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Abstract

In  the  last  decade,  the  focus  of  computational  pathology  research  community  has  shifted  from  replicating  the

pathological  examination for diagnosis  done by pathologists  to unlocking and discovering “sub-visual” prognostic

image  cues  from  the  histopathological  image.  While  we  are  getting  more  knowledge  and  experience  in  digital

pathology,  the  emerging  goal  is  to  integrate  other-omics  or  modalities  that  will  contribute  for  building  a  better

prognostic  assay.  In  this  paper,  we  provide  a  brief  review  of  representative  works  that  focus  on  integrating

pathomics with radiomics and genomics for cancer prognosis. It includes: correlation of pathomics and genomics;

fusion  of  pathomics  and  genomics;  fusion  of  pathomics  and  radiomics.  We  also  present  challenges,  potential

opportunities, and avenues for future work.
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Introduction

Several recent works suggest that patterns discovered from
high  dimensional,  multi-modal  data  could  improve
estimation  of  disease  aggressiveness  and  patient  outcomes
(1-3)  compared  to  monomodal  data.  Data  across  multiple
scales and modalities including radiology images, histology
images,  genetic mutations,  gene expression, etc.  were used
to  create  better  companion  diagnostic  tools.  Among  these
modalities,  histological  images  are  traditionally  used  for
identifying  and  characterizing  complex  histopathological
phenotypes,  and  the  histological  examination  is  generally
considered  as  the  “gold  standard”  for  diagnosis  of  most
solid  tumors.  With  the  advancements  in  high-speed  high-
resolution  whole  slide  image  scanning  hardware,  the
histological  tissue  slides  can  be  digitized  and  analyzed
efficiently.  Pathomics  or  quantitative  histomorphometric
analysis  refers  to  the  process  of  extraction  and  mining  of

computer  derived  measurements  from  digitized
histopathology images. While the visual reading of routine
histopathology  slides  of  tumors  by  pathologists  can  help
predict  cancer  behavior  to  a  certain  degree,  sophisticated
pathomics  has  the  potential  to  “unlock”  more  revealing
sub-visual attributes about tumors (4).  Perhaps, even more
importantly  pathomics  enables  a  detailed  spatial
interrogation  of  the  entire  tumor  landscape  and  its  most
invasive  elements  from  a  standard  hematoxylin  and  eosin
(H&E)  slide.  The  research  community  has  developed
approaches  quantifying  nuclear  arrangement,  texture,  and
orientation  for  disease  presence,  risk,  aggressiveness,
progression  and  survival.  These  include  not  only  the
nuclear architecture and graphical  arrangement of  a  single
histologic  primitive,  but  also  novel  approaches  that  are
focused  on  characterizing  the  spatial  arrangement  (5-7)  of
tumor  infiltrated  lymphocytes  (TILs)  and  interplays
between  multiple  different  histological  primitives
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simultaneously  [e.g.  interplay  of  lymphocytes  and  cancer
cells  (8-10)],  thus  potentially  providing  a  comprehensive
portrait of tumor’s morphologic heterogeneity.

On the other hand, radiological imaging, which typically
involves non-invasive procedures, presents anatomic and
functional characteristics at the macroscopic level. Imaging
modalities  [such as  magnetic  resonance imaging (MRI),
ultrasound, computerized tomography (CT) and X-ray] are
typically  used  in  the  initial  stages  for  cancer  detection,
diagnosis and localization prior to biopsy of specific tissues
for confirmatory tests. They are also used for treatment
planning, delivery of therapy and monitoring. Radiomics
refers to quantitative measurements of texture and shape
attributes extracted using advanced image processing and
computer vision techniques from imaging modalities. They
quantify underlying sub-visual tissue heterogeneity that is
not always apparent to a human reader. Since imaging is
acquired at  the  macroscopic  scale,  radiomics  allows for
interrogating not only the disease regions of interest, but
also surrounding structures such as the peri-tumoral region
(11). Radiology images offer the opportunity to be used in
conjunction  with  machine  learning  to  build  diagnostic,
prognostic and predictive models (12-14).

Compared  to  imaging  and  pathology  that  quantify
disease phenotypes, genomic analysis focuses on cellular
activities  measured  at  the  molecular  level.  Bulk  gene
expression data have been used to understand molecular
differences between disease phenotypes, socio-economic
environments and response to therapies. The investigation
on mutations,  copy number changes,  DNA methylation
and  gene  expression  that  are  correlated  with  tissue
phenotypes  enables  discovery  of  new cancer  genes  and
understanding of the underlying molecular mechanism and
drivers of tumor morphology associated with diseases. A
typical  prognostic  model  using  genomic  data  is
OncotypeDX for breast  cancer patients,  in which a risk
score of recurrence was generated by a linear combination
of 21 genes expression (15).

In clinical setting, it may very often be likely that patient
data comprising more than one of imaging, pathologic or
genomic  modalities  are  available  in  course  of  their
diagnosis through treatment. Genomic data provide rich
molecular resolution while imaging data provide spatial
phenotype information of cancer in addition to pathology.
Thus,  multi-modal  data  offer  a  unique  opportunity  to
comprehensively interrogate the cancer microenvironment
thereby enabling a  more accurate  assessment of  disease
aggressiveness. The integration of imaging phenotypes and
genotypes could help us 1) understand histological context

of  genetic  data;  2)  understand  underlying  biological
basis/process of specific quantitative imaging features; 3)
gain complimentary information for visualizing spatial and
molecular context of cancer; 4) resolve confounding effects
of  tissue  heterogeneity;  5)  discover  new  diagnostic/
prognostic signatures; and 6) build a holistic model/approach
to understand the progression of different diseases.

In this article, we provide a brief review of representative
works that focus on integrating pathomics with radiomics
and  genomics  for  cancer  diagnosis  and  prognosis.  It
includes: correlation of pathomics and genomics; fusion of
pathomics  and  genomics;  fusion  of  pathomics  and
radiomics.  We  also  present  challenges,  potential
opportunities and avenues for future work. An overview of
the fusion of pathomics, radiomics and genomics analysis is
shown in Figure 1.

Correlating pathomics and genomics

Correlating  tumor  morphology  quantified  by  pathomics
with  large-scale  genomic  analyses  is  an  emerging  research
topic  in  recent  literatures,  since  the  causal  and  inferential
relationship  between  gene  expression  and  pathomics  is
crucial  in  biomarker  discovery.  These  association  can  be
done  via  classical  Pearson  correlation  (16),  or  advanced
methods  like  sparse  canonical  correlation  analysis  (17,18)
that  can  identify  correlated  sets  of  genes  and
histomorphometrics  for  more  effective  analysis.  In  2013,
Wang et  al. (19)  established  an  automated  pipeline  for
correlating  the  histomorphometrics  to  gene  expression
data.  In  The  Cancer  Genomic  Atlas  (TCGA)  triple
negative  breast  cancer  (TNBC)  cohort,  correlations
between  histomorphometrics  and  gene  expression  were
first  calculated.  The  histomorphometrics  that  can
significantly  separate  high-risk  and  low-risk  patients  were
then  identified  in  a  local  TMA  cohort.  In  other  datasets,
gene  clusters  with  strong  correlations  to  these
histomorphometrics  were  validated  as  biomarkers.
Similarly,  Ash et  al.  (17)  used  image  features  learnt  by
convolutional  auto-encoder  and  performed  sparse
canonical  correlation analysis  to identify sets  of  genes that
correlate with histomorphometrics. Lu et al. (10) associated
the  cellular  diversity  features  that  derived  from  the  non-
small  cell  lung  carcinomas  with  bulk  gene  data  to
investigate  the  underlying  biological  pathways  of  image
features derived from the pathological image. Subramanian
et  al.  (18)  shows  that  integrative  approaches  combining
tissue  phenotypes  from  images  with  genomic  analysis  can
resolve  confounding  effects  of  tissue  heterogeneity  and
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should  be  used  to  identify  new  drivers  in  other  cancers.
AbdulJabbar et al.  (5) utilized the genomic data to validate
the  signature  extracted  from  the  histology  image.  Cooper
et  al. (20) illustrated how morphological  features extracted
from  histology  images  can  be  integrated  with  clinical  and
genomic  data  in  a  study  of  glioblastomas  (GBMs).  More
specifically,  the  tumor  microenvironment  and
transcriptional  classification  of  GBM  were  explored.  In
addition,  the  authors  shown  that  molecular  and  clinical
associations  were  revealed  through  quantitative  nuclear
morphometry.  Barsoum et  al.  (21)  provided  a  brief  review
on  how  to  use  morphological  features  extracted  from
histology  image  to  correlate  with  clinical  behavior,  host
immune  response,  and  genomic  information.  They  also
discussed the combination of digital pathology and genetic
studies  and  its  correlation  with  tumor  behavior. Table  1
gives  an  overview  of  research  works  relating  to  pathomics
and genomics correlation.

Fusion of pathomics and genomics

Due to the intra-tumor heterogeneity, the expression level
of  certain  genes  may differ  significantly  in  various  regions
within the same tumor. On the other hand, the diagnostic

slide  of  tissue  samples  provides  a  global  view  of  tumor
morphology, and thus pathomic analysis could alleviate the
sampling  issues  raised  in  genomic  analysis.  However,  the
pathomic  features  may  not  be  able  to  correlate  accurately
with the clinical behavior of patients or difficult to provide
a biological explanation for certain associations. Therefore,
understanding  the  histological  context  of  genomic  data  is
essential for a full understanding of the clinical behavior of
a  tumor.  Beyond  the  correlating  of  pathomics  and
genomics  studies  described  in  the  last  section,  many
researches attempted to combine these two to create better
diagnostic companion tools.

A straight forward strategy to integrate pathomics and
genomics  signal  is  to  perform  the  feature  vectors
concatenation  (22-25).  Shao  et  al.  (26)  introduced  an
ordinal  multi-modal  feature  selection  method  that
identified important features from each modality with the
consideration  of  the  intrinsic  relationship  between
modalities. Chen et al. (27) proposed a sophisticated end-
to-end integrated framework for fusing the learned deep
features  from  histology  image,  at  patch-level  and  cell
graph-level,  and learned genomic feature from genomic
profile. A gating-based mechanism was first used to control
the  contribution  of  each  modality,  followed  by  the

 

Figure 1 An overview for the fusion of pathomics, radiomics and genomics analyses. In radiomics analysis, quantitative image features were
derived from radiology images, which may include traditional hand-crafted features, e.g., 1st and 2nd order statistics, Laws & Local Binary
Patterns,  Gradient  orientations  and  Gabor  and  features  that  learnt  by  deep  learning  model.  In  pathomics  analysis,  quantitative  image
features were derived from histopathological images, which may include hand-crafted features like nuclear shape, texture, global structure,
local  structure,  stroma  collagen  pattern  and  TIL  patterns  and  features  that  learnt  by  deep  learning  model.  In  genomics  analysis,  single
nucleotide  polymorphism  (SNP),  copy  number  variation  (CNV),  genome  structure  data  and  gene  expression  data  [e.g.,  ribonucleic  acid
(RNA)-seq  data]  were  analyzed.  In  the  context  of  prognosis,  features/signatures  that  associated  with  patient  outcomes  from  different
modalities  can  be  associated  and  fused,  in  order  to  better  understand  the  relationship  of  disease  genotypes  and  genotypes  and  to  create
better prognostic tools.

Chinese Journal of Cancer Research, Vol 33, No 5 October 2021 565

© Chinese Journal of Cancer Research. All rights reserved. www.cjcrcn.org Chin J Cancer Res 2021;33(5):563-573



Kronecker product to model feature interactions across
modalities. Table 2 summarizes the representative research
works that  combine pathomics  and genomics  for  better
prognosticating.

Fusion of pathomics and radiomics

Radiomics  involves  high  throughput  extraction  of
computational  features  quantifying  tissue  heterogeneity  at
the macroscopic level using advanced image processing and
computer  vision  techniques.  Whereas  pathomics  provides
quantitative  information  at  the  micro  scale.  Fusion  of
radiomics  and  pathomics  provides  an  opportunity  to

combine tumor heterogeneity at the macro and micro scale,
which may complement each other and result in a stronger
integrated signature.

Some of the previous works have explored correlations
between  radiomics  and  pathomics  to  explain  the
morphological basis of signatures observed on imaging. For
instance,  studies  conducted  by  Alvarez-Jimenez  et  al,
Penzias  et  al.,  and Shiradkar  et  al.  correlated  pathomic
features with radiomics and quantitative imaging features
to  establish  the  morphologic  basis  of  imaging  (28-30).
While  some  other  works  combined  radiomic  and
pathomics  to  build  integrated  models  for  disease
characterization and classification (31-34).  Vaidya et  al.

Table 1 Overview of research works on correlating pathomics with genomics

References Approach Data used Results

Ash et al.
(17)

1) CAE was first applied to histology image to
extracted features; 2) sparse canonical
correlation analysis (CCA) was then applied to
the image features and gene expression to find
subsets of gene expression values that
correlate to subsets of image features.

Three cohorts (BCa, lower
grade glioma, and
Genotype-Tissue
Expression project) with
histological images and bulk
RNA-sequencing data from
paired tissue samples.

1) Gene sets associated with the
structure of the extracellular matrix
and cell wall infrastructure, implicating
uncharacterized genes in extracellular
processes; 2) found sets of genes
associated with specific cell types; 3-
image features that capture population
variation in thyroid and in colon tissues
associated with genetic variants.

AbdulJabbar
et al. (5)

1) Train deep learning model to identify cancer
cells, lymphocytes, stromal cells and an
“other” cell class in H&E-stained images
(validated by sequencing data, IHC, and
pathologists); 2) define immune hot and cold
regions based on lymphocytes percentage
(validated by the RNA-seq classification).

WSI, RNA-seq from
multiregion TRAcking
Cancer Evolution through
Therapy (Rx) (TRACERx,
n=100); The Leicester
Archival Thoracic Tumor
Investigatory Cohort
(LATTICe-A, n=970).

High geospatial immune variability
between tumor regions; Tumors with
more than one immune cold region
had a higher risk of relapse in lung
adenocarcinomas.

Lu et al. (10) Image features that captured cellular diversity
in local region were correlated with bulk RNA
expression data.

N=405 NSCLC histology
image with bulk RNA
expression data from TCGA

CellDiv features were found to be
strongly associated with apoptotic
signalling and cell differentiation
pathways.

Subramanian
et al. (18)

Use CCA and sparse CCA to correlate gene
expression and histological features describing
nucleus shape, texture and intensity.

N=615 BCa samples from
TCGA with histology images
and gene expression data.

CCA found significant correlation of
image features with expression of
PAM50 genes.

Martins et al.
(16)

Stroma were segmented from H&E-stained
images and quantified by a fraction score. The
stroma score and gene expression were
correlated using Pearson correlation.

Two independent cohorts of
TMAs of ovarian cancer
(n=521).

Stroma strongly biases estimate of
PTEN expression

Wang et al.
(19)

Image features captured tumor morphology
were correlated with gene expression data.
The strong correlated image features and gene
lists/clusters were test for prognostic ability in
independent test cohorts.

TCGA Triple-Negative BCa
(n=44) with image and gene
data. Evaluating the image
features in a local TMA
cohort (n=143).

Forty-eight pairs of significantly
correlated image features and gene
clusters were identified; four image
features were prognostic in a
validation cohort; gene clusters
correlated with these four image
features were prognostic in public
gene datasets.

CAE, convolutional autoencoder; BCa, breast cancer; H&E, hematoxylin and eosin; IHC, immunohistochemistry; WSI, whole-section
image; NSCLC, non-small cell lung cancer; TCGA, The Cancer Genomic Atlas; CNN, convolutional neural networks; TMA, tissue
microarrays; CCA, canonical correlation analysis.
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Table 2 Overview of research works on fusion of pathomics with genomics

References Aims Approach Data used Results

Chen
et al. (27)

Constructing a prognostic
models for glioma and
CCRCC

Histologic image-based
features extracted by CNN,
and graph-based image
features extracted by GCN,
and genomic features
learned by Feed Forward
Network. All above
mentioned data were
integrated by a multimodal
learning paradigm, which
modeled on pairwise feature
interactions across
modalities by taking the
Kronecker product of
unimodal feature
representations and gating
attention mechanism, for
prognostication.

Glioma: 1,505 H&E-stained
images from 769 patient
with 320 genomic features
from CNV, mutation status
and bulk RNA-Seq
expression; 1,251 H&E-
stained CCRCC images

from 417 patients with 357
genomic features from CNV
and RNA-Seq.

C-index=0.826 for Glioma;
C-index=0.720 for CCRCC.
Both models’ performance
are higher than the
corresponding unimodal
models.
Results reported under CV
scheme.

Shao
et al. (26)

Proposing a framework
combining pathological
images and multi-modal
genomic data for the
prognosis of early-stage
cancer patients.

1) A generalized sparse
canonical correlation
analysis, named ordinal
multi-modality feature
selection (OMMFS) that
captures the intrinsic
relationship among multiple
views, to identify important
features from WSI and
multi-modal data; 2) cox
proportional hazard model
was applied for
prognosticating patients.

Kidney renal clear cell
carcinoma, kidney renal
papillary cell carcinoma,
and lung squamous cell
carcinoma cohorts with WSI
and multi-modal genomic
data from TCGA.

The identified image and
multi-modal features were
strongly correlated with
patients survival outcome,
thus enable effective
stratification of patients.

Cheerla
et al. (22)

Constructing a deep
learning based
pancancer model for
predicting survival of
patients.

Auto encoder to extract four
data modalities (gene
expression, miRNA data,
clinical data, and WSI) into a
single feature vector for
each patient, handling
missing data through a
resilient, multimodal
dropout method.

Gene expression
(n=10,198), miRNA data
(n=10,125), clinical data
(n=7,512), and WSI
(n=10,914) from TGCA (20
different cancer types).

The pan-cancer prognostic
model yielded a C-index of
0.78 overall.

Cheng
et al. (23)

Constructing a
prognostic model for
clear cell renal cell
carcinoma

1) Nuclear features (nucleus
size, shape, texture, and
distance to neighbors) were
aggregated statistically into
patient-level features; 2)
gene co-expression
network analysis (GCNA) to
cluster genes into co-
expressed modules
(clusters of highly
interconnected/correlated
genes); 3) lasso-regularized
Cox proportional hazards
model was used to
calculate the risk scores
based on the feature from 1
and 2.

WSI, transcriptome, and
somatic mutation. N=410
from TCGA.

1) Patients with high
percentage of stromal
tissue are related to poor
prognosis; 2) risk index is
independent of known
prognostic factors with HR
(95% CI)=3.06 (2.10−4.45)
P<0.005.
Note: Results reported
under CV scheme.

Table 2 (continued)
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integrated  radiomic  and  pathomic  features  to  build  an
integrated radio-pathomic signature for cancer prognosis
(31-34).  Saltz  et  al.  (35)  introduced  a  suite  of  tools  to
support the fusion of radiomic and pathomic features and
discussed  how  this  toolset  can  help  to  investigate  the
correlations between image features, molecular data, and
clinical outcome. Some of these works are summarized in
Table 3.

Fusion of pathomics, radiomics and genomics

Fusion  of  radiomics,  pathomics,  and  genomics  would
further  allow  for  integrating  multiple  scales  of  data.
However,  such  data  are  not  easy  to  obtain  and there  have

been  very  few  studies  that  have  explored  this  aspect.
Braman et al. (36) presented a strategy to intelligently fuse
embeddings  of  radiomics,  pathomics  and  genomics  to
derive  an  optimal  complementary  signature  in  order  to
predict outcome in glioblastoma patients. Vaidya et al. (37)
looked  at  correlating  lung  CT  derived  radiomic  features
with pathomic and genomic signatures to provide a biological
rational  for  radiomic  signatures  that  were  associated  with
better survival in non-small cell lung cancer patients.

Challenges and opportunities

The integration of  quantitative measurements from multi-
modality  data  for  prognosis  prediction  remains  a

Table 2 (continued)
 

References Aims Approach Data used Results

Mobadersany
et al. (24)

Predicting the overall
survival of patients
diagnosed with glioma

Hybrid architecture
combing abstracted
histologic image features
from convolutional layers
and genomic variables (IDH
mutation status and 1p/19q
codeletion) to fully
connected layers. When
predicting of a newly
diagnosed patient, 9 HPFs
were sampled from each
ROI, and the median risk
score was selected to
represent that ROI. Second
highest risk score among all
ROIs of a WSI was used as
the final risk score.

N=1,061 WSIs from 769
patients from TCGA.
Genomic variables (IDH
mutation status and 1p/19q
codeletion).

Model achieved prognostic
power with c index of 0.754
and correlate with molecular
subtypes and histologic
grade; the c-index boosted
to 0.801 while integrating
with genomic variables.
Note: Results reported
under CV scheme.

Ren
et al. (25)

Constructing a survival
model for predicting the
recurrent of prostate
cancer patients with
Gleason score 7

1) Pathway activities were
quantified by pathway
scores using RNA
sequences; 2) image
patches from WSI and
pathway scores were
integrated into DNN to
extract “deep features”; 3)
“deep features” and clinical
prognostic factors were fed
into a Cox model.

N=339 WSIs and RNA
(Illumina HiSeq) sequencing
data from TCGA.

Integrated model yielded C-
index=0.74, and C-
index=0.71 for histology
image only.

Yuan
et al. (7)

Correlation between
histology image features
and genomic data;
Prognosticating early-
stage ER-BCa patients

Cancer cells, stroma cells
and lymphocytes were
detected from the histology
image and the proportions
of these cells are used as
image features to correlate
and combine with genomic
data.

N=564 early-stage BCa
patients with H&E-stained
WSIs and genomic data.

A SVM predictor integrating
gene expression and image
features achieved
86%±3.0% cross-validation
accuracy and improved
stratification of the patient
cohort.

CNN, convolutional neural networks; GCN, graph convolutional networks; H&E, hematoxylin and eosin; IHC, immunohistochemistry;
CNV, copy number variant; CCRCC, clear cell renal cell carcinoma; CV, cross-validation; TCGA, The Cancer Genomic Atlas; WSI,
whole-section image; HR, hazard ratio; 95% CI, 95% confidence interval; ROI, region of interest; HPF, high power field; DNN, deep
neural network; SVM, support vector machine; BCa, breast cancer; ER, estrogen receptor.
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Table 3 Overview of research works on fusion of pathomics with radiomics

References Aims Approach Data used Results

Penzias
et al. (29)

Identify morphologic
basis of radiomic
features for prostate
cancer risk stratification

Radiomic features from T2W MRI
that were associated with low-
and high-risk prostate cancer
were identified, pathomic features
that were best correlated with
these features were explored

A single institution
cohort of 36 patient
studies was used with
T2W MRI, post-
surgical H&E slides

Gabor features on T2W MRI
performance (AUC=0.69) and
gland lumen shape features
(AUC=0.75) resulted in best
classification performance

Shiradkar
et al. (30)

Establish the
morphologic basis of MR
fingerprinting values on
the prostate.

Co-registration of whole mount
pathology with MRI, MRF followed
by correlation of tissue
compartments with MR
measurements within prostate
cancer, prostatitis and normal
prostate ROI

A set of 14 patient
studies who underwent
MRI, MRF scans
followed by radical
prostatectomy

Tissue compartments of
epithelium, lumen and stroma
were significantly correlated
with T1, T2 MRF, ADC values
(P<0.05)

Alvarez-
Jimenez
et al. (28)

Association between
radiomic and pathomic
features that distinguish
adenocarcinoma and
squamous cell
carcinoma

Pathomic features from digitized
H&E slides of lung cancer;
radiomic features from lung
cancer CT scans; Cross scale
associations were computed
between radiomic and pathomic
features to compare with
individual feature classes

N=171 pathology
studies, n=101 lung CT
studies acquired from
publicly available
databases.

Cross-scale associated
features resulted in better
discrimination (AUC=0.78) of
NSCLC subtypes compared
to using individual feature
classes

Zhang
et al. (34)

A prognostic nomogram
integrating radiomics
and pathology signature
to prognosticate NPC

Radiomics from MRI images are
combined with a pathomic
signature obtained from a deep
learning model along with clinical
factors to build a multi-scale
prognostic nomogram for
nasopharyngeal cancer

N=220 NPC patients
were divided into
n=132 for training,
n=88 for internal and
external validation.

Multi-scale nomogram
resulted in an improved
predictor of survival (C-index
0.82 vs. 0.73) compared with
clinical model and individual
signatures.

Vaidya
et al. (33)

Integrating radiomic and
pathomic signatures of
NSCLC to predict cancer
recurrence

Radiomic features from ROIs on
lung CT were combined with
pathomic eatures from H&E slides
of resected tissue to build an
integrated supervised machine
learning classifier.

50 NSCLC patients
were used for training
and 43 patients for
external validation

The combined classifier
resulted in higher AUC=0.78
compared to radiomic
(AUC=0.74) and pathomic
classifier (AUC=0.67) alone

Braman
et al. (36)

Deep learning prognostic
model for gliomas
integrating radiology,
pathology, genomics
and clinical data

Deep learning model where each
modality embeddings are
combined via attention gated
tensor fusion. A multimodal
orthogonalization loss is
presented to maximize
information from each modality so
they are complementary.

176 patients witn T1w
and T2w-FLAIR
sequences annotated
by 7 radiologists, H&
slides and DNA
sequencing info

Presented model results in C-
index of 0.788±0.067,
significantly outperforming
(P=0.023) the best performing
unimodal (C-index of
0.718±0.064)

Shao
et al. (32)

Integrating radiological
and pathological
information on pre-
treatment info to predict
pathological response in
rectal cancer

Computational features were
derived from rectal pre-treatment
MRI and digitized H&E slides,
combined to create a
radiopathomic signature (RPS) to
predict treatment response

N=981 patients who
received nCRT along
with pretreatment MRI
and biopsy whole slide
images.

RPS resulted in AUC of
0.84−0.98 at each grade of
pathological response with
significantly higher
performance compared to
without integration.

Rathore
et al. (31)

Integrating radiomic and
pathomic features for
prognosis of GBM

Radoimic features from T1, T1-
Gd, T2, T2-FLAIR, were combined
with pathomic s of H&E slides to
build a SVM classifier for
differentiating long and short term
survivors

N=107 GBM patients
with MRI and
pathology images
obtained from TCIA
and TCGA

AUC=0.74, 0.76 and 0.8 for
radiomics, pathomics and
combined model in predicting
survival outcome

MRI, magnetic resonance imaging; H&E, hematoxylin and eosin; AUC, area under the curve; MRF, magnetic resonance fingerprinting;
ADC, apparent diffusion coefficient; ROI, region of interest; CT, computed tomography; NPC, nasopharyngeal cancer; NSCLC,
non-small cell lung cancer; nCRT, neoadjuvant chemoradiotherapy; SVM, support vector machine; GBM, glioblastoma; TCIA, The
Cancer Imaging Archive; TCGA, The Cancer Genomic Atlas.
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challenging  task  because  of  the  high  dimensionality  and
heterogeneity of the data.

Explainability & standardization

The  understanding  of  how  abstracted  features  from
different  modalities  influencing  the  model’s  inference
remains  another  significant  problem.  The  deep  learning
model was treated as a “black box” method since the learnt
features  and  model  decision  making  were  difficult  to
explain.  Researchers  have  tried  to  open  this  box  by  using
activation  maps  (12,38)  and  providing  visualization  of
learnt  features  (39).  Compared  to  deep  learning
approaches,  the  hand-crafted  features  extracted  from
histology  image  and  radiology  image  provide  better
explainability since the features were pre-defined, either in
a  domain  agnostic  (13,40)  or  domain  inspired  (8)  way.  In
the  multi-modality  fusion  study,  the  interpretation  of  the
extracted  feature  becomes  more  difficult.  A  computational
fusion method should not only consider the discriminative
power of the extracted features in the task, but also need to
consider  the  explainability  of  the  extracted  features.  The
fusion frameworks proposed by Shao et al. and Chen et al.
(26,27)  illustrated  that  they  can  visualize  and  understand
the extracted features to some extent. Sharing the extracted
features is still challenging since there lacks of standard on
the naming, parameter setting of these features. Therefore,
developing  open-access  software  that  provides  transparent
information  on  the  computational  process  is  required  to
evaluate clinical decision support systems. National Cancer
Institute  (NCI)  launched  National  Interim  Clinical
Imaging Procedure (NICIP) Code Set to help facilitate the
scientific  collaboration  in  cancer  research  community,
which  could  help  researchers  to  reach  a  consensus  on
standardized methods/tools.

Generalizability

One  barrier  to  translating  the  discovered  digital
“biomarkers”  in  pathology  imaging-related  studies  into
practice  is  the  issue  of  generalizability.  The discriminative
features  were  mined  from  a  limited  number  of  samples,
which easily led to the “overfitting” problem (41,42). That
is,  the  discovered  features  and  model  perform  well  to
differentiate patients with distinct outcome in the discovery
or  training  cohort,  however,  fail  in  unseen  validation
cohorts.  Therefore,  besides  the  discovery  cohort,
independent  validation cohorts  are  strongly  recommended
to further validate the robustness of the found biomarkers.

One  may  claim  that  cross-validation  may  help  to  alleviate
the  overfitting  issues,  however,  the  result  may  still  be
biased  toward  the  discovery  cohort.  The  overfitting  issue
may  be  caused  by  the  “batch  effect”,  e.g.,  artifacts
associated  with  a  specific  scanner,  thus  a  proper  quality
check should be performed first before the analysis of data
(43,44).  In  addition,  stain  variation  may  hinder  the  pre-
trained  model  to  work  well  in  unseen  cohorts.  Several
approaches  have  been  proposed  to  address  the  stain
variation  issues  by  using  stain  normalization  (45,46)  or
training  a  robust  model  with  a  training  set  containing
images  with  as  much  variation  as  possible,  i.e.,  images
scanned  by  different  scanners  and  from  different  centers.
We  believe  that  the  generalizability  issue  could  be
alleviated  if  there  are  more  well-maintain  benchmark
datasets  hosting  pathology  image,  radiology  image,  and
genomic data.

Source availability and customizability

Developing  and  implementing  the  multi-modal  fusion
model  require  access  to  matched  pathology,  radiology  or
genomic data.  As we may have known that TCGA project
(47)  is  a  landmark  cancer  genomics  program,  which  hosts
over  2.5  petabytes  genomic,  epigenomic,  transcriptomic,
and  proteomic  data  over  20,000  primary  cancers  of  33
cancer types. More importantly, it also includes the digital
diagnostic  FFPE  histology  tissue  slides  for  most  of  the
patients,  along  with  clinical  information.  The  Cancer
Imaging Archive (TCIA) (48), on the other hand, providing
radiology  image  and  histology  image,  partially  overlapped
with  patients  in  TCGA,  for  cross-modality  studies.  The
TCGA-TCIA  interface  provides  a  valuable  platform  for
scientists  who  would  like  to  perform  multi-omics
investigations. It is common that we have missing data for a
certain modality, either imaging or genomic data, or lack of
data  labeling.  Therefore,  the  fusion  approach  should  be
robust enough to learn the representation of available data
and is agnostic to data modality and availability. For better
associations  or  integrated  signatures  between  modalities,
generating  spatially  co-registered  data  from  different
modalities is a promising approach. For instance, Bourne et
al.  (49)  introduce  an  approach  for  aiding  histological
validation of MRI studies of human prostate, in which a 3D
patient-specific  mold  was  created  that  facilitates  the  co-
registration of in vivo MRI and histology image.

In the last decade, the focus of computational pathology
research  community  has  shifted  from  replicating  the
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pathological examination for diagnosis done by pathologists
to unlocking and discovering “sub-visual” prognostic image
cues  from  the  histopathological  image.  While  we  are
getting  more  knowledge  and  experience  in  digital
pathology,  and the emerging goal  is  to integrate other-
omics or modalities that will contribute to building a better
prognostic or predictive assay.

Conclusions

Correlations  between  pathomics  and  radiomics,  genomics
allowed  for  establishing  domain  specific  biological
understanding  of  cancer  morphology.  Integration  of
pathomics  with  radiomics,  genomics  resulted  in  improved
comprehensive  signatures  that  were  better  associated  with
cancer  sub-types  and  prognosticating  treatment  outcome.
While  there  is  significant  potential  and  promise  in
complementing  pathomics  with  other-omics  data,  current
studies  have  largely  been  limited  to  small  and  single
institutional  datasets.  Efforts  in  making  large-scale  multi-
modal  datasets  available  to  the  research  community  will
potentially  allow  for  developing  sophisticated  fusion
strategies  furthering  the  potential  of  pathomics  or
quantitative histomorphometry.
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