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Abstract
Inflammation constitutes a concerted series of cellular and molecular responses 
that follow disturbance of systemic homeostasis, by either toxins or infectious 
organisms. Leukocytes modulate inflammation through production of secretory 
mediators, like cytokines and chemokines, which work in an autocrine and/or 
paracrine manner. These mediators can either promote or attenuate the inflam-
matory response and depending on differential temporal and spatial expression 
play a crucial role in the outcome of infection. Even though the objective is clear-
ance of the pathogen with minimum damage to host, the pathogenesis of multi-
ple human pathogenic viruses has been suggested to emanate from a dysregulation 
of the inflammatory response, sometimes with fatal consequences. This review 
discusses the nature and the outcome of inflammatory response, which is trig-
gered in the human host subsequent to infection by single-sense plus-strand 
RNA viruses. In view of such harmful effects of a dysregulated inflammatory 
response, an exogenous regulation of these reactions by either interference or 
supplementation of critical regulators has been suggested. Currently multiple 
such factors are being tested for their beneficial and adverse effects. A successful 
use of such an approach in diseases of viral etiology can potentially protect the 
affected individual without directly affecting the virus life cycle. Further, such 
approaches whenever applicable would be useful in mitigating death and/or 
debility that is caused by the infection of those viruses which have proven par-
ticularly difficult to control by either prophylactic vaccines and/or therapeutic 
strategies using specific antiviral drugs.
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3.1	 �Introduction

The mammalian immune system has evolved arsenal and strategies to make a dis-
tinction between microbes that are either beneficial or benign or bad, an integral part 
of which is differential treatment of “self” and “non-self.” Whereas recognition of 
“self” as “non-self” can cause autoimmunity, the converse results in microbial colo-
nization. In fact the human gut does harbor multiple variety of microbes as natural 
part of the biological ecosystem (Scarpellini et al. 2015). The recognized non-self 
are counteracted by adaptive and innate effectors of the immune system, using dedi-
cated cells and biochemicals, which attempt to restrict the growth and impede colo-
nization by the pathogen. The innate response is nonspecific, while the secondary 
adaptive response is specific for the pathogen or closely related species. The cellular 
component includes innate immune cells like the monocytes/macrophages, neutro-
phils, and natural killer (NK) cells and adaptive immune cells like B- and 
T-lymphocytes, which coordinate for an effective response. Cytokines are a dedi-
cated group of biochemicals involved in this coordination and include interferons 
(IFNs), interleukins (ILs), and chemokines that are responsible for synchronizing 
the initiation, regulation, and termination of an immune response. A group (~100) 
of small polypeptides (<20 kDa) produced predominantly although not exclusively 
by immune cells like macrophages and lymphocytes, cytokines are secreted out 
exerting their function by engaging respective cell-surface receptors and depending 
on biological function are labeled as either pro-inflammatory (PIC) or anti-
inflammatory (AIC) cytokines (Turner et al. 2014). On the one hand, several cyto-
kines are functionally redundant, and on the other hand, some cells can express 
receptors for multiple cytokines.

3.2	 �The Positive-Sense Single-Stranded RNA Viruses

Viruses with positive-sense single-stranded RNA as genome can either be envel-
oped (Togaviridae, Flaviviridae, and Coronaviridae) or non-enveloped (Astroviridae, 
Caliciviridae, and Picornaviridae), and several from either group cause severe 
human pathology (Fields et  al. 2013). Entry into human host can be by diverse 
means including mucosal contact (gut in enteroviruses) or vectorial inoculation 
(e.g., in dengue and JEV) or parenteral blood transfer (e.g., hepatitis C virus). 
Immobilization by interaction with extracellular matrix components like glycos-
aminoglycan is followed by tropism determinant cognate receptor-mediated entry 
(Chen et al. 1997; Olenina et al. 2005; Tan et al. 2013). In enveloped viruses, the 
envelope fuses with the endosomal membrane, while non-enveloped viruses breach 
the membrane of either the cell or the endosome using specific cofactors, ultimately 
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releasing viral genome into the host cytosol (Kumar et al. 2018; Plemper 2011). A 
culmination of the following steps results in direct translation of the genomic RNA 
to produce a polyprotein, which is cleaved by virus-derived and host-origin prote-
ases to yield the multiple structural and nonstructural proteins (Fields et al. 2013). 
The structural features of the genomic RNA facilitating translation can be, e.g., a 
5’cap and a poly-A tail (Alphavirus, Togaviridae; Coronavirus, Coronaviridae) or a 
5’cap without a poly-A tail (Flavivirus, Flaviviridae) or an internal-ribosome entry 
site (IRES) serving for ribosome recruitment without a poly-A tail (hepatitis C 
virus) or an IRES with a poly-A tail (Picornaviridae, Astroviridae, Caliciviridae). 
After multiple rounds of translation, ribosome loading stops and the genomic RNA 
is replicated by virus-encoded RNA-dependent RNA polymerase (RdRp), in endo-
plasmic reticulum (ER) membrane-associated replication complexes (RCs) during 
which a double-stranded RNA intermediate is produced followed by its asymmetric 
transcription to produce multiple copies of plus-sense genomic RNA.  The new 
genomic RNAs are packaged into virion particles that exit the cell by either secre-
tory pathway or plasma-membrane budding (for enveloped viruses) or by cell lysis 
(for non-enveloped viruses) (Bird and Kirkegaard 2015; Pornillos et al. 2002).

3.3	 �Infection, Intimation, and Initiation of Inflammation

Although viruses can replicate in multiple types of cells, the pathological outcome 
manifests in only one or a few specific cell/tissue types. Independent of organismal 
entry site, the likeliest primary encounter of a virus is with mononuclear-phagocytic 
cells like monocytes, macrophages (Mϕ), and dendritic cells (DCs). Mϕ and DCs 
are tissue-localized cells constituting the first line of cellular defense, which when 
infected can undertake antiviral steps in addition to “informing” the other effectors 
of the innate and adaptive immune system (Pohl et  al. 2007; Ginhoux and Jung 
2014). Activated DCs shift to lymph nodes, process viral antigen, and “present” or 
display it for clonal expansion of cognate lymphocytes population. Mϕ, which can 
be either tissue-resident or differentiated from afferent monocytes postinfection, 
play a more regulatory role and are important determinants of the outcome of the 
inflammatory response (Ginhoux and Jung 2014; Mercer and Greber 2013; Hou 
et al. 2012; Schulz et al. 2012). Tissue-resident Mϕ , which are a distinct population 
from monocyte-derived ones, include microglial cells in CNS, liver Kupffer cells, 
skin Langerhans cells, etc. (Davies et al. 2013)

Monocytes/Mϕ (and many other cell types) express molecular detector proteins 
called pattern recognition receptors (PRRs), specialized for interacting with signa-
ture motifs on microbe-derived molecules, termed as pathogen-associated molecu-
lar pattern (PAMP). Viral PAMPs include double-stranded (dsRNA) RNA 
(replication-intermediate formed during replication) and 5′-ppp (uncapped genomic 
RNA polymerized by de novo replication). Cellular PRRs specific for these include 
toll-like receptors (TLRs) like TLR3 (dsRNA) and RIG-I-like receptors (RLRs) like 
RIG-I, MDA5 (dsRNA, 5′-ppp end on RNA) (Jensen and Thomsen 2012). Nod-like 
receptors or NLRs form another class of cytosolic PRRs that can detect virus 
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infection, albeit in an indirect manner (Takeuchi and Akira 2010; Ichinohe et al. 
2013). Physical engagement with PAMPs activates the respective PRRs, stimulating 
alterations in conformation of these sensors that allow them to interact with adapter 
molecules mediating the assembly of multi-protein complexes called inflammo-
some, in parallel to activating the expression of cytokine genes coding for type-1 
interferons (IFNs) and NFκB target genes (Kawai et al. 2005; Pichlmair and Reis e 
Sousa 2007; Chen and Ichinohe 2015; Seth et al. 2005). Secreted type-I IFNs attach 
specific receptors, in a paracrine or autocrine manner, thereby activating the expres-
sion of many interferon-sensitive genes (ISGs) with diverse functions that confer 
antiviral property to their activity (Schneider et al. 2014; Schoggins and Rice 2011). 
ISGs include PRR-coding genes producing a feed-forward loop and aggravating 
inflammation. In parallel, NFκB enhances expression of pro-inflammatory genes 
like TNF-α, IL-1β, COX2, IL6, IL-12p40, or IL-12 besides components of NLRP3 
(Tak and Firestein 2001; Bauernfeind et  al. 2009). Upon assembly the NLRP3 
inflammosome catalyzes caspase-1 activation, a protease which slices the precursor 
form of pleiotropic pro-inflammatory cytokines like IL-1β and IL-18 generating 
their active secreted forms (Garlanda et al. 2013; Biet et al. 2002). IL-1β potentiates 
the antiviral response by multiple ways in addition to inducing expression of type-I 
IFNs and ISGs in DCs (Ben-Sasson et al. 2011; Aarreberg et al. 2018). Chemokines 
(chemotactic cytokines) flag/point to the site of infection by a concentration gradi-
ent, attracting leukocytes like neutrophils, monocytes, and lymphocytes, subse-
quently activating them to release more cytokines thereby amplifying the 
inflammatory response (Sokol and Luster 2015; Ley 2014). Among these IL-12 and 
IL-2 (produced predominantly by DCs) have crucial immunomodulatory functions. 
IL-12 attracts CD4+ T-helper (Th) cells influencing their differentiation into IFN-γ 
secreting Th1 cells in addition to augmenting the cytotoxic activity of CD8+ T cells 
and NK cells (Athie-Morales et al. 2004; Henry et al. 2008). IL-2 on the other hand 
increases NK-cell sensitivity to IL-12 by receptor upregulation (Wang et al. 2000). 
IFN-γ which in contrast to type-I IFNs is produced exclusively by immune cells (T 
and NK cells) has pleiotropic antiviral effect including the capacity to polarize 
existing or newly recruited Mϕ to M1 phenotype (Hu and Ivashkiv 2009; Verreck 
et al. 2004). Mϕ either resident or monocyte-derived can acquire either an M1 or an 
M2 phenotype differing in ontology, phenotype, and secretome, with unidirectional 
plasticity from M1 to M2 (Halstead et al. 2010; Guiducci et al. 2005; Smith et al. 
2016). M1-Mϕ promotes a Th1 immune response which is necessary for resolution 
of infection, while the M2-Mϕ endorses tissue repair following inflammation, sug-
gesting that a premature skew in abundance of M2-Mϕ at the expense of M1-Mϕ 
would limit viral clearance leading to chronic infection and prolonged inflammatory 
response (Klenerman and Hill 2005). An emerging concept in modulation of inflam-
mation involves the role of bacterial surface components like lipopolysaccharide on 
concurrent viral infection (Smith et al. 2016; Wilks and Golovkina 2012). Alterations 
in gut microbiome have been reported and potential influences this might have on 
disease outcome have been suggested (Preveden et al. 2017; Banks et al. 2015).

Though it is difficult to ascertain the number of asymptomatic infections for any 
given virus, the percentage of symptomatic infection vis-à-vis asymptomatic ones is 
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often a multivariate variable, being known for only a few. For example, only 1 
among 4 individuals infected with DENV shows febrile symptoms. This suggests a 
success for the antiviral immune mechanisms in the majority of individuals. Animal 
studies using gene knockout models have given evidence of this efficacy for many 
viruses (Suthar et al. 2010; Samuel and Diamond 2005; Lazear et al. 2011; Deonarain 
et al. 2004; Burdeinick-Kerr et al. 2007). In case of humans, these information are 
complicated by differential efficacy of these pathways, protecting or predisposing 
individuals under the influence of genotype, environment, etc. (Paalani et al. 2011; 
Mitchell and Aneshensel 2016; Liu and Taioli 2015) Besides, there are few studies 
that indicate potential influence of medication or noninfectious ailments or societal 
stress on the outcome of infection through an influence on the immune system 
(Mehrbod et al. 2014; Gilbert et al. 2005; Htun et al. 2015; Jean et al. 2007).

3.3.1	 �Liver Damage Due to Hepatitis C Virus and Dengue Virus 
Infection

HCV and DENV infection can cause liver damage through a chronic and acute 
infection regime, respectively (Samanta and Sharma 2015; Axley et al. 2018). Liver 
as an organ is characterized by a high capacity to regenerate; however, chronic 
injury/scarring can lead to fibrosis, steatosis, or even hepatocellular carcinoma 
resulting in liver failure (Forbes and Newsome 2016). Hepatocytes constitute two-
thirds of all liver cells and are associated with all major liver functions besides play-
ing a crucial role in innate immune signaling (Kmiec 2001; Zhou et  al. 2016). 
Hepatocytes are permissible to both HCV and DENV, the latter being reported to 
additionally infect Kupffer cells (Chang et al. 2003; Zehender et al. 1997; Boisvert 
et  al. 2001; Caussin-Schwemling et  al. 2001; Goutagny et  al. 2003; Marianneau 
et al. 1999; de Macedo et al. 2006; Huerre et al. 2001). In acute infection, the major 
damage is through apoptosis following direct infection of these cells, whereas 
establishment of a chronic infection usually causes a sustained inflammation lead-
ing to infiltration of polymorphonuclear cells and lymphocytes (Huerre et al. 2001; 
Lim et al. 2014; Masalova et al. 2017; Deng et al. 2008; Bala et al. 2012; Sung et al. 
2012). Irrespective of the virus, these infections augment PIC levels in the liver with 
drastic consequences. For example, hepatocyte apoptosis caused by either direct 
infection or effect of PICs like TNF-α generates apoptotic bodies which when 
engulfed by Kupffer cells induce the latter to release more PIC providing a positive 
loop toward inflammation (Canbay et al. 2003a; Burdette et al. 2012; Negash et al. 
2013; Shimizu et al. 2005). Cytokines like TGFβ and PDGF thus released can “acti-
vate” hepatic stellate cells initiating a metabolic transformation in them to secrete 
more extracellular matrix that deposits as fibrotic tissue in addition to converting 
them into smooth muscle fibers (Canbay et al. 2003b; Hernandez-Gea and Friedman 
2011). In addition to virus infection-induced changes, bacterial LPS can also poten-
tially “activate” hepatic stellate cells (Brun et al. 2005). HCV infection skews mac-
rophage population to M2 phenotype restraining virus clearance while promoting 
hepatic stellate cell activation mediated by TGFβ (Saha et al. 2016). Additionally, in 
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case of infection by both of these viruses, immune suppression mediated by AIC 
like IL10 is implicated for virus persistence and augmented pathology (MacDonald 
et al. 2002; Sugimoto et al. 2003). In fact higher levels of cytokines like IL10 and 
IL17 have shown positive correlation with liver damage (Fernando et  al. 2016). 
Liver steatosis, a clinical feature common among HCV patients, is the result of 
intracellular ROS in hepatocytes (Okuda et  al. 2002; Perlemuter et  al. 2002). 
Irrespective of the stimulus, a continuous cycle of injury and repair involving hepa-
tocytes strongly prognoses the growth of hepatocellular carcinoma, DNA damage 
by augmented levels of ROS and RNS level playing a critical role (Bishayee 2014; 
Capone et al. 2010).

3.3.2	 �CNS Damage Due to JEV, WNV, Zika Virus Infection, 
and Sometimes DENV Too

The central nervous system (CNS) is physiologically isolated from the rest of the 
body by a specialized selectively permeable barricade called as the blood–brain bar-
rier (BBB), which allows passage to selected metabolites, respiratory gases, and an 
extremely limited repertoire of circulatory tissue cells. This isolation is necessary 
for protection of low regeneration capacity neuronal cells from systemic inflamma-
tion, which can also upset the structural and functional plasticity of neurons that is 
dependent on cytokine signaling (Arnett et al. 2001; Gougeon et al. 2013; Mason 
et al. 2001; Fischer et al. 2011; Brissoni et al. 2006). The CNS can have either neu-
ronal or non-neuronal glial cells; the latter provide vital functional support and 
include microglia (macrophage-like immune cells), oligodendrocytes (which pro-
vide insulation for neurons), and astrocytes (responsible for repair of damaged neu-
ronal tissue). Microglial cells have immunomodulatory function in suppressing a 
pathogenic inflammation (Seitz et  al. 2018). Multiple viruses in the +ve-ssRNA 
genome group, including Coronavirus, Picornavirus, Flaviviridae, and Togaviridae, 
cause opportunistic infection of CNS (Bergmann et al. 2006; Koyuncu et al. 2013; 
Fletcher and McKeating 2012).

In the absence of a direct admission route, these viruses undergo limited repli-
cation in peripheral tissue, before entering through either peripheral nerves or 
BBB microvasculature or CNS infiltrating leukocytes (functioning as the prover-
bial “Trojan horse”) (Koyuncu et al. 2013; Jeha et al. 2003). A feature common 
here is a breach of the vascular endothelial barrier at varying locations, e.g., BBB 
for JEV/WNV, blood retinal barrier for ZIKV, and endothelial barriers in lungs/
peritoneum for DENV. Breach in BBB is more common for some viruses (e.g., 
WNV, JEV, ZIKAV, poliovirus) correlating with fatality. Interestingly, WNV and 
JEV have been suggested to cause BBB disruption from inside the CNS (Li et al. 
2015; Verma et al. 2009). Still other reports suggest infected endothelial cells to 
secrete PICs that disrupt the BBB (Chen et al. 2014; Chang et al. 2017; Roach and 
Alcendor 2017). The tissue damage is caused from a combination of either direct 
neuronal infection which activates intrinsic apoptosis or a hyperactive inflamma-
tory response mediated by PICs or CD8+ cytotoxic T cells (CTLs) (Wang et al. 
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2003; Samuel et al. 2007). Infected neurons secrete chemokines that attract leuko-
cytes like monocytes and lymphocytes (Klein et al. 2005; Shrestha and Diamond 
2004; Glass et al. 2005; Kelley et al. 2003; Lim et al. 2011; Bardina et al. 2015; 
Durrant et  al. 2015; Shrestha et  al. 2008). The relation between a “good” and 
“bad” immune response is, however, very tricky when it comes to the 
CNS. Migration of CTLs expressing receptors for chemokines like CCL2, CCL3, 
CCL4, CCL5, CXCL9–11, as well as its timing with respect to establishment of 
infection, seems to play a crucial role in virus eradication and survival (Wang 
et  al. 2003; Shrestha and Diamond 2004; Diamond et  al. 2003; Sussman et  al. 
1989; Getts et al. 2010; Nansen et al. 2000; Chen et al. 2004; Liu et al. 2001; Zink 
et al. 2001; Winter et al. 2004). The CTLs exert their antiviral role by inducing 
cell death through either a perforin-dependent or Fas-FasL-mediated mechanism 
(Rossi et al. 1998; Shrestha and Diamond 2007). In addition to CTLs, other PICs 
might also induce direct cell death in neurons (Dhanwani et al. 2012; Olmo et al. 
2017; Baer et al. 2016; Kumar et al. 2010).

3.3.3	 �Dengue Infection-Associated Vascular Leakage

Dengue virus causes a febrile illness with can turn fatal after a subsidence of the 
fever. The severity emanates from leakage of fluid from the blood vessels by a 
breach of the vascular endothelium. Circulating in four serotypes, severe disease is 
mostly associated with secondary infection by a serotype different from the one 
causing primary infection. Neutralizing antibodies generated during primary infec-
tion incompletely neutralize the secondary infection virus and instead promote their 
uptake by monocytes, by a phenomenon called antibody-dependent enhancement or 
ADE (Katzelnick et al. 2017; Dejnirattisai et al. 2016). Notwithstanding a primary 
or secondary infection, the pathological symptoms are considered to be the result of 
an unbridled host immune response (Basu and Chaturvedi 2008; Rothman 2011).

DENV infects a variety of cells including monocytes, dendritic cells (skin 
Langerhans cells), macrophages (Kupffer cells), and vascular endothelial cells, 
expectedly leading to PIC secretion (Wu et al. 2000; Jessie et al. 2004; Tolfvenstam 
et  al. 2011). Different studies have reported a positive association of DHF/DSS 
development with extraordinarily augmented levels of different PICs that include 
macrophage migration inhibitory factor (MIF), IFN-α, TNF-α (Green et al. 1999; 
Kurane et al. 1993; Huang et al. 2000; Chen et al. 2006). Although multiple reports 
have suggested correlation between specific PIC level and plasma leakage, the 
mechanism is still elusive and limited to association studies (Priyadarshini et  al. 
2010; Her et al. 2017; Sehrawat et al. 2018; Malavige et al. 2012). Interestingly 
however, multiple similar association studies have suggested a positive association 
between levels of IL10 (an AIC) and severe/critical symptoms related to dengue 
infection (Malavige et al. 2013; Tsai et al. 2013; Flores-Mendoza et al. 2017). IL10, 
produced by multiple immune cells, suppresses immune response through upregu-
lation of SOCS (suppressor of cytokine signaling) function and downregulation of 
IFN activity, the result being decreased T-cell cytotoxicity (Halstead et al. 2010; 
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Katzelnick et al. 2017; Tsai et al. 2013; Azeredo et al. 2001; Brasier et al. 2012). 
The augmentation of IL10 level has been suggested to emanate from monocytes 
infected by the ADE route with additional influence from high viremia (Tsai et al. 
2014). IL10 is a dominant regulator of the immune system that can prolong patho-
gen clearance through a subversion of the immune response (Couper et al. 2008).

3.3.4	 �Lung Infection and Pathology by Coronaviruses

Coronavirus infections are usually benign causing self-limiting mild flu-like symp-
toms. However, recent outbreaks involving, e.g., severe acute respiratory syndrome 
coronavirus (SARS-CoV), which jumped species barrier through acquisition of 
minor genome mutations, have projected them as potentially severe human patho-
gens (Guan et al. 2004). Spread through aerosols, SARS-CoV primarily infect lung 
cells triggering an often fatal inflammatory response clinically called acute respira-
tory distress syndrome (ARDS) that starts with severe hypoxia, pulmonary edema 
progressing to systemic inflammation, and failure of multiple organs, culminating 
in high rate of mortality (Peiris et al. 2003; Lew et al. 2003; Tsushima et al. 2009; 
Farcas et al. 2005). Although evidence suggests that SARS-CoV can infect multiple 
cell types, lung type-II pneumocytes and ciliated epithelial cells constitute primary 
sites of virus replication, consequent to which these cells undergo apoptotic and/or 
necrotic death attracting innate immune cells and activating them to secrete PICs 
(Sims et al. 2005; Chow et al. 2004; Nicholls et al. 2003). The nature of inflamma-
tion following SARS-CoV infection is characterized by a prompt production of 
PICs through immediate NFκB activation and a delayed expression of type-I IFN 
genes (Shi et al. 2014; Kong et al. 2009; Wong et al. 2004). Severity of symptoms 
correlates positively with IL-6 levels while exhibiting negative correlation with that 
of IL-8 and TGFβ (Zhang et al. 2004). As observed with many other viral pathogen-
esis models, macrophage polarization culminating in preferential enrichment of 
M2-macrophages has been suggested to be responsible for SARS-CoV pathogene-
sis (Page et al. 2012). SARS-CoV infection is also associated with hemophagocyto-
sis or engulfment of different types of blood cells by histiocytes (a class within 
macrophages), which is a clinical marker of immune system hyper-activation 
(Usmani et al. 2013).

3.4	 �Therapeutic Approaches Using Cytokine

Traditionally prophylactic or therapeutic strategies for combating viral pathogene-
sis are designed using vaccines or directly acting antivirals (DAA), respectively. But 
for many viruses there is no clinically approved product to serve in either approach. 
Since the etiology of critical pathogenic symptoms is often associated with an 
unbridled host inflammatory response, there have been suggestions and attempts to 
control the harmful effects through modulation of key inflammatory signaling 
(D’Elia et  al. 2013). However, a holistic approach to complete “cure” should 
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probably involve investigations to provide support to both approaches simultane-
ously. Only ribavirin or the same combined with pegylated IFN-α was the therapeu-
tic strategy for controlling HCV infection, before the advent of high efficacy DAAs. 
Similarly IFN-λ and glucocorticoids, both of which can consolidate the BBB, have 
been suggested as therapeutics for combating viral diseases that disrupt this barrier 
(Rhen and Cidlowski 2005; Daniels et  al. 2014; Lazear et  al. 2015; Wang et  al. 
2004; Blecharz et al. 2010; Fabene et al. 2008). Likewise, administration of PICs 
like CCL7 and IL17A has shown efficacy in increasing survival of mice experimen-
tally infected with WNV (Bardina et  al. 2015; Acharya et  al. 2016). In dengue 
patients, however, meddling with either promoter or inhibitor of inflammation has 
been suggested as possible approaches (Tsai et al. 2013; Goh et al. 2014; Callaway 
et al. 2015; Ji et al. 2005; Dinarello 2011). Small molecules that can influence the 
function of the NLRP3 inflammosome have also been projected as potential thera-
pies for CHIKV and can be tested against dengue as well (Chen et al. 2017; Coll 
et al. 2015; Hottz et al. 2013). Alternative approaches using pharmaceuticals that 
indirectly mitigate the pathological effect without interfering with inflammation 
have also been discussed (Olmo et al. 2017; Grip and Janciauskiene 2009; Reynolds 
and Miller 1989; Thomas and Grossberg 2009; Giguere and Tremblay 2004; Raemer 
et al. 2009).

3.5	 �Concluding Remarks

An ability to suppress innate immunity pathways is common among viruses that 
cause severe human diseases. Nonetheless modulating inflammation needs extreme 
caution, in order to reduce potential cytotoxicity of the administered therapeutic. 
Therefore, there is a need to go beyond association studies to generate a clearer 
picture of the exact role that inflammation plays in viral pathology, which can then 
assist in developing therapeutic strategies that tinker with inflammation.
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