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1. Abstract

In large genotyping datasets, individuals often have thousands of distant cousins with whom they

share detectable segments of DNA identically by descent (IBD). The ability to simulate these distant

relationships is important for developing and testing methods, carrying out power analyses, and

performing population genetic analyses. Because distant relatives are unlikely to share detectable

IBD segments by chance, many simulation replicates are needed to sample IBD between any given

pair of distant relatives. Exponentially more samples are needed to simulate observable segments of

IBD simultaneously among multiple pairs of distant relatives in a single pedigree. Using existing

pedigree simulation methods that do not condition on the event that IBD is observed among certain

pairs of relatives, the chances of sampling shared IBD patterns that reflect those observed in real

data ascertained from large genotyping datasets are vanishingly small, even for pedigrees of modest

size. Here, we show how to sample recombination breakpoints on a fixed pedigree while conditioning

on the event that specified pairs of individuals share at least one observed segment of IBD. The

resulting simulator makes it possible to sample genotypes and IBD segments on pedigrees that

reflect those ascertained from biobank scale data.

2. Introduction

Simulations of genetic transmission within fixed pedigrees are used for a many applications, such

as generating training or testing sets to support method development8,11,20,22,23, performing power

analyses4,5,16,21, studying biological phenomena or processes such as inbreeding12,17, and empirically

obtaining probability distributions that are used for relationship inference2,9.

Because the probability that two distant relatives share tracts of DNA identically by descent

(IBD) can be small, the probability of sampling observed tracts of IBD when simulating a pair of

distant relatives can also be small. For example, fourth cousins have only a fifty percent chance

of sharing a detectable segment of IBD9,26 while sixth cousins share detectable IBD segments less

than five percent of the time9,26, even when using realistic simulations that account for cross-over

interference and sex-specific genetic maps3. Moreover, the probability of sharing IBD decreases

exponentially quickly as the degree of the relationship increases6,9,26.
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When multiple distant relationships are considered simultaneously within a pedigree, the proba-

bility of sampling detectable IBD among all relative pairs can be very low. For example, given that

fourth cousins share detectable IBD less than half the time, the probability of sampling IBD in a pedi-

gree with just ten fourth degree relative pairs is less than 1/210 ≈ 10−4 if the pairs are approximately

mutually independent. For ten sixth cousins, the probability is less than 1/2010 ≈ 10−13.

Although the probability of IBD sharing through a particular pair of common ancestors is small,

individuals have many distant relatives with whom they share many common ancestors. Thus,

individuals in biobank-scale datasets typically have thousands of fourth and fifth cousins9 with whom

they share detectable amounts of IBD. The ability to simulate genetic transmission on pedigrees

relating subsets of such distant relatives is important for testing methods that aim to infer these

pedigrees11,20,23 or which use the IBD among distant relatives for downstream analyses8,19.

In pedigrees in which relatives are closely-related, one can use an existing simulation method

together with rejection sampling to obtain samples under the conditional distribution by rejecting

any sample in which the required individuals share no IBD. However, when relatives are distantly

related, rejection sampling becomes impractical because the fraction of rejected samples is close to

one. Therefore, it is necessary to simulate using a method that allows pedigree sampling conditional

on the event that particular pairs share IBD. Although many methods have been developed for

simulating meioses within a pedigree structure1,3–5,13,15,16,18,21,24,25, no existing method makes it

possible to condition on the event that two or more individuals share IBD.

Here, we show how to sample meioses and transmitted IBD among pairs of individuals and within

a pedigree, conditional on the event that two or more individuals share IBD with one another. We

then demonstrate the utility of this simulator for two downstream applications: pedigree inference

and the simulation of an individual together with their set of distant relatives.

3. Sampling conditional on any observed IBD

Suppose two individuals (i and j) are related through relationship R and suppose we know

that they share some nonzero, but unspecified, amount of IBD I. We may simply know that I is

greater than zero, or we may know that i and j share at least one segment longer than a minimum

observable length threshold τ . We want to simulate all recombination events on the ancestral path

connecting i and j, conditional on the event that I > 0 or conditional on the event that they share

at least one segment longer than τ . We then want to scale this up to sample meioses in a pedigree

in which arbitrary sets of individuals are known to share IBD with one another.

In this paper, we will use the notation of Ko and Nielsen 14 to specify a relationship R = (u, d, a)

between i and j, where u is the number of meioses “up” from i to their common ancestor(s) with

j and d is the number of meioses “down” from the common ancestor(s) to j. The number of

common ancestors is a, which is either 1 or 2 in an outbred pedigree. Although inbreeding is

common in many populations and although all human pedigrees contain loops when we consider

a sufficient number of generations in the past, we will focus on outbred pedigrees here because it

makes the bookkeeping simpler. The model can be extended to include consanguineous relationships

by including considerably more bookkeeping, but the method is also slower in the case of inbreeding

because of the need to sample larger groups of meioses at the same time to satisfy constraints.
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Figure 1. A pedigree of individuals (circles) with meioses between them (lines).
Nodes i and j are related through common ancestors x and y. The number of meioses
“up” from i to its common ancestors with j is u = 3. The number of meioses down
from the common ancestors to j is d = 2. The number of common ancestors is
a = |{x, y}| = 2. This yields the relationship R = (3, 2, 2) between i and j using the
notation of Ko and Nielsen 14 .

We want to sample all u meioses up from i to its first common ancestor with j and all d meioses

down from its first common ancestor to j (black meioses in Figure 1). If i and j have two common

ancestors (a = 2) then we must sample two additional meioses (orange meioses in Figure 1) leading

to their second shared common ancestor.

3.1. IBD propagation. In a pedigree, genetic material is passed only from ancestors to descendants.

However, in developing the sampling framework presented in this paper, it is useful to conceptualize

the transmission of tracts of IBD rather than genetic material itself. A tract of IBD is a contiguous

region along a single chromosome that is shared identically by descent between two individuals. For

example, in Figure 2, the blue regions depict the tracts of IBD shared between an individual and

each of their ancestors of various degrees.

Although genetic material is passed down through a pedigree, Figure 2 shows that one can

conceptualize IBD transmission as occurring upward. IBD transmission can occur either upward or

downward. One can also conceptualize IBD transmission as occurring both upward and downward,

for example between cousins.

3.2. The sampling approach. To sample conditional on the event that i and j share at least

one IBD segment of at least τ cM with one another, we make use of Gibbs sampling in which we

sequentially sample each meiosis in turn, conditional on all the other meioses. We first consider the

case of transmission for a single chromosome and then generalize to the whole genome.

For meiosis m, let b⃗m be the sorted list of recombination breakpoints among the two parental

haplotypes undergoing recombination for a particular chromosome and let hm ∈ {0, 1} be the

parental haplotype on which copying starts. In a diagram of the pedigree, we adopt the convention
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Position (cM)

Parent

Grandparent

Great Grandparent

2GG  (~120 ybp)

3GG  (~150 ybp)

4GG  (~180 ybp)

5GG  (~210 ybp)

6GG  (~240 ybp)

7GG  (~270 ybp)
8GG  (~300 ybp)

Figure 2. One unconditional simulation replicate showing the tracts of IBD trans-
mitted between relatives of various degrees. Each row shows the tracts of IBD (blue)
that are shared between an individual (not shown) and an ancestor along the full
linear genome. The bottom row shows that the individual shares exactly one copy of
their full linear genome (half their entire diploid genome) with a parent. The second
line from the bottom shows that they share approximately half their linear genome
(1/4 of their diploid genome) with a grandparent. Thin red lines show the regions
between recombination breakpoints that are shared between adjacent ancestors (e.g.,
between a 3rd great grandparent and a 4th great grandparent). NGG = N th Great
Grandparent. ybp = years before present, assuming 30 years per generation.

that hm = 0 corresponds to the haplotype of the “left” grandparent and hm = 1 corresponds to the

haplotype of the “right” grandparent. For example, in the meiosis between child c and parent p in

Figure 1, haplotype 0 in p is the one inherited from x, whereas haplotype 1 in p is the haplotype

inherited from y. In general, the lexicographically first parent label corresponds to the “left” parent.

Our approach is to use Gibbs sampling to sample the list [(h1, b⃗1), (h2, b⃗2), ... (hM , b⃗M )] of

all M = u + d + 2(a − 1) meioses between a pair of individuals by sampling each tuple (hm, b⃗m)

sequentially, one at a time, conditional on the breakpoints sampled at all other meioses.

For any given meiosis m, we use rejection sampling to sample (hm, b⃗m). We sample hm from

a Bernoulli random variable. We then sample the number nm = dim(⃗bm) of breakpoints from a

Poisson random variable with mean L/100 and we sample the positions of each of the nm breakpoints

uniformly on the interval [0, L], where L is the length of the chromosome in cM. This approach is

analogous to that of24 for the related problem of sampling breakpoints conditional on observed

genotype data; however, instead of sampling the descent graph locus-by-locus along the genome,

we sample all breakpoints at once and instead of conditioning on the exact observed genotypes (of

which there are generally none) we condition on the event that specified pairs of individuals share

IBD.
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Figure 3. IBD propagation in a meiosis. An example of the meiosis between child
node c and parent node p in Figure 1 is shown. The haplotype that c inherits from p
is shown, along with the “left” (x) and “right” (y) haplotypes in individual p. The
red region is the IBD tract that c shares with i and the blue regions are the tracts
that p shares with j. Arrows indicate the haplotype that c copies from. From left to
right, c begins copying on haplotype x of p (left-most arrow). It then switches to
haplotype y (second arrow) and then back to x (third arrow). In the region between
the vertical dashed lines a and b, individuals i and j both share IBD with haplotype
x of p. In the region between vertical lines b and c, individual i shares with haplotype
y and individual j shares with haplotype x. Between c and d, both i and j share
IBD with haplotype y.

We first initialize the Gibbs sampler by sampling exactly one instance of (hm, b⃗m) at each meiosis

m without conditioning on observed IBD. We then proceed one meiosis at a time through the

pedigree and we resample (hm, b⃗m) at each meiosis m conditional on the values (hm′ , b⃗m′) at all

other meioses m′. We sample (hm, b⃗m) conditionally on the other meioses by proposing samples

from the unconditional sampling distribution and rejecting proposals until we obtain a sample in

which segments transmitted from i overlap by at least τ cM with segments transmitted from j. Once

we achieve this result, we accept the proposed tuple (hm, b⃗m) and move on to sample (hm+1, b⃗m+1).

3.2.1. Acceptance rules when a segment can be transmitted. To illustrate the acceptance rule, a

single meiosis in shown in Figure 3. In this meiosis, a child haplotype c inherits from the two

haplotypes in parent p corresponding to parents x and y of p. We are interested in sampling the

starting haplotype h and the breakpoints b⃗ conditional on the event that some IBD is transmitted

between relatives i and j.

In Figure 3, the red region corresponds to genetic material in individual c that is shared with

relative i. The blue region corresponds to genetic material in parent p that is shared with individual

j. Note that i and j can share IBD with both haplotypes of p. A meiosis (h, b⃗) successfully transmits

IBD between i and j if the red segments in c overlap with the blue segments in p by at least τ cM

on a haplotype that is transmitted from p to c. These transmitted haplotypes are shown in purple

in Figure 3. When the minimum length of a purple segments in Figure 3B is greater than τ , we

accept the proposed tuple (h, b⃗).

A version of this sampling approach can also be used to sample from a genetic map. We discuss

the genetic map approach in Section 3.4 and we discuss how to use the genetic map approach to

sample from the full genome in Section 3.5.
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3.2.2. Acceptance rules when multiple meioses must be sampled together. In some cases, IBD between

two individuals can be propagated along two different paths in the pedigree. A common example of

this case is when two individuals share IBD through a pair of common ancestors. This scenario

shown in Figure 1, in which i and j can share IBD either along the path through common ancestor

x or common ancestor y, or through both.

In Figure 1, we cannot apply an acceptance criterion that requires IBD to be transmitted between

i and j separately to each of the meioses (p, x) and (p, y). If we did so, we would require IBD to be

transmitted along both paths, which is more restrictive than the criterion that IBD is transmitted

at all. In such a case we must jointly sample both meioses (p, x) and (p, y) and accept a proposed

sample as a success if either (p, x) or (p, y) is a success.

Moreover, it can dramatically increase the rate of acceptance if we jointly sample all meioses

(c, p), (p, x), (p, y), (z, x), (z, y), and (j, z), which ensures that IBD from i and j is passed to the

proper parental haplotypes in x and y. This kind of block Gibbs sampling is analogous to that

implemented by Tong and Thompson 24 for a similar problem. If we did not include c and j in

the sampling block, then we could accept meioses in which all segments from i are shared on the

haplotype of p that comes from y and all segments from j are shared on the haplotype of z that

comes from x. In such a case, we would not be able to sample meioses (p, x), (p, y), (z, x), and (z, y)

in which segments from i are shared with j through p and z.

In general, sampling is most efficient if we jointly sample all meiosis pairs that form a block in

which constraints must be simultaneously satisfied. Such blocks can be assembled by the following

rules:

(1) If meiosis (c, p) is in the block then all meioses involving full siblings of c must be in the

block.

(2) If meiosis (c, p) is in the block then all meioses between p and children of p must be in the

block.

More general forms of block sampling can be used to handle more complicated loops. In such

blocks, we jointly sample all meioses along all divergent paths in the loop. In principle, this would

allow us to sample from inbred pedigrees, although we do not investigate inbreeding here. The longer

the path, the more unlikely it is that IBD will be transmitted through it, making the simultaneous

sampling of multiple paths increasingly less practical as the paths become longer.

3.2.3. Acceptance rules when no segment can be transmitted. Note that in sampling meiosis (c, p)

between child c and parent p in Figure 1, the other meioses in the pedigree may have been sampled

in such a way that no segments from i have been propagated between i and c and/or no segments

from j have been propagated between p and j. In such a case, we must establish rules for accepting

or rejecting a proposed tuple (hm, b⃗m).

Rules for accepting proposed samples when IBD cannot be transmitted are helpful for propagating

IBD through the pedigree before we have reached a valid state in which IBD is shared among all

pairs who must share IBD. These rules help us to arrive more quickly at a valid state.

When it is not possible to transmit any segment of at least τ cM we can still accept a tuple

(hm, b⃗m) under the following conditions:
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(1) No segments are available either above or below to transmit; so transmission is impossible.

(2) At least one IBD segment longer than τ cM is available from below to transmit and at least

one IBD segment longer than τ cM is transmitted up.

(3) At least one IBD segment longer than τ cM is available from above to transmit and at least

one IBD segment longer than τ cM is transmitted down.

(4) At least one IBD segment longer than τ cM is available both above and below to transmit

and at least one IBD segment longer than τ cM is transmitted both down and up.

This rule for accepting proposed samples when it is not possible to fully transmit a segment

longer than τ cM has the purpose of speeding up the transmission of IBD through the pedigree

until all required IBD constraints have been transmitted. Once IBD has been transmitted among all

IBD-sharing pairs, we can begin to accept proposed samples (hm, b⃗m) under the correct condition

that at least one segment longer than τ cM is propagated.

In general, when sampling sets of meioses together, rather than one at a time, we apply the above

criteria to the “receiving’ and “transmitting” nodes in the group, rather than the child and parent

nodes. For instance, if our group consists of nodes p, x, y and z in Figure 1, then node z is the

node in the group that “transmits” segments from j and node p is the node that “receives” these

segments and passes them on to i. Thus, we require the following to be true in order to accept a

sample jointly from (p, x), (p, y), (z, x) and (z, y):

(1) If nodes i and p share at least one IBD segment longer than τ cM, then at least one IBD

segment longer than τ cM must be transmitted to z (for propagation efficiency).

(2) If nodes j and z share at least one IBD segment longer than τ cM, then at least one IBD

segment longer than τ cM must be transmitted to p (for propagation efficiency).

(3) If nodes i and p share at least one IBD segment longer than τ cM and if j and z share at

least one IBD segment longer than τ cM and if at least one IBD segment longer than τ cM

overlaps between these segments on a meiosis path (black or orange in 1), then at least one

IBD segment of length τ cM of this overlap must be transmitted. Note that this criterion

requires the overlap to occur on a feasible meiosis path (black or orange in Figure 1). If a

segment in z physically overlaps a segment in p, but on opposite parental haplotypes, then

the transmission is impossible and we must accept the proposed sample.

3.3. Data structures. In order to establish constraints on each meiosis, we set up and update

several data structures. The first data structure, ibd dict, records the segments propagated at

each sampling step between each genotyped node in the pedigree and each haplotype of each

other node in the pedigree. This dictionary is updated at each sampling step. Another data

structure, constraint dict records the pairs of genotyped IDs that must transmit IBD through

each haplotype of each other node in the pedigree, along with the direction of the transmission; for

example, the dict specifies that IBD is passed from node i to node j “up” through haplotype 0 of

node n. This dictionary is established before sampling begins and does not change.

Another two dictionaries, start hap dict and bpt pos list dict, store the starting haplotypes

and breakpoint positions in each meiosis. These dictionaries are updated on each sampling step.

Finally, the pedigree structure itself is stored in a dictionary, up dict of the form {c : {p1, p2}, ...}
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mapping each child node c to zero, one or two parent nodes. It is also convenient to store the reverse

(down dict) of up dict mapping parents to their child nodes.

3.4. Sampling with a genetic map. Let [(fi, gi)]
N
i=1 denote a genetic map from physical positions

(denoted fi since we used p for parents) to genetic positions gi. The values fi are strictly increasing

in i and the map from f to g is monotonically non-decreasing. To sample from such a map, we note

that the genetic distance from fi to fi+1 is gi+1−gi. Therefore, we sample the number of breakpoints

in the region (fi, fi+1) from a Poisson distribution with mean (gi+1− gi)/100. The positions of these

breakpoints in the region are then uniformly distributed over the interval (fi, fi+1). We sequentially

sample in each region from left to right along the chromosome. The starting haplotype is sampled

according to a Bernoulli distribution as usual.

3.5. Sampling a full genome with any transmitted IBD. Sampling a full genome is more

complicated than sampling each chromosome independently because some IBD is guaranteed to

be transmitted using our method. Thus, applying it to each chromosome separately would yield

IBD on each chromosome. A simple work-around to this problem is to sample from the whole

genome all at once by modeling it as a single, long chromosome amounting to all chromosomes

concatenated end-to-end with gaps between them. Over this long chromosome, we apply a mask to

ignore sampled breakpoints within the regions between chromosomes. We also set up our genetic

map so that the gaps between chromosomes correspond to long genetic distances, thereby allowing

essentially free recombination in these regions (Figure 4).

Another more efficient approach is to sample all chromosomes at the same time in a meiosis

(i.e., without concatenating and masking) and accept a set of proposed breakpoints if at least one

IBD segment of at least τ cM is transmitted in the full genome. This approach has the advantage

that we do not need to sample segments within masked regions. Ultimately, either approach is

efficient since we ignore masked segments. We present masking here because it is useful for ignoring

chromosomal regions, such as those with high levels of background IBD or “pile-up.”

3.6. Comparison with rejection sampling. To check that the conditional sampler is producing

the correct distribution, we compared it with simple rejection sampling for scenarios in which

rejection sampling was computationally tractable. Figure 5 shows a comparison between the

Gibbs conditional sampler (orange) and the simple rejection sampler (blue) for several different

relationships. The simulations are based on one chromosome of length 100 cM. Each panel shows a

histogram based on 1,000 samples. For each sample, the Gibbs sampler made 10 passes, sampling

each group of meioses ten times. The event on which we conditioned was τ > 0 cM: i.e., that any

IBD was transmitted between the two relatives.

Figure 5 shows that the conditional Gibbs sampler produces the same segment count and length

distributions as the simple rejection sampler, but that the relative number of Gibbs replicates

becomes increasingly small relative to the number of simple rejection replicates as the degree of the

relationship becomes larger. From Figure 6, it can be seen that the overall timing for the Gibbs

sampler stays manageable even beyond 30 generations in the past, at which point the probability of

observing IBD between two genealogical relatives becomes low.
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Figure 4. Masking. In the figure, two chromosomes, each of physical length 100MB
and genetic length 100CM are sampled by simulating one long chromosome comprised
of the two chromosomes concatenated together with a gap between them (region
shaded by the grey rectangle). We ignore all segments and transmissions in the gap
and only accept transmissions that occur outside of it. Regardless of the physical
length of the gap, the genetic length of the gap can be set to a large number to
approximate free recombination between the two chromosomes. In the figure, the
gap is 1Mb long in physical coordinates, but 1,000 cM long in genetic coordinates.
The approach can be extended to arbitrarily many chromosomes with the caveat
that sampling in the masked regions requires compute time.
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Figure 5. Comparison of the simple rejection sampler with the Gibbs sampler
for different relationships R = (u, d, a). 1,000 replicates of each relationship were
sampled using each method. Both samplers conditioned on the event that τ > 0 cM
of IBD was transmitted between the two relatives.
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Figure 6. Timing of the simple rejection sampler compared with timing of the
Gibbs sampler. Simulations were performed on a pair of nth full cousins whose
common ancestors lived g generations in the past. Each datapoint is the mean time
over 100 replicates and error bars show one standard deviation above and below the
mean. Simulations were performed only for g ≤ 13 for the simple rejection sampler,
after which point rejection sampling became difficult.

Although the number of required replicates is higher for the Gibbs sampler when the degree of

the relationship is small, it quickly becomes small relative to the number of replicates required for

full rejection sampling. The relative computation time of the two samplers is shown in Figure 6.

3.6.1. Sampling on a pedigree. The Gibbs conditional sampling approach becomes especially useful

when there is more than one pair of relatives who must share IBD with one another. In this case,

the probability that all constrained pairs share IBD at once can become exceedingly small, making

simple rejection sampling impractical even for small pedigrees.

Figure 7 shows a comparison of the simple rejection sampler and the Gibbs conditional sampler

for the pedigree structure in Figure 7A. In contrast with the analysis shown in Figure 5, we now

condition on the much more restrictive event that three different pairs of genotyped individuals

share IBD with one another. Specifically, we condition on the event that i shares IBD with j, j

with k, and i with k.

Figure 7C shows a comparison of the distributions of segment counts and lengths for individuals i

and j. This is easier to visualize than the full joint distribution of segments shared between all pairs

of genotyped nodes i, j and k. By comparing the segment count distribution for the relationship

R = (2, 2, 2) in Figure 7C with the count distribution for this relationship in Figure 5, it can be
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Figure 7. Comparison of rejection sampler and Gibbs sampler for a pedigree with
multiple constrained pairs. (A) Pedigree structure. Individuals i, j and k are related
such that i and j share two common ancestors and k shares a single common ancestor
with each of i and j. (B) Timing for the rejection and Gibbs samplers for different
values of u, u′, and d. In each pedigree, we constrained u′ = 2 and u = d = g and
we varied g from 1 to 10. (C) Comparison of the rejection and Gibbs sampling
distributions. Two statistics, the number of segments and segment lengths, are shown
between i and j for relationship types R = (2, 2, 2) (first cousins) and R = (5, 5, 2)
(fourth cousins).

seen that these are not the same distributions due to the additional constraint that i and j must

share IBD with k as well as with one another.

By comparing Figure 7B with Figure 6, it can be seen that including the additional requirement

that IBD is shared with a third individual increases the computational time of both the simple

rejection sampler and the Gibbs conditional sampler, but that it affects the simple rejection sampler

much more than the conditional sampler. In particular, the Gibbs sampler becomes computationally

more efficient than the simple rejection sampler when the common ancestors are around g = 4

generations in the past, compared with g = 7 generations in the past for the two-relative case shown

in Figure 6. In the more highly constrained case of a three-person pedigree, the simple rejection

sampler becomes unwieldy by g = 7 generations in the past, compared to g = 13 generations in

the two-person case. In contrast to the rejection sampler, the Gibbs sampler can be used for quite

distant relationships.

Although one can run rejection simulations in parallel, the expected amount of shared IBD

decreases exponentially with each degree of separation between two IBD-sharing individuals or with

the addition of IBD-sharing pairs. As a result, one cannot simply run jobs in parallel to overcome

the computational slowness of rejection sampling. For instance, the probability that two individuals

share any IBD when they are separated through a single common ancestor who lived 15 generations
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Figure 8. Comparison of the unconditional and conditional sampling distributions.
(A) Mean total IBD as a function of degree between two individuals connected
through a single common ancestor. (B) A simple method of moments estimator of
degree applied to the total amount of IBD between relatives of different degrees.

in the past is approximately 5× 10−7 and when the ancestor existed 20 generations in the past this

probability10 is approximately 6× 10−10.

Adding in additional constrained pairs quickly makes the problem completely intractable. For

instance, the lineage extending upward from 1 to 16 via nodes −2 and −5 in Figure 9 is nearly

independent of the lineage extending upward from nodes 1 to 10 through nodes −2 and −4. If we

wish to jointly sample IBD sharing among nodes 1 and 16 and 1 and 10, we would need to satisfy

these two nearly independent constraints, each of which has a probability10 of approximately 10−3.

From this, we see that the sampling problem quickly becomes computationally challenging after the

addition of a few IBD-sharing pairs.

4. Applications

4.1. Simulating IBD-sharing distributions for relationship inference. The conditional

sampler described in Section 3 is essential for simulating IBD between distant relatives who are

known to share some amount of IBD. An immediate application of this sampler is simulating

IBD sharing distributions that can be used in relationship estimators. As we have noted, the

unconditional distributions that are currently used for this purpose are inappropriate because they

do not account for the fact that putative relatives are generally ascertained on the basis of IBD

sharing with one another.

For relationships of increasingly distant degree, Figure 8A shows the mean total IBD between two

relatives separated by various degrees. The mean IBD from the unconditional distribution is shown

in blue. The IBD from the conditional distribution (requiring τ > 0) is shown in orange. From

Figure 8A, it can be seen that the two means begin to diverge when relationships are approximately

8 degrees (approximately third cousins). For relationships ten degrees and greater (approximately

fourth cousins) the distributions have largely diverged. The unconditional mean total IBD goes to
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zero quickly and cannot be shown on the log-scale plot in Figure 8A for degrees above approximately

20.

The discrepancy between the conditional and unconditional distributions has major implications

for relationship inference. Figure 8B shows degree estimates from a very simple method of moments

estimator. The estimator takes the total IBD observed for a pair of individuals and finds the degree

for which the expected total length of IBD most closely matches the observed total IBD. This kind

of estimator is similar to those used by several direct-to-consumer genetic testing companies and bias

engendered by employing the unconditional distribution is found in all currently-used relationship

estimators.

Figure 8B shows that the estimator based on the unconditional distribution is heavily biased and

reaches an asymptote near ten degrees. This explains the fact that the most distant relationships

inferred by existing estimators are around ten degrees. In contrast, the unconditional estimator

makes it possible to infer much greater degrees of relationship, although the moment estimator

is still biased. The implication of Figure 8 is that one must use conditional sampling to obtain

empirical distributions that are used for relationship inference in the usual case in which putative

relatives are ascertained on the basis of IBD sharing.

4.2. Simulating the pedigrees of today. In datasets that contain many genotyped or sequenced

individuals like the UK Biobank7 and direct-to-consumer genetic testing databases2,9, genealogical

relationships can be detected that extend tens of generations into the past.

There is a strong need to be able to simulate data for these kinds of pedigrees in order to support

the development of new algorithms. The conditional sampler presented in this paper makes it

possible to simulate IBD between an individual and a set of distant relatives.

Figure 9 shows one such pedigree, including an individual and twenty of their distant relatives,

each separated from the focal individual by 20 degrees of relatedness. This pedigree was simulated

in under a minute using the conditional sampler. A single lineage of this pedigree would require an

average of 103 replicates to achieve an acceptance from the rejection sampler and all 20 lineages

together would require approximately 1060 replicates, rendering the simulation effectively impossible

using existing simulation methods.

5. Discussion

Methods like the one presented here are necessary in order to simulate the kinds of pedigrees

that appear in large genotyping datasets. As these databases increase in size, simulation methods

will need to handle increasingly large and dense pedigrees.

Several aspects of the existing simulator can be improved in order to decrease the runtime. In

particular, we have been somewhat cavalier about the rejection sampler that is still employed to

sample each meiosis in the Gibbs sampler. This rejection sampler does not take into account the

regions in which sampled breakpoints must or must not occur and therefore it can be fairly wasteful.

For example, in the pedigree in Figure 9, we might find that the tract transmitted from node 6 (the

node to the immediate left of node 1) is in close proximity to the tract transmitted from node 16

(the node to the immediate right of node 1). Since these tracts must lie on opposite haplotypes

in ancestor −5 of node 1 (though potentially near each other on the same chromosome), we must
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Figure 9. An example of a pedigree containing an individual and twenty of their
distant relatives that can be simulated using the conditional sampler. Each individual
is denoted by a disc and each line represents a parent-child connection between two
individuals. Genotyped nodes are indicated with positive numbers and ungenotyped
nodees are indicated with negative numbers. In this topology, a focal individual (1)
is connected to their distant relatives, each through a single common ancestor who
lived ten generations in the past.

achieve a recombination event between them. If the distance δ between these tracts is small, the

probability of obtaining a recombination event in this region will be small. In order to speed up

sampling, we can constrain the locations in which breakpoints must or must not occur.

The existing sampler makes it possible to simulate from genetic maps including sex-specific genetic

maps. However, it is important to account for additional phenomena like cross-over interference3.

Future versions of this sampling method will be updated to include cross-over interference.

Using IBD sharing statistics simulated with this approach, it is possible to replace the biased

distributions that are still used for relationship inference with distributions that are appropriate

for the inference problem. Doing so has a considerable effect on the distant relationships inferred

in large genotyping databases, moving them from five or six generations in the past to fifteen or

twenty generations in the past or more. The variance in these estimates also increases substantially,

reflecting true underlying uncertainty.
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