slower (18.7 s after versus
16.5 s before tuning), and there was a slight increase in the testing time (from 1.2 to 1.3 s).

4. Discussion

This study evaluated the classification accuracy and computational efficiency of four deep learning
architectures in performing smartphone accelerometry-based activity recognition in older people.
It used data of a previous study [5] that compared the generalizability of machine learning algorithms
between younger and older people. Our classification results indicated that both multichannel and
hybrid architectures can improve the prediction performance of the baseline CNN. When combining
these two architectures, the hybrid architecture may be the dominant reason for the increased scores,
as the CNN-LSTM yielded higher macro F1-scores than the multichannel CNN. Therefore, it can be



Sensors 2020, 20, 7195 8 of 14

inferred that the hybrid model uses the advantages of both CNN and LSTM in terms of extracting
regional features within short time steps and temporal structure across a sequence. In addition,
since the network size of the hybrid models was lower, there is a smaller chance of overfitting [27],
which may have resulted in their higher generalizability to the validation dataset.

The multichannel architecture can generate great flexibility in designing hyperparameters. Firstly,
it allows the use of different kernel sizes for separate channels, and thus enabling the network to
capture both local and global patterns. Secondly, the number of kernels assigned to each channel can
be different, depending on how complex the signal pattern input to the channel is. Thirdly, for the
multichannel CNN-LSTM, the depth of the convolutional and LSTM layer can vary between channels,
considering the trade-off between accuracy and generalization ability. The computational cost of
the multichannel CNN was double that of the baseline CNN, with only a small improvement in
overall accuracy (73.4% to 75.5%). Therefore, when using the CNN algorithm alone, a multichannel
architecture may not be the best solution.

The developed multichannel CNN-LSTM algorithm was the most accurate approach, which
seems feasible for implementation for long-term monitoring in older people. It is a smartphone-based
algorithm that allows the smartphone to be set up in a way that is consistent with most people’s
habits [28] (i.e., being placed in a pants pocket), and to collect data unobtrusively. Future development
could consider recalibrating the reference frame of the IMU signals to the world to account for orientation
changes over time [29]. In order to minimize computational cost, which has been recognized as one
of the challenges in real-time activity recognition using deep learning algorithms [30], only the
accelerometer was applied for activity recognition. Although classifiers can perform better when
combining acceleration and gyroscope [9], additional sensors can drain battery life [31]. Despite these
restrictions, the model’s classification accuracy of 81.1% is comparable to the 82–93% accuracy reported
previously by studies that included more sensing modalities [6–9]. This is quite impressive given
that these studies did not always split their data on an individual level or used validation, and were
performed in considerably smaller sample sizes (i.e., 7–20 participants vs. our 53 participants).

While this study provides valuable insight into models for activity recognition in older people,
it however also has its limitations. The main limitation of this study was the hyperparameter setting.
When evaluating the four deep learning models, the batch size for each model were set to be the same,
as well as the number of training epochs, for the convenience of comparison. However, there is no
one-size-fits-all solution in the optimal selection of the hyperparameters, and since the hyperparameter
values have a significant effect on the performance of the classifiers [32], changing these values could
have led to different results. In addition, the computational cost depends on the device used for
implementation, and the cost may vary when using a different device. Further investigation is required
to understand how well the multichannel CNN-LSTM algorithm performs on smartphones in terms of
computational efficiency.

Another issue was related to the smartphone use and placement. Since the smartphone was
placed in the pants pocket, our results may not generalize to other sensor placements which could be
addressed in future studies. In addition, smartphones are used for more than activity tracking and may
not always be worn in one’s pocket. Future studies could consider development of an algorithm to
detect whether the phone is in use or worn in the pants pocket. Moreover, the pants pocket placement
may not be effective to capture upper body movements or arm movements, which are common during
daily activities such as cooking and vacuuming. As a result, equipping a sensor such as a smartwatch
on upper limbs may be essential for complex activities recognition. Future research should consider
regrouping activities and adding in additional sensors or devices such as smartwatches to improve
classification performance. For instance, the static activities that do not contribute to the accumulation
of the PA level, such as lying and sitting, may be grouped into the resting activity as proposed by
Khan et al. [33] for an improved performance. Furthermore, as indicated by Voicu et al. [34], walking
upstairs and downstairs are easily confused with levelled walking, therefore collecting more data
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with, e.g., barometric pressure sensors during these activities might enable the classifier to learn more
discriminative features.

Our trained algorithm is freely available for clinical and research applications (osf.io/47vx6);
however, generalizability needs to be established. With ageing, functional capacity declines [35] and
gait and balance disorders arise [36]. As a result, the model that is trained on data from a finite group
of participants may not suit a more heterogeneous group. We used data of 53 older people, which
was considerably more than the 1 to 23 of participants in previous studies [6–9]. In addition, our data
included both non-frail and frail participants. As reported by Del Rosario et al. [5], the generalizability
of the multichannel CNN-LSTM was assumed to be better than the algorithms that were trained on a
smaller data set. Another way to manage heterogeneity is to personalize the classifier. Personalized
activity recognition using transfer learning technique was proven to be valid by Tahavori et al. [37].
This technique achieved a high testing accuracy by using two training steps: a CNN was first pre-trained
on the training participants, and then the output layer was retrained with only three labelled samples
from the new participants. Because personalized activity recognition requires retraining the algorithm
for every user, it may be better to choose a robust algorithm with good generalizability for most of the
non-frail users, and implement the personalized technique for users who have abnormal gait and need
particular attention.

5. Conclusions

CNNs and LSTMs have been widely used in activity recognition in younger adults but their
performance in older people has been understudied. In order to implement activity recognition through
ubiquitous technologies such as smartphones and smartwatches in older and frailer population groups,
it is important that activity recognition can be tailored to achieve a more correct classification.
We compared the accuracy and computational efficiency of four different deep learning algorithms
for smartphone-based activity recognition in older people. User-independent models, including
a 1D CNN, a multichannel CNN, a CNN-LSTM, and a multichannel CNN-LSTM were built and
trained on an imbalanced dataset with a cost-sensitive learning technique. Based on the comparison,
the multichannel CNN-LSTM achieved the best classification result with an acceptable computational
cost. Therefore, it is feasible to use deep learning algorithms for activity recognition using smartphone
accelerometry data in older people, and the multichannel CNN-LSTM appears to be a good solution
weighting both accuracy and computational efficiency.
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Appendix A

Table A1. Data collection protocol for the free-living activities.

Task Description

1
In a room, stand in front of a couch, sit on the couch, lie down, and repeat in reverse; walk to a
window and look outside; sit on a chair; switch off a wall power outlet and turn off the light before
leaving the room.

2 Walk to the kitchen, fill a cup of water, take a sit at a table on one side, and drink the water; empty
the cup at the kitchen sink, and dry hands.

3
Walk to the elevator, and ride the elevator up to Level 2; walk along the hallway, stand and wait;
walk back the elevator, and ride the elevator up to Level 3; walk along the hallway, and take a sit
on a couch; walk back to elevator, and go down to the ground floor.

4
Walk to a short stairs, and walk upstairs; walk to a long stairs and walk upstairs; walk to a room
and take a sit on a chair; walk back to the long stairs and walk downstairs; walk to the short stairs
and walk downstairs.

5 Walk to an armchair and take a sit; walk to a couch in a room, lie down, and sit up.

Table A2. Hyperparameter values for the 1D CNN.

Hyperparameter Value

Architecture

Number of Conv1d layers 2
Number of kernels for each conv1d 35
Kernel size 3
Stride 1

Number of neurons
First dense layer 64
Second dense layer 7

Training

Optimization algorithm Adadelta
Learning rate 0.001
Batch size 128
Training epochs 30

Table A3. Hyperparameter values for the multichannel CNN.

Hyperparameter Value

Architecture

Number of Conv1d layers per channel 2

Number of kernels
Channel 1 32
Channel 2 20
Channel 3 20

Kernel size
Channel 1 3
Channel 2 3
Channel 3 5

Stride 1

Number of neurons
First dense layer 40

Second dense layer 7

Training

Optimisation algorithm Adadelta
Learning rate 0.001

Batch size 128
Training epoch 30
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Table A4. Hyperparameter values for the CNN-LSTM.

Hyperparameter Value

Architecture

Number of Conv1d layers 2
Number of kernels for each conv1d 35

Kernel size 3
Stride 1

Number of neurons
LSTM 40

Dense layer 7

Training

Optimization algorithm Adadelta
Learning rate 0.001

Batch size 128
Training epoch 30

Table A5. Hyperparameter values for the multichannel CNN-LSTM.

Hyperparameter Value

Architecture

Number of Conv1d layers per channel 2

Number of kernels
Channel 1 35
Channel 2 20
Channel 3 20

Kernel size
Channel 1 3
Channel 2 3
Channel 3 5

Stride 1

Neurons for LSTM
Channel 1 30
Channel 2 30
Channel 3 30

Training

Optimization algorithm Adadelta
Learning rate 0.001

Batch size 128
Epochs 30

Table A6. Confusion matrix for the 1D CNN (in percentages, averaged over 10 runs).

Predicted

Lying Sitting Standing Transition Walking Walking Down Walking Up

Actual

Lying 56.38 36.76 0.00 6.72 0.14 0.00 0.00
Sitting 27.61 50.34 17.91 3.82 0.23 0.02 0.06

Standing 0.00 0.57 93.60 0.73 5.01 0.07 0.02
Transition 2.51 6.30 8.88 74.05 5.76 1.49 1.02
Walking 0.00 0.22 11.12 2.06 84.80 1.15 0.65

Walking Down 0.00 1.48 7.96 2.04 37.04 44.44 7.04
Walking Up 0.00 0.00 4.17 8.33 28.83 4.00 54.67

Table A7. Confusion matrix for the multichannel CNN (in percentages, averaged over 10 runs).

Predicted

Lying Sitting Standing Transition Walking Walking Down Walking Up

Actual

Lying 64.49 29.05 0.78 4.86 0.12 0.37 0.33
Sitting 31.48 57.44 9.22 1.30 0.19 0.18 0.19

Standing 0.01 2.15 88.54 1.22 7.54 0.37 0.17
Transition 3.29 7.76 8.66 66.18 7.93 2.60 3.58
Walking 0.00 0.08 7.15 1.33 88.18 1.36 1.90

Walking Down 0.00 0.33 6.11 4.67 55.56 29.44 3.89
Walking Up 0.00 0.20 5.30 12.10 36.30 3.50 42.60
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Table A8. Confusion matrix for the CNN-LSTM (in percentages, averaged over 10 runs).

Predicted

Lying Sitting Standing Transition Walking Walking Down Walking Up

Actual

Lying 53.50 38.07 0.31 7.61 0.00 0.31 0.21
Sitting 27.62 52.75 16.15 3.17 0.15 0.11 0.05

Standing 0.00 0.43 86.32 7.52 5.50 0.20 0.03
Transition 1.52 2.34 4.88 85.67 2.95 0.61 2.03
Walking 0.00 0.07 4.77 6.53 84.43 1.67 2.53

Walking Down 0.00 0.83 2.50 6.11 19.72 66.67 4.17
Walking Up 0.00 0.00 2.25 9.25 25.50 0.75 62.25

Table A9. Confusion matrix for the multichannel CNN-LSTM (in percentages, averaged over 10 runs).

Predicted

Lying Sitting Standing Transition Walking Walking Down Walking Up

Actual

Lying 69.09 23.50 1.44 4.57 0.00 0.91 0.49
Sitting 33.45 59.14 5.19 1.74 0.11 0.35 0.02

Standing 0.40 3.05 88.91 0.98 5.06 0.77 0.83
Transition 2.85 3.94 4.55 82.24 2.20 2.32 1.91
Walking 0.00 0.00 6.69 1.28 86.00 2.58 3.45

Walking Down 0.00 0.11 2.67 8.33 16.78 70.11 2.00
Walking Up 0.00 0.00 1.40 10.10 13.30 6.80 68.40
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