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Editorial on the Research Topic

The subcellular architecture of mitochondria in driving cellular

processes

Mitochondria regulate numerous cellular processes including metabolism, gene

expression, motility and migration, as well as cell division, repair and death. Due to

their ability to dynamically remodel, distribute throughout the cell, and interact with

other organelles, mitochondria can perform its functions by acting locally or globally. The

field of mitochondrial dynamics has thus grown from simple textbook observations of a

static “kidney-bean” like energy producing structures to an organelle that works by

dynamically changing its architecture and association with other organelles. The

importance of the dynamic mitochondrial network and how integral it is to cellular

function is highlighted by a growing list of diseases associate with defects in this process

(Yapa et al., 2021). This Research Topic presents a collection of Original Research and

Review articles that describe the machinery regulating mitochondrial dynamics,

mitochondria-organelle interactions, and their relationship with cell-type specific

functions (Yu et al., 2021; Cartes-Saavedra et al., 2022; Willingham et al., 2021;

Bonjour et al., 2022), and examine how these regulate physiological and pathological

processes such as cell division, cell motility, and tumor metastasis (Pangou and Sumara

2021; Madan et al., 2022; Boulton and Caino. 2022).

Mitochondrial fission is controlled through recruitment of the primary mitochondrial

fission protein Dynamin-Related Protein 1 (DRP1) to mitochondria by adaptor proteins

(Giacomello et al., 2020). In their research article, Yu and others clarify the control of

adaptor protein-DRP1 interaction in regulating mitochondrial fission. They show that

DRP1 spontaneously exists in multiple oligomeric states and the adaptor proteins show

differential binding to these oligomers. While higher order oligomers are preferentially

bound by Mitochondrial Fission Factor (MFF), adapter proteins MiD51/MiD49 can bind

to a wider range of DRP1 assemblies. Their work shows that while MFF only recruits
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active DRP1, loss of MiD51/MiD49 impairs DRP1/MFF

interactions. Therefore, although preferential recruitment of

DRP1 by MFF occurs, the additional adapter proteins play a

significant role in mediating this interaction (Yu et al.). These

data identify selective binding dynamics of DRP1 adapter

proteins to explain their non-overlapping roles in

DRP1 recruitment to mitochondria in healthy cells that gets

disrupted in disease caused by the loss of adaptor proteins

(Koirala et al., 2013; Horn et al., 2020).

Unlike DRP1-mediated outer mitochondrial membrane

(OMM) fission, Optic atrophy-1 (OPA1) regulates inner

mitochondrial membrane (IMM) dynamics, mutations in

which leads to dominantly inherited optic neuropathy that

causes vision loss (Alexander et al., 2000; Olichon et al., 2006;

Finkel et al., 2015; Weisschuh et al., 2022). Both OMM and IMM

dynamics are controlled by, and in turn control, many inputs

including calcium (Alexander et al., 2000; Horn et al., 2020). The

research article by Cartes-Saavedra and others shows that cells

lacking OPA1 have closer ER-mitochondrial contacts, which

results in increased Ca2+ mobilization from ER to

mitochondria. This was supported in cells from patients

carrying OPA1 GTPase or GED domain mutations. Their

study substantiates the role of OPA1 in modulating ER-

mitochondrial coupling and shows even when mutant and

WT OPA1 proteins are present together in patient cells, ER-

mitochondrial Ca2+ homeostasis is disrupted, contributing to

autosomal dominant optic atrophy (Cartes-Saavedra et al.).

Complimenting the mechanistic studies of mitochondrial

shape change, Bonjour et al. examined how the mitochondrial

ultrastructure changes during mouse eosinophil maturation and

in inflammatory disease. They performed high-resolution

mitochondrial ultrastructure analysis using transmission

electron microscopy (TEM) and 3D tomography. This

uncovered a reduction in mitochondrial area by 70% during

eosinophil development that was attributed to increases

mitophagy in immature eosinophils. They show that

mitochondria form extensive contacts with other

mitochondria and cellular organelles at a higher frequency in

immature versus mature eosinophils. During asthma-induced

inflammation, mitochondrial cristae remodeling occurs and

mitochondrial contacts with granules increases. This

highlights cell-specific mitochondrial ultrastructure remodeling

that is responsive to increased inflammation, expanding the

growing body of work highlighting mitochondrial

ultrastructural changes in immune cell activity.

Expanding on the Original Research, Review Articles

included in this Research Topic provide a comprehensive

overview of contributions of mitochondrial dynamics to

various physiological functions. In their minireview,

Willingham et al. review subcellular specialization of

mitochondrial structure and function in skeletal muscle and

how plasticity of these mitochondrial features regulates

function and physiological adaptations of skeletal muscle

(Willingham et al., 2021). The review by Pangou and Sumara

explore the connection between mitosis and cell division by

discussing the regulation of mitochondria by mitotic

machinery and how in turn mitochondrial function and

inheritance regulates mitosis. They discuss the mitochondrial

dynamics during mitosis and how its dysregulation is linked to

diseases (Pangou and Sumara 2022). The discussion of

mitochondrial involvement in cell division is also covered by

Madan et al., who examine this for polarized epithelium and how

mitochondrial dynamics and metabolism play a role during

epithelial-mesenchymal transition and cell migration for

wound healing, inflammatory responses and tissue remodeling

(Madan et al., 2022). Extending this discussion to the

pathological condition of tumor metastasis, Boulton and

Caino have explored how the molecular mechanisms of

mitochondrial dynamics affect the growth, metabolism, and

invasiveness of tumor cells. They discuss how mitochondrial

fission machinery regulates growth factor and ROS signaling that

drive metastasis through regulation of tumor cell and its

microenvironment (Boulton and Caino. 2022).

Together the primary research articles and reviews collected

in this Research Topic highlight how control over the

mitochondrial spatial, temporal and structural changes drive

cell-type specific signaling, to support cellular function in

healthy and diseased states. We thank the authors for their

contributions and expert insights, the collection of which in

this Research Topic will add new insights into the growing

recognition of mitochondrial dynamics and its subcellular

architecture in driving diverse physiological processes.
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