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Background:Due to lack of annotated pathological images, transfer learning has been the predominant approach in the
field of digital pathology. Pre-trained neural networks based on ImageNet database are often used to extract “off-the-
shelf” features, achieving great success in predicting tissue types, molecular features, and clinical outcomes, etc. We
hypothesize that fine-tuning the pre-trained models using histopathological images could further improve feature ex-
traction, and downstream prediction performance.
Methods: We used 100 000 annotated H&E image patches for colorectal cancer (CRC) to fine-tune a pre-trained
Xception model via a 2-step approach. The features extracted from fine-tuned Xception (FTX-2048) model and
Image-pretrained (IMGNET-2048) model were compared through: (1) tissue classification for H&E images from
CRC, same image type that was used for fine-tuning; (2) prediction of immune-related gene expression, and
(3) gene mutations for lung adenocarcinoma (LUAD). Five-fold cross validation was used for model performance eval-
uation. Each experiment was repeated 50 times.
Findings: The extracted features from the fine-tuned FTX-2048 exhibited significantly higher accuracy (98.4%) for
predicting tissue types of CRC compared to the “off-the-shelf” features directly from Xception based on ImageNet da-
tabase (96.4%) (P value=2.2×10−6). Particularly, FTX-2048markedly improved the accuracy for stroma from87%
to 94%. Similarly, features from FTX-2048 boosted the prediction of transcriptomic expression of immune-related
genes in LUAD. For the genes that had significant relationships with image features (P < 0.05, n = 171), the features
from thefine-tunedmodel improved the prediction for themajority of the genes (139; 81%). In addition, features from
FTX-2048 improved prediction of mutation for 5 out of 9 most frequently mutated genes (STK11, TP53, LRP1B, NF1,
and FAT1) in LUAD.
Conclusions:Weproved the concept that fine-tuning the pretrained ImageNet neural networks with histopathology im-
ages can produce higher quality features and better prediction performance for not only the same-cancer tissue classi-
fication where similar images from the same cancer are used for fine-tuning, but also cross-cancer prediction for gene
expression and mutation at patient level.
Introduction

Recent advancements of artificial intelligence and deep learning algo-
rithms have greatly improved the current pathological workflows, such as
tissue classification, and disease grading, etc.1,2 These computer vision al-
gorithms are usually based on convolutional neural networks (CNNs),
which has also been successfully applied for tumor detection, prediction
of histological subtypes, genomic mutations, transcriptomic expression,
molecular subtyping, and patient prognosis.1,3–15

Deep learning computer vision models often rely on a large number of
annotated images.16 Unfortunately, until now, databases with annotated
pathological images are still very limited. Therefore, transfer learning has
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been the predominant approach in the field of digital pathology. Particu-
larly, use of “off-the-shelf” features directly extracted from the layer just
prior to the final layer of pre-trained networks based on large-scale
ImageNet database has been a popular approach to pre-processing the im-
ages for downstream prediction exercises.17–19 It is worth to point out
that even though the ImageNet models are not trained on pathological im-
ages, the current workflow (i.e., prediction using features extracted with
pre-trained ImageNet models) generally provides a satisfactory perfor-
mance and has been shown to outperform training the sameneural network
architecture from scratch using limited histopathological images.12,20,21

Another transfer learning approach is to fine-tune the middle layers of
these pre-trained ImageNet neural networkswith histopathological images.
22
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Fig. 1. (a) Flow chart of fine-tuning the Xception model. (b) The first experiment: comparison of IMGNET-2048 and FTX-2048 for tissue classification in colorectal cancer.
(c) The second and third experiments: comparison of IMGNET-2048 and FTX-2048 for prediction of mRNA expression and gene mutations in lung cancer. IMGNET-2048:
features extracted from the original Xception model based on ImageNet; FTX-2048: features extracted from the fine-tuned Xception model.
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So far, very few fine-tuned models have been developed for digital pathol-
ogy tasks; all focused on strongly supervised image classifications. Khan
et al. fine-tuned an ImageNet-based model using breast histopathology
images.22 It was demonstrated that the fine-tuned model outperformed
the transfer learning from ImageNet database and improved the detection
2

of prostate cancer. In addition, a stepwise fine-tuning schemewas proposed
for boosting the classification of gastric pathology image classification.23

Most recently, Ahmed et al.24 showed that fine-tuning improved the accu-
racy of Inception-V3 and VGG-16 networks on pathological images.
Riasatian et al. proposed that training a deep network by a variety of



Fig. 1 (continued).
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tumor types will provide better image features.25 Ren et al. proposed that
unsupervised domain adaptation can improve the performance of the clas-
sification task.26 Fagerblom et al. proposed a meta-learning that could be
applied to the digital pathology.27 Finally, Dahaene et al. proposed self-
supervision to improve the prediction on weakly supervised tasks.28

We hypothesize that fine-tuning the middle layers of pre-trained
ImageNet models using histopathological images could improve feature ex-
traction, and consequently the performance of the downstream prediction
tasks, e.g., not only simple tasks like strongly supervised image classifications
where pathologists’ annotations are available, but also for more complex
tasks such as prediction of other important clinical outcomes or molecular
features (e.g., patient survival, transcriptomic expression, genomic alter-
ations, etc.) at patient level where there is no prior knowledge regarding
which regions of tissue and its appearance are predictive. So far, no fine-
tuned neural networks aremade available in the public domain as feature ex-
tractors.

In thiswork,we aimed to prove the concept thatfine-tuning the ImageNet-
based neural networks with histopathological images can improve the quality
of extracted features anddownstreampredictions.Weused100000annotated
H&E image patches for colorectal cancer (CRC) to fine-tune a pre-trained
Xception model. The image features produced by the fine-tuned Xception
model have at least 2 advantages. First, they boosted the performance of
3

strongly supervised tissue classification of CRC histological images. Second,
they improved the performances of weakly supervised prediction tasks on
across-cancer types (i.e., predictions of transcriptomicmRNAexpression levels
and genomicmutations in lung cancer patients).1,29 The developed fine-tuned
feature extractors for pathological images are available at https://github.com/
1996lixingyu1996/Transfer_learning_Xception_pathology.

Material and methods

Datasets

The NCT-CRC dataset consists of 2 sub-datasets from colorectal cancer
(CRC) patients, NCT-CRC-100k and NCT-CRC-7k. In total, 107 000 images
(sized 224 × 224) are available and labelled with 1 of 9 classes
(e.g., adipose (ADI), background (BACK), debris (DEB), lymphocytes
(LYM), mucus (MUC), smooth muscle (MUS), normal colon mucosa
(NORM), cancer-associated stroma (STR), and colorectal adenocarcinoma
epithelium (TUM)). The NCT-CRC-100k dataset (100 000 images) were
used to fine-tune the pre-trained Xception model based on ImageNet,
while NCT-CRC-7k (7180 images) was used to independently test the per-
formance of the features extracted from the fine-tuned model and the
pretrained ImageNet model for prediction of the tissue classification.30–37

https://github.com/1996lixingyu1996/Transfer_learning_Xception_pathology
https://github.com/1996lixingyu1996/Transfer_learning_Xception_pathology


Fig. 2.Comparison of overall accuracy for tissue classification in colorectal cancer between IMGNET-2048 and FTX-2048. IMGNET-2048: features extracted from the original
Xception model based on ImageNet; FTX-2048: features extracted from the fine-tuned Xception model.
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The TCGA LUAD dataset included frozen whole slide images (WSIs) for
patients with lung adenocarcinoma. After deleting the pathological images
with very small contents and erroneous contents, the data contained a total
of 344 different patients, with a total of 900 pathological images. The
mRNA-expression data for TCGA LUADwere downloaded using the R pack-
age TCGAbiolink,while themutation datawere downloaded using the GDC
Data Transfer Tool.38,39
Fig. 3. Comparison of accuracy for classification of different tissue types in colorectal ca
Xception model based on ImageNet. FTX-2048: features extracted from fine-tuned Xcep

4

Fine-tuning the pre-trained ImageNet model

The fine-tuning training process included 2 steps (Fig. 1a). Thefirst step
was to train an add-onmodule at a relatively big learning rate. We replaced
thefinal classification layer of the original Xceptionmodel (1000 classes) with
a 9-class classification layer for the 9 different tissue types for CRC, and added
a fully connected layer after the original Xception GlobalAveragePooling layer
ncer between IMGNET-2048 and FTX-2048. IMGNET-2048: features extracted from
tion model.



Fig. 4. Difference in correlation (observed vs. predicted mRNA-expressions for immune-related genes) between FTX-2048 and IMGNET-2048. IMGNET-2048: features
extracted from Xception model based on ImageNet. FTX-2048: features extracted from fine-tuned Xception model.
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(before the 9-classification layer; referred to as Add-onModule Part B thereaf-
ter). The layer before the GlobalAveragePooling is referred as Part A (pre-
trained on ImageNet). These 2 layers were used to incorporate histopatholo-
gical images (colorectal cancer images) into the ImageNet model which was
not trained using pathological images. With the new, pathological images,
the fine-tuned model may be better equipped to handle similar medical
images, facilitating extracting features with higher quality. We first
fixed Part A with the parameters pre-trained on the ImageNet dataset
and trained the add-on module Part B (2 fully connected layers with
Fig. 5. Correlation between observed and predicted mRNA-expressions for selected imm
and SH2D1A) for FTX-2048 and IMGNET-2048. IMGNET-2048: features extracted from
Xception model.

5

2048 neurons, a ReLU activation layer, and 9-neuron classifier layer)
with an Adam optimizer at a learning rate of 4 × 10−4 (20 iterations;
batch size = 128).

The second step was to adjust the pre-trained module at a smaller
learning rate. We fixed part B, which was trained during Step 1, and
fine-tuned Part A using the Adam optimizer at a learning rate of
5 × 10−5 (10 iterations; batch size = 128). We extracted the 2048 neu-
rons from the final layer of Part B of the fine-tuned Xception model as
the features (FTX-2048).
une-related genes (CD274, CD3G, TNFRSF9, FGF7, CYTIP, RAC2, RHBDF2, CD53,
Xception model based on ImageNet. FTX-2048: features extracted from fine-tuned
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For feature extraction using the pretrained Xception model (IMGNET-
2048), we replaced the last fully connected layer in the original model
with a fully connected layer with 2048 neurons, a linear rectification acti-
vation function (ReLU), and a fully connected classification layer at the
top. Categorical crossentropy was chosen as the loss function.
Comparison of features from pre-trained and fine-tuned models

We used the features extracted from fine-tuned Xception (FTX-2048)
model, and Image-pretrained (IMGNET-2048) model and self-supervision
model MoCo v2 to compare the 3 feature extractors for 2 different experi-
ments with 5-fold cross validation (Fig. 1b–c). Each experiment was re-
peated 50 times.

The first experiment was to predict tissue types using the fine-tuning
process with similar data and images, i.e., annotated images from CRC-
HE-7K for CRC. We extracted features from the CRC-HE-7K with 2 feature
extractors, FTX-2048 and IMGNET-2048. We used a multi-class classifier
constructed using linear support vector classifiers to compare 2 feature ex-
tractors.

The second experiment was to predict patient-level transcriptomic ex-
pression for immune-related genes of LUAD, a tumor type different from
CRC. The TCGA-LUAD whole slide images were divided into small tiles.
The tiles were then standardized to 0.25 mpp and color normalized with
Macenko’s method.40 FTX-2048 and IMGNET-2048 were then used to ex-
tract 2048 features from each image tile. The features of all tiles from a pa-
tient were averaged to produce a final representation of 2048 features for
that patient. Gene expressions values were log transformed before model-
ing. Support vector regression ðSVR) implemented in the R package
e1071 was used to model and predict the log RNA-expression.
Fig. 6. Comparison of area under the curve (AUC) for prediction of mutation of nine fr
2048: features extracted from Xception model based on ImageNet. FTX-2048: features e
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The third experiment was to predict cross-cancer patient-level genemu-
tations in LUAD. FTX-2048 and IMGNET-2048 were used to extract 2048
features from image tiles as in the second experiment. The featureswere av-
eraged over different tiles of a patient. Least absolute shrinkage and selec-
tion operator (LASSO) implemented in the R package glmnet was used for
model fitting and prediction for gene mutations at patient level.
Results

Classification of tissue types in CRC

We compared FTX-2048 with IMGNET-2048 in terms of prediction of
tissue type for CRC where similar images were used for fine-tuning. Fig. 2
clearly demonstrates the superiority of the features extracted from the
fine-tuned Xception model (FTX-2048). Overall, the extracted features
with fine-tuned Xception (FTX-2048) exhibited a significantly higher accu-
racy (98.4%) compared to the “off-the-shelf” features extracted using the
original Xception based on ImageNet database (IMGNET-2048) (96.4%,
P value = 2.2 × 10−6). Prediction of stroma tissue has been a challenge
for the pretrained ImageNet models.1 In our present experiment,
IMGNET-2048 produced a suboptimal performance for stroma tissue, and
the accuracy was only approximately 87% (Fig. 3), whereas FTX-2048 re-
markably improved the accuracy to 94%. Substantial improvement was
also observed for the prediction of muscle (98% by FTX-2048 vs. 94% by
IMGNET-2048), tumor (99% by FTX-2048 vs. 97% by IMGNET-2048),
and normal tissue (99% by FTX-2048 vs. 97% by IMGNET-2048). Evident
improvement of accuracy was seen for mucin and lymphocytes as well.
Both FTX-2048 and IMGNET-2048 had accuracies close to 100% for adi-
pose, debris, and background.
equently mutated genes in LUAD between IMGNET-2048 and FTX-2048. IMGNET-
xtracted from fine-tuned Xception model.
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Prediction of mRNA expression in LUAD

Thefine-tuned Xceptionmodel trainedwith CRCH&E images was used to
extract image features for another cancer type, i.e., LUAD from TCGA, to pre-
dict mRNA expression at patient level. We applied FTX-2048 and IMGNET-
2048 to randomly selected 907 immune-related genes from InnateDB’s
gene list. As expected, the features from FTX-2048 also outperformed
the “off-the-shelf” features from IMGNET-2048 (Fig. 4). A t test sug-
gested that the correlations between mRNA expression and FTX-2048
features were significantly higher than those obtained using IMGNET-
2048 features (P < 1 × 10−5). Fig. 5 shows examples where FTX-
2048 provided a better prediction for some well-known immune genes
such as CD274 (PDL1), CD3G (CD3 T cell), and TNFRSF9 (41BB), etc.

Prediction of gene mutation in LUAD

We also attempted to compare the prediction performance of FTX-
2048 with IMGNET-2048 in terms of gene mutation for nine most fre-
quently mutated genes in LUAD. Again, the features from the fine-
tuned model provided a higher or similar AUC for the majority of the
genes (7 out of 9 genes) (Fig. 6). The prediction performance was im-
proved in 5 out of 9 genes (STK11, TP53, LRP1B, NF1, and FAT1). For
FAT4 and KEAP1, FTX-2048 and IMGNET-2048 provided similar
AUCs. On the other hand, IMGNET-2048 produced higher AUCs for
Patient Name FTX-2048 IMGNET-2048

TCGA-05-4397

TCGA-05-4398

TCGA-38-4625

TCGA-44-2656

TCGA-38-7271

Fig. 7. Image patches closest to themean features extracted based on FTX-2048 and
IMGNET-2048 for 5 randomly selected individual WSIs.
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EGFR and KRAS. Although no statistically significant difference in
model predictions were detected (P = 0.50), the lack of statistical sig-
nificance was mainly due to small number of genes were included in
this experiment.

Model interpretability

The models in this manuscript were based on mean-pooling of feature
values fromdifferent patches of individualWSIs.We examined themorpho-
logical appearance of the image patch that was the closest to the mean fea-
tures of each individual patient’s WSI. This revealed the difference in the
morphological appearance of the “mean” image patches between
FTX-2048 and IMGNET-2048, which may explain the difference in predic-
tion performance of the 2 feature extractors. Fig. 7 illustrates the image
patches closest to the mean features extracted based on FTX-2048 and
IMGNET-2048 for 5 randomly selected individual WSIs.

Discussion

Cancer is a leading cause of death worldwide, accounting for 19.3 mil-
lion new cancer cases and nearly 10 million deaths by the end of 2020.41

Digital pathology has become a powerful tool in cancer research.42,43 How-
ever, due to the lack of annotated histopathological images, the current dig-
ital pathology workflows are primarily built based on “off-the-shelf”
features extracted from ImageNet models, where natural images are the
predominant sources of the database.

In this work, we proved the concept that fine-tuning middle layers of the
current ImageNet neural networks (e.g., Xception) with histopathology images
can produce features with a higher quality and better prediction performance
for not only the classification of tissue types in CRC where similar images
from CRC patients were used for fine-tuning, but also gene expression
and mutations in another type of tumor (LUAD), even though no images
from LUAD were used to fine-tune the feature extractors. The experiments
suggested that the features from the fine-tuned models possess richer path-
ological information than “off-the-shelf” features directly from pre-trained
models based on ImageNet dataset. Furthermore, the fine-tuned features
can improve the downstream prediction performance for different tasks
(e.g., tissue segmentation/classification, molecular gene expression and
mutations, etc) and different cancer types. Our work highlights the impor-
tance of continuing to build on the existing fine-tuned models with more
annotated pathological images in the future.44
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