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Errors in radiologic interpretation are largely the result of failures of perception. This
remains true despite the increasing use of computer-aided detection and diagnosis.
We surveyed the literature on visual illusions during the viewing of radiologic images.
Misperception of anatomical structures is a potential cause of error that can lead to
patient harm if disease is seen when none is present. However, visual illusions can also
help enhance the ability of radiologists to detect and characterize abnormalities. Indeed,
radiologists have learned to exploit certain perceptual biases in diagnostic findings and
as training tools. We propose that further detailed study of radiologic illusions would
help clarify the mechanisms underlying radiologic performance and provide additional
heuristics to improve radiologist training and reduce medical error.

Keywords: radiological error, illusions, false positives, perceptual expertise, image quality, medical image
perception, medical images, false negatives

INTRODUCTION

Most diagnostic errors in radiologic practice are secondary to failures of perception (Renfrew
et al., 1992; Slater et al., 2006; Bruno et al., 2015; Waite et al., 2017, 2020). Some of these errors
are driven by visual illusions that radiologists encounter as they analyze radiographs. Illusions
are hard to rigorously define (Eagleman, 2001), and—while there have been efforts to precisely
categorize or describe illusions (Ninio, 2014)—there is no consensus definition among perception
scientists. In this paper, we define illusions as mismatches between physical reality and perception
(see Westheimer, 2008; Murray and Herrmann, 2013; Shapiro and Todorovic, 2016 for similar
approaches). In radiology, such mismatches can potentially interfere with accurate diagnosis.

Radiologists can fail to see pathologies due to perceptual biases—or see pathologies where
none exist (Perrin and McBroom, 1987; Renfrew et al., 1992; Waite et al., 2019, 2020). Although
missed diagnoses are more commonly discussed in the literature, false positives arising from
over-diagnosing normal variations in anatomy as pathological can be harmful too, secondary to
complications from unnecessary tests and treatments (Keats and Mark, 2001).
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TABLE 1 | Common visual illusions observed in radiology.

Type of illusion Imaging modalities in which it is
most commonly reported

Anatomical structures in which
it is most commonly seen

Publications reporting this illusion in radiology

Mach bands X-Ray Musculoskeletal imaging; Chest
x-rays, especially along the

vertebral column

Lane et al., 1976; Daffner, 1977, 1989, 1995;
Propper et al., 1980; Edholm, 1981; Berry, 1983;
Daffner et al., 1986; Swann et al., 1987; Gordenne
and Malchair, 1988; Papageorges and Sande,
1990; Papageorges, 1991; Cupples et al., 1996;
Anbari and West, 1997; Chasen, 2001; Nielsen,
2001; Reeves, 2004; Thomson and Johnson,
2012; Buckle et al., 2013; Panikkath and
Panikkath, 2014; Raby et al., 2014; Kattea and
Lababede, 2015; Samei and Krupinski, 2018

Simultaneous contrast CT X-rays near skeletal structures, or
CT with contrast material

Daffner, 1980, 1989; Gordenne and Malchair,
1988; Sogur et al., 2012

Pareidolia CT Brain e.g., Griffin et al., 1998; Maria et al., 1999a,b;
Hardy, 2003; Jacobs et al., 2003; Kato et al., 2003;
McGraw, 2003; Gleeson et al., 2004; Graber and
Staudinger, 2009; Lien et al., 2009; Maranhão-Filho
and Vincent, 2009; Brancati et al., 2010; Roberts
and Touma, 2011; Verma and Gupta, 2012; Foye
et al., 2014; Sonam et al., 2014; Manley and
Maertens, 2015; De Marzi et al., 2016; Massoud
and Kalnins, 2016; Poretti et al., 2017; Shams
et al., 2017; Ohmori et al., 2018; Ridley, 2018;
Ridley et al., 2018

Parallax phenomena X-Ray No “most common” location
identified in the literature

Volz and Martin, 1977; Daffner et al., 1982; Daffner,
1989; Thomson and Johnson, 2012; Buckle et al.,
2013; Secgin et al., 2016

Although variable in the literature, the effective error rate in
radiological studies is estimated to be about 4%, unchanged over
the last 70 years (Waite et al., 2017). Worldwide, a 4% error
rate would translate to approximately 40 million errors per year
(Imanzadeh et al., 2020). Computer aided detection and machine
learning methods promise to improve diagnostic accuracy, yet
these same technologies place new demands on radiologists and
can introduce novel sources of perceptual error (Slater et al., 2006;
McGurk et al., 2008; Maskell, 2019).

Here, we review some of the more common illusions in
radiology and their impact on clinical diagnosis (see Table 1).
We discuss both diagnostic errors and the potential benefits of
illusions. Understanding the differences between medical images
and their perception in the observer can help enhance the ability
of radiologists to detect pathology. Thus, radiologists armed
with the knowledge of common illusions may not only better
avoid misdiagnosis but even use illusions, when present, to help
establish diagnosis (Buckle et al., 2013). In the future, error rates
in radiology could be reduced through a better understanding
of the role that illusions play, and radiology residents might be
trained to both prevent and exploit such phenomena.

Brightness and Contrast Illusions
Our brains do not detect the actual brightness of objects in the
world, but instead compare an object’s physical luminance to that
of nearby surfaces, frequently creating inaccurate representations
of the natural world (Martinez-Conde and Macknik, 2017).
Sometimes, the brightness and contrast illusions that result from

such neural comparisons improve the visibility of structures
on medical images, i.e., by enhancing boundary perception.
Examples include any objects or surfaces where their physical
luminance differs from their perceived brightness or contrast,
such as Mach bands and simultaneous contrast effects.

Mach Bands
Mach bands are a form of contrast enhancement, visible as a
bandlike line at the edge of almost any shadow and at the borders
between adjacent, overlapping objects with different luminance
(see Figure 1A). They are commonly encountered in radiology on
routine chest radiographs, in places where structures of different
image intensities overlap (Lane et al., 1976; Daffner, 1977;
Chasen, 2001), and occur most frequently along the vertebral
column (Daffner, 1989; Raby et al., 2014). Mach bands can
be “negative” (dark) or “positive” (bright), but only one type
of Mach band is typically visible at each boundary created by
most biological shapes (Edholm, 1981; Papageorges and Sande,
1990). Mach bands are often helpful in demarcating boundaries
between anatomic structures—though this is not always the case.
Moreover, negative Mach bands and their associated boundaries
can be too dark to be seen clearly on radiographs.

Negative Mach bands are typically associated with convex
(outward-curving) structures, and positive Mach bands with
concave (inward-curving) structures (Papageorges, 1991).
Papageorges (1991) suggested that these associations could be
used to deduce the shape of unknown anatomical structures
in radiographs, or to more accurately identify the shape of
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FIGURE 1 | Examples of Mach bands. Classical Mach bands are apparent along the vertical edges of the stripes (A). Although each individual stripe is physically
uniform, its contrast intensity appears to differ between the left and the right edge, due to their respective proximity to adjacent bars with other luminances. Thus, at
the border of any two adjacent bars, the edge of the lighter bar appears even lighter than in reality (a positive Mach band), while the edge of the darker bar appears
even darker (a negative Mach band). (B) Radiograph of the carpus of a horse, in which some convex boundaries (arrows A,B), are associated with negative Mach
bands, becoming almost imperceptible. Some concave boundaries (arrows C,D) are opaque and have prominent positive Mach bands. In this way, Mach bands
provide shape cues: positive Mach bands may signal a concave shape, where negative Mach bands may signal a convex shape (from Papageorges, 1991). (C) A
negative Mach band (arrows) helps define the nodule on this lateral radiograph (from Chasen, 2001).

FIGURE 2 | Mach bands across the base of the dens (a bone that projects
from the spinal vertebra, also known as the “odontoid process”), can be
mistaken for fractures (white arrow).

known structures (see Figure 1B). For instance, radiologists
can use Mach bands to better visualize abnormalities that are
present in radiographs, but obscured by overlapping structures:
when one structure overlaps another, the resulting Mach band
from the edge contrast difference can elucidate the shape and
position of the occluded structure (Chasen, 2001; see Figure 1C).
Information from Mach bands can be critical in cases where
relying on memory to reconstruct the 3-dimensional anatomy
would otherwise be difficult, overly complicated, or misleading.

Unfortunately, Mach bands can also hinder accurate
diagnosis: Mach bands that overlap with bone can be
misperceived as fractures (Daffner, 1977, 1989; see Figure 2).
Mach bands caused by skin folds can mimic the appearance of
pneumothorax (air in the space between the thin pleural covering
that surrounds the lungs; (Kattea and Lababede, 2015). Mach
bands are also a cause of erroneous diagnosis of cavities (caries)
on dental radiographs (Thomson and Johnson, 2012).

Indeed, trainees sometimes misinterpret Mach bands as
fractures, only to be corrected by their mentors (see Reeves,
2004 for the description of one medical student’s experiences).
Thus, residents are taught that when a Mach band might be
present, they should look for additional findings that suggest a
fracture: in the absence of such findings, apparent dark lines are
likely indicative or Mach bands, rather than fractures (Samei and
Krupinski, 2018). Expert radiologists are more adept at picking
up on other subtle cues—or their absence, thereby avoiding
diagnostic error (Nielsen, 2001). Thus, while the perceptual
expertise of radiologists will not always prevent them from
misperceiving images, prior knowledge and experience may
improve diagnostic accuracy (Anbari and West, 1997). For
example, in a case study reported by Panikkath and Panikkath
(2014), Mach bands at the lateral margin of the right atrium
were initially interpreted as evidence of pneumopericardium in
a chest radiograph. Awareness that this might be a perceptual
effect—and the discovery that other follow-up imaging did not
show signs of air around the heart—revealed that this radiolucent
shadow was in fact caused by Mach bands. The effects of context
and experience on the interpretation of Mach bands in radiology
have also been demonstrated experimentally by Nielsen (2001):
dental students frequently misinterpreted a Mach band illusion
as a root fracture, but experienced dentists (with three or more
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FIGURE 3 | Demonstration of the simultaneous contrast effect: although the
two circles indicated by arrows are physically identical, the circle on the left
appears darker relative to the (seemingly-brighter) circle on the right.

years of practice) only tended to provide the same misdiagnosis
when they were given a correlative history, such as that the patient
suffered trauma during a sporting event (a scenario in which a
root fracture might be expected).

Simultaneous Contrast Effect
The simultaneous contrast effect is another brightness/contrast
illusion, occurring when differences in luminance between an
object and its background, or between one object and another,
alter the object’s perceived brightness. In radiological contexts,
differences in background density can alter the perceived density
of two adjacent objects due to simultaneous contrast (Gordenne
and Malchair, 1988; see Figure 3). Importantly, whereas Mach
bands usually cover a narrow area (resembling a thin band),
simultaneous contrast can cover wide areas.

Pareidolia
Pareidolia is the illusion of significance in meaningless sensory
inputs. Everyday examples include seeing a face on the
moon or finding animal shapes in clouds. We note that
pareidolia does not always result in visual illusions and it
can occur in other sensory domains: for example, hearing
lyrics in music played backwards. Pareidolias result from
the same neural processes that extract actual (rather than
imagined) meaning from meaningful, real-world objects
(Voss et al., 2011).

Pareidolia often serves as an amusing finding that does not
hinder or help the radiologist. For example, in one case report
describing a man with painful inflammation on his testicles, the
testicular mass on the ultrasound image resembled the face of a
man in severe pain (Roberts and Touma, 2011; see Figure 4).

Yet, because radiologic diagnosis involves the recognition
of patterns, pareidolias can be used in similar ways as other
mental representations of normal and abnormal conditions
exploited by expert radiologists. Importantly, because there is

consistency in the perception of pareidolic elements across
observers, mentors can share their own perceptual experiences
with trainees, and highlight those pareidolia patterns that
can aid the diagnostic process. Just as expert radiologists
call to mind pre-existing mental representations (such as
that of chronic lung disease) while attempting to fit cases
to a possible diagnosis (Lesgold et al., 1988), pareidolia
may help particular representations to be called to mind
or fit to images.

Indeed, pareidolias can be representative of specific
conditions, and therefore useful in diagnosis (Maranhão-
Filho and Vincent, 2009). Radiologists have described hundreds
of such diagnostic “signs”—visual analogies that suggest the
presence of a condition or disease (Ridley, 2018; Ridley et al.,
2018). Below, we list several pareidolias that serve as effective
diagnostic heuristics.

The Snowman Sign
Radiologists often learn that the "snowman" sign in the pituitary
region indicates that a pituitary macroadenoma is more likely
than a meningioma. The characteristic “snowman” appearance
of macroadenomas in that region—a “Figure 8” shape—results
from the fact that macroadenomas are softer tumors that become
indented where they pass through the sella turcica (the skull bone
surrounding the pituitary gland) (Hess and Dillon, 2012).

The Swallow Tail Sign
In some cases, the absence of pareidolia can signal the presence
of a disorder (De Marzi et al., 2016). For example, some linear
or comma shapes (resembling the tail of a swallow) are present
on normal images of the substantia nigra, but absent in most
patients with Parkinson Disease or dementia with Lewy Bodies.
Thus, “loss of the swallow tail sign” indicates likely Parkinson
Disease or Lewy Body dementia (Shams et al., 2017).

The Molar Tooth Sign
In the “molar tooth sign,” the midbrain resembles a molar
or wisdom tooth in axial CT scans (see Figure 5). The
molar tooth sign was first observed in a rare condition
known as Joubert syndrome, a ciliopathy (a disorder affecting
cellular cilia) characterized by an abnormal respiratory pattern,
ocular motor apraxia, hypotonia and developmental delay. The
syndrome is genetically heterogenous with over 30 causative
genes identified, and its characteristic morphology has been
reported in 82–100% of Joubert Syndrome patients (Maria
et al., 1999a; Poretti et al., 2017). The molar tooth sign
is also consistently found in a variety of conditions that
share similar features to classic Joubert Syndrome, but with
varying causative genes and hence variable involvement of
organ systems. Collectively these are referred to as Joubert
Syndrome and Related Disorders (JSRD) (Manley and Maertens,
2015). The molar tooth sign is not typically observed on
fetal MRI until the 22nd week of gestation, so further
identification of the genetic factors causing JSRD could
improve early detection (Fluss et al., 2006; Saleem and
Zaki, 2010; Romani et al., 2013). In addition, JSRD patients
consistently have hypoplasia of the cerebellar vermis, producing
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FIGURE 4 | Examples of pareidolia that neither assist with nor hinder diagnosis. (A) The scrotal ultrasound from a patient with a testicular condition appears to
resemble the face of a man in pain. (B) This lethal glioblastoma resembles a rabbit. Reproduced from Roberts and Touma (2011) and Massoud and Kalnins (2016),
respectively.

FIGURE 5 | An axial CT image demonstrating the molar tooth sign, a pattern
associated with Joubert syndrome. Lack of normal decussation of the fiber
tracts of the superior cerebellar peduncles and the pyramids results in
thickened and horizontally oriented superior cerebellar peduncles (McGraw,
2003; Romani et al., 2013). Along with the decreased anteroposterior
dimension of the brainstem resulting from the absence of crossing fibers, and
a deeper interpeduncular fossa (McGraw, 2003), these lead to the classic
molar tooth appearance (from Gleeson et al., 2004).

an abnormal cleft between the cerebellar hemispheres and
another pareidolia, the “batwing appearance” of the fourth
ventricle (McGraw, 2003).

The Hummingbird Sign
Progressive supranuclear palsy (PSP), a degenerative disease
characterized by ataxia and supranuclear vertical gaze palsy
(Chen et al., 2010; Leigh and Zee, 2015; Alexander et al.,
2018), is associated with the “hummingbird sign,” also called
the “penguin sign” (Graber and Staudinger, 2009). On mid-
sagittal plain MRI of PSP patients, midbrain atrophy appears
to resemble a hummingbird (Kato et al., 2003; see Figure 6A).
Because this midbrain atrophy is present only in PSP patients,
the hummingbird sign can effectively differentiate PSP from
Parkinson’s disease patients with a diagnostic sensitivity of
around 100% (Verma and Gupta, 2012).

The Double Panda Sign
The “double panda sign” is associated with Wilson’s disease,
characterized by copper accumulation in the body leading
to psychiatric symptoms (Jacobs et al., 2003). It includes
two separate panda faces: a “face of the giant panda” on
the midbrain and a “face of the miniature panda” on the
tegmentum region of the pons (see Figures 6B,C). Other
disorders, such Methyl alcohol poisoning and Leigh disease, can
also produce the double panda sign; thus, its presence does
not result in a definitive diagnosis without additional findings
(Das and Ray, 2006).

The Scottie Dog Sign
Pars interarticularis fractures are common sports injuries in
young athletes (Syrmou et al., 2010). The “Scottie dog sign”
helps radiology students to rapidly orient themselves to the
different parts of the vertebrae, and then recognize this injury
in oblique radiographs of the spine (Foye et al., 2014). Different
parts of the vertebrae can be visualized as different parts of a
dog. If the dog’s neck appears to have a collar or break, this
represents a fracture or defect in the pars interarticularis (see
Figure 7A).
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FIGURE 6 | Examples of neuroradiological imaging pareidolia in central nervous system diseases. (A) Midbrain atrophy (thin arrow) without atrophy of the pons (thick
arrow) results in the appearance of a hummingbird in patients with progressive supranuclear palsy. (B) Increased signal at the tegmentum with decreased intensity at
the superior colliculi appears to represent a large panda head (arrow), and (C) a second head of a smaller panda is visible at the pons (A is modified from Verma and
Gupta, 2012; B,C from Sonam et al., 2014).

FIGURE 7 | Examples of pareidolia within musculoskeletal pathology. The left image in (A) illustrates the anatomy of the lumbar spine, including the transverse
process (TP), the superior articular process (SAP), the inferior articular process (IAP), the spinous process (SP), the pedicle (P), and the pars interarticularis (PI). The
radiograph in the middle panel shows a fracture of the pars interarticularis. As demonstrated in the right panel, the vertebrae can be visualized as Scottie dogs, with
pars interarticularis fractures resembling collars around the dogs’ necks. (B) The left image shows the musculoskeletal anatomy, including—crucially—the pedicle
(P). In the middle panel, one pedicle is missing. The pedicles—as visualized in the right panel—resemble owl eyes: the owl appears to be winking when one pedicle
is missing (for instance, if destroyed by metastatic cancer) (from Foye et al., 2014).
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FIGURE 8 | Frontal (A) and lateral (B) radiographs of a patient who suffered a gunshot wound to the skull seem to indicate that the bullet is within the skull. However,
the skull does not appear to be fractured, and there is no indication that the bullet actually passed through the skull. A CT scan (C) provided the critical viewpoint to
conclude that the bullet was just underneath the scalp (A–C from Daffner, 1989). In a separate case, frontal (D) and lateral (E) radiographs seem to indicate that a
bullet is within the lung. However, a CT scan (F) revealed that the bullet was in the surrounding tissues.

The Winking Owl Sign
The “winking owl sign” is the most common finding in
plain spinal x-rays in patients with symptomatic extradural
metastasis (Livingston and Perrin, 1978). The cancer might not
be recognized if the sign is not detected. Thus, the presence
or absence of the “winking owl sign” sign can aid diagnosis,
as the sign is not seen when the metastasis is intradural or
extramedullary (Perrin et al., 1982). Foye et al. (2014) argued
that teaching students the “winking owl sign” facilitates their
detection of missing pedicles, allowing them to determine if any
destruction is symmetrical (see Figure 7B).

The examples above indicate the value of pareidolia illusions
as educational and training tools in radiology, easy for trainees
to remember and apply quickly to improve diagnostic accuracy
(Maranhão-Filho and Vincent, 2009; Foye et al., 2014; Manley
and Maertens, 2015). Many radiologists use pareidolia in the
practice of their profession, even if they are unfamiliar with the
meaning of the term as an illusion involving pattern recognition
(Maranhão-Filho and Vincent, 2009).

Illusions Due to Viewpoint in Space
When only 2D radiographic images are used, the limited
viewpoints involved can prevent radiologists from seeing
important anatomical structures. Except for cases in which
contact between an object and local structures causes changes

in opacity (thus providing a cue to the object’s relative location,
called the “silhouette sign”; Kumaresh et al., 2015), it can be
difficult or impossible to judge the anteroposterior location of
an object from a single frontal image. In addition, the apparent
position of structures can change with changes in line of sight, an
effect called the “parallax phenomenon” (see Figures 8A–F).

Illusions from parallax phenomena or overlap of structures
can be resolved by taking additional images with oblique
viewpoints (as opposed to only two 90◦ views) or by using
different imaging methods (such as fluoroscopy) to view the
structures from different angles as needed (Volz and Martin,
1977; Daffner et al., 1982; see Figure 9).

Expectancy Effects
It is difficult to draw a hard line between pure vision vs. visual
cognition: some biases typically considered to be cognitive can
prevent observers from perceiving an image in a way that
matches reality. For example, radiologists change the way they
view images based on how likely they believe an abnormality
will be—a cognitive phenomenon with important perceptual
and diagnostic implications. When abnormalities are rare, as is
typically the case in radiology, there can be a higher frequency
of false-negative readings (Reed et al., 2011; Evans et al.,
2013a; Wolfe et al., 2016). This “prevalence effect” also causes
radiologists to increase the amount of viewing time for individual
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FIGURE 9 | Frontal and lateral projections result in the star (representing an
abnormality) either (A) appearing to be within the body or (B) correctly
perceived as outside of the rectangular form with a lateral projection. Two
views are thus sufficient to localize objects as either inside or outside a region,
but only for rectangular parts of the body (Daffner et al., 1982). These
“parallax phenomena” are both more likely and less easily resolvable with
curved surfaces—like many structures in the body, including the skull and
lungs in Figure 5—than with rectangular structures (inspired by an image
from Daffner et al., 1982).

images when they expect the incidence of abnormalities to
be high (i.e., when reading the chest radiographs of known
smokers)—however, one study found that increased expectation
of abnormalities was not linked to false positives (Evans et al.,
2013a). Conversely, radiologists can fail to perceive unexpected
findings even when seemingly obvious. In an illustration of the
“inattentional blindness” phenomenon, radiologists may even
look directly at something unexpected without perceiving it. In
one study, a large image of a gorilla—48 times the size of a
5-mm lung nodule—was inserted into the last case examined
during a nodule detection task. Twenty of twenty-four (83%)
radiologists failed to perceive the gorilla, and the majority failed
to notice it even after setting their eyes on it (Drew et al., 2013).
Despite this high failure rate, expert radiologists performed better
than non-experts: every naïve observer tested failed to notice
the gorilla. Knowing the patient history—and thus having some
idea of what to look for—can additionally improve accuracy
(McNeil et al., 1983; Berbaum et al., 1989, 1993): providing image
readers with pertinent clinical history increased the accuracy of
chest radiolograph interpretations from 16 to 72% for trainees

and from 38 to 84% for experienced radiologists in one study
(Brady et al., 2012).

Distinguishing Illusion From Reality
Perception begins with the visual input itself; thus, medical
image optimization can help prevent certain types of
radiological illusions—especially those caused by artifacts
of image formation (see Krupinski, 2006; Society for Imaging
Informatics in Medicine, 2020). Light conditions, screen
resolution, and room luminosity can all contribute to
illusions. Thus, optimization of each of these factors can
reduce uncertainty and decrease the prevalence of perceptual
illusions (Sabih et al., 2011).

Radiologists have begun exploring the possibility of using
smartphones for interpreting some radiographic images (Cruz
et al., 2018), though some caution is advisable in these and
similar approaches, as the incidence of radiologic illusions on
(the smaller) smartphone displays is yet to be assessed. The
development of new medical displays and techniques in radiology
practice (i.e., those involving augmented or mixed reality) may
moreover create new visual contexts for illusions to occur. For
example, when head-mounted displays or operating equipment
are augmented to overlay neuroradiological images on a patient
during surgery, the surfaces, contours, and other visual attributes
of the image may overlap with the patient’s form in ways that
distort perception. Thus, it is critical to explore and be aware of
potential illusions that may arise as a direct result of advances in
medical technologies.

A judicious strategy to help distinguish reality from illusion
is to rely on multiple sources of information for diagnosis,
as opposed to a single finding. For example, the absence of
secondary signs of trauma can help distinguish apparent from
true fractures, where the presence of other findings can provide
confirmatory evidence of a lesion. Similarly, second readings of
uncertain radiographic findings (Sabih et al., 2011) are known to
improve accuracy (Lauritzen et al., 2016). Thus, we recommend
that referral clinicians look at their patients’ studies rather
than relying solely on the radiology report. While radiologists’
perceptual abilities to detect abnormalities are more developed
than those of referral clinicians (Reinus, 1995; Waite et al.,
2019, 2020; Alexander et al., 2020), a second viewer who is
more attuned to the patient’s history may notice details that the
first viewer missed.

Ultimately, if a radiologist has difficulty distinguishing an
illusion from a true lesion, repeating the image (ideally on a
different axis) or using a different imaging modality could help.
If needed, radiologists should rely on additional diagnostic tests
and information from the patient history. If an image contradicts
all other available evidence, a prudent radiologist should consider
that the image interpretation may be wrong.

CONCLUSION

Perceptual errors in radiology, including the illusions described
above, are a significant contributor to patient harm (Waite et al.,
2017, 2019). Yet, the perceptual training of radiologists relies
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on the informal teaching of some “tips and tricks” and “the
techniques taught, while valid, do not result from a systematic
review of the perceptual literature or understanding of the
human eye-brain system” (Auffermann and Mazurowski, 2018,
p. 472). Visual illusions can mimic lesions, causing radiologists
to report pathology where there is none—leading to unnecessary
workups or more invasive procedures. Thus, knowledge of how
to detect and handle these illusions may help prevent premature
or incorrect diagnoses.

Extending the existing knowledge about illusory perception
from well-controlled lab studies to radiological practice is far
from straightforward. Searching for abnormalities in radiologic
images is likely to differ in many ways from searches conducted
in non-radiological settings. Notably, radiologists can arrive
to the correct diagnoses even when given very little time
to search images and forced to guess (Evans et al., 2013b,
2016). However, prior research has found that radiologists are
no better than non-specialists at finding hidden images in
line drawings and “Where’s Waldo?” illustrations, suggesting
that radiology training does not result in any cognitive
or perceptual improvement that generalizes across search
domains. Further, increased practice with “Where’s Waldo?”
images does not enhance radiologic search accuracy (though
it could improve overall search speed) (Sahraian et al., 2020).
Instead, radiologic expertise is specific to radiologic images,
suggesting critical differences between radiologic and non-
radiological perceptual tasks (Nodine and Krupinski, 1998; see
also Kelly et al., 2017).

Medical image perception has many qualities that are known
to increase task difficulty in other contexts: the displays are

complex and cluttered (Neider and Zelinsky, 2011), targets are
unknown and vary widely in appearance (Alexander et al., 2019),
are often low in salience (Biggs and Mitroff, 2015), are often
similar to distractors (Alexander and Zelinsky, 2011, 2012), and
are sometimes occluded by other structures (Alexander and
Zelinsky, 2018). In addition, images may include more than one
target or no targets (Clark et al., 2012; Waite et al., 2017). The
intrinsic difficulty of the task may produce a set of behaviors
that facilitate rapid and accurate performance in most cases
but may increase the likelihood of particular illusions. A better
understanding of how radiologists might be trained to avoid such
illusions, and/or use them to their advantage, could enhance
patient safety and save lives.
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