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Introduction: Pericardial fluid is enriched with biologically active molecules of

cardiovascular origin including microRNAs. Investigation of the disease-specific

extracellular microRNAs could shed light on the molecular processes underlying disease

development. Arrhythmogenic right ventricular cardiomyopathy (ARVC) is an inherited

heart disease characterized by life-threatening arrhythmias and progressive heart failure

development. The current data about the association between microRNAs and ARVC

development are limited.

Methods and Results: We performed small RNA sequence analysis of microRNAs of

pericardial fluid samples obtained during transcutaneous epicardial access for ventricular

tachycardia (VT) ablation of six patients with definite ARVC and three post-infarction

VT patients. Disease-associated microRNAs of pericardial fluid were identified.

Five microRNAs (hsa-miR-1-3p, hsa-miR-21-5p, hsa-miR-122-5p, hsa-miR-206, and

hsa-miR-3679-5p) were found to be differentially expressed between patients with ARVC

and patients with post-infarction VT. Enrichment analysis of differentially expressed

microRNAs revealed their close linkage to cardiac diseases.

Conclusion: Our data extend the knowledge of pericardial fluid microRNA composition

and highlight five pericardial fluid microRNAs potentially linked to ARVC pathogenesis.

Further studies are required to confirm the use of pericardial fluid RNA sequencing in

differential diagnosis of ARVC.

Keywords: microRNA, small RNA sequencing, pericardial fluid, arrhythmogenic (right ventricular) cardiomyopathy,

expression analyses
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INTRODUCTION

Pericardial fluid is a plasma ultrafiltrate found between
the visceral and parietal pericardium, a double-walled sac
surrounding the heart and roots of great vessels (1). Pericardial
fluid is formed by the diffusion from both pericardial and
epicardial vessels, as well as trans myocardial diffusion and acts
as a lubricant, isolating, and protective layer for the beating
heart (2). Due to a low clearance rate (3), pericardial fluid
is enriched with heart-derived biologically active molecules,
including cytokines, hormones, and nucleic acids (4–9). Thus,
the composition of pericardial fluid potentially could influence
the heart physiology and reflect certain heart conditions.

Among nucleic acids circulating in the pericardial fluid,
extracellular microRNAs are of special interest. These short
regulatory RNAs are extremely stable in the extracellular space
due to the formation of RNA–protein complexes or packaging
into vesicles, which protect them from nuclease digestion (10–
14). Currently, data about pericardial microRNAs in patients
with different structural heart diseases are lacking. A few
studies reported on the differential expression of pericardial
microRNAs in some common cardiovascular conditions. For
instance, miR-423-5p was found to be enriched in pericardial
fluid compared to serum; moreover, its levels differed in stable
and unstable angina pectoris and aortic stenosis (15). Kuosmanen
et al. (9) profiled microRNAs from the pericardial fluid of
heart failure patients undergoing open-heart surgery and found
no associations between microRNA profile and the clinical
phenotype. In another study, exosomes from the pericardial
fluid of patients were reported to contain myocardial-derived
microRNAs promoting angiogenesis in vitro and in vivo (16).
Taken together, these data suggest that microRNAs of pericardial
fluid are biologically active molecules and could participate in
cell-to-cell crosstalk.

Here, we focused on arrhythmogenic right ventricular
cardiomyopathy (ARVC), an inherited disease difficult to
diagnose and prognosticate (17, 18). At the early stages,
ARVC is often asymptomatic or is manifested by heart rhythm
abnormalities. During the ARVC progression, heart failure
develops as a result of substitution of myocardium with
fibrous and fat tissues (19). At the molecular level, ARVC is
accompanied by significant changes in the signaling pathway
activity (20–22). MicroRNAs as transcriptional regulators were
reported to be involved in this pathological signaling network.
Expression levels of miR-21 and miR-135b were found to
be upregulated and downregulated correspondingly in the
myocardium of ARVC patients (23). Transcriptome analysis
of the HL-1 cells with PKP2 knockdown representing ARVC
in vitro model revealed the downregulation of miR-184 (24).
MicroRNA expression screening in plasma samples of ARVC
patients and patients with idiopathic ventricular tachycardia
(VT) revealed decreased expression of miR-320a associated with
ARVC (25). Study performed on cardiac stromal cells disclosed
three microRNAs (hsa-miR-520c-3p, hsa-miR-29b-3p, and hsa-
miR-1183) differentially expressed between ARVC and control
condition (26). Reduced blood plasma level of miR-320a-3p and
elevated plasma levels of miR-144-3p, miR-145-5p, miR-185-5p,

and miR-494-3p were reported to be associated with ARVC
(27). A study involving transgenic mice carrying human DSG
Q558∗ gene revealed different patterns of miRNA expression
between the right and left ventricles: miR-217-5p and miR-708-
5p were found to be upregulated and miR-499-5p was found to
be downregulated specifically in the right ventricle (28). A recent
study analyzing the microRNA expression profiles in blood
and right ventricle tissue samples revealed that the expression
of six microRNAs (miR-122-5p, miR-133a-3p, miR-133b, miR-
142-3p, miR-182-5p, and miR-183-5p) was able to discriminate
ARVC samples from healthy ones or other cardiomyopathy
samples (29).

Although serum and myocardial microRNA expression
evaluation has been reported, no commonmicroRNA expression
signature for ARVC is known. We suggested that microRNA
composition of pericardial fluid in patients with ARVC might
be specific, reflecting myocardial ARVC-related structural and
molecular changes. We performed sequencing of microRNAs
circulating in pericardial fluid of ARVCpatients and patients with
post-infarction VT (control group). We described the microRNA
composition of pericardial fluid and performed an analysis of
differentially expressed microRNAs.

MATERIALS AND METHODS

Patient Characteristics
Patients referred for epicardial VT mapping and ablation
between January 2019 and November 2020 were prospectively
screened for inclusion into the study. Inclusion criteria were the
following: indication to VT ablation; presumably epicardial VT
exit site; a definite ARVC diagnosis, or the presence of a proven
post-myocardial infarction scar; signed informed consent for the
study. General exclusion criteria were the following: previous
cardiothoracic surgery that potentially prevented pericardial
manipulations; ongoing electrical storm (multiple defibrillation
shocks in a short period of time); unsuccessful epicardial access; a
previous ablation procedure <3 months ago; previous epicardial
ablation; inadvertent right ventricle puncture during epicardial
access, and/or visible blood in the pericardial fluid sample.
Specific exclusion criteria for ARVC patients were other from
“definite ARVC” diagnosis according to the established criteria;
predominantly left ventricle disease and/or severe left ventricle
systolic dysfunction (<40%); stenotic coronary artery disease; the
history of angina and/or myocardial infarction. Specific exclusion
criteria for ischemic group patients were severe right ventricle
systolic dysfunction; indefinite myocardial scar; a coronary artery
lesion requiring intervention. Patient clinical characteristics are
summarized in Table 1.

Pericardial Fluid Collection
Epicardial access was performed under general anesthesia
via a subxiphoid transcutaneous puncture under fluoroscopic
guidance, as described in detail earlier (30). Special attention was
paid to enter the pericardial space without any damage to the
right ventricle and to a minimal use of contrast media. Once a
sheath was introduced into the pericardial space, pericardial fluid
was aspirated into an empty sterile syringe. The fluid was visually
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TABLE 1 | Patient demographics and clinical characteristics.

Patient Age Sex Disease-associated

genetic variants

Diagnosis Cardiac

arrest

ICD

implanted

LV EF, % RV

dysfunction

Heart

failure,

functional

class

Antiarrhythmic

drugs*

Number of

VT induced

Previous

ablation, >3

months

Previous

ablation, <3

months

Acute

ablation

results

1 73 M CAD, post-MI No No 23% No II BB 1 0 1 VT

non-inducible

2 70 M CAD, post-MI No Yes 40% No II Amiodarone +

BB

2 0 1 VT

non-inducible

3 53 M CAD, post-MI No Yes 30% No III Sotalol 1 0 0 VT

non-inducible

4 30 F PKP2 c.C235T,

p.R79X, rs121434420

ARVC, definite No Yes 57% No I BB 0 0 1 VT

non-inducible

5 53 M PKP2 c.2509delA,

p.S837Vfs,

rs727504432, DSG2

c.T3352A, p.S1118T

ARVC, definite No Yes 64% Yes I Amiodarone +

BB

1 0 0 VT

non-inducible

6 59 F ARVC, definite No Yes 67% No I Amiodarone 0 0 0 VT

non-inducible

7 38 M JUP c.G2105A,

p.R702H,

rs200690479

ARVC, definite No Yes 60% Yes I BB 0 0 0 VT

non-inducible

8 20 M FLNC c.G3800A,

p.R1267Q,

rs768767784

ARVC, definite No Yes 53% No I BB VF 3 1 Clinical VT

non-inducible

9 24 M DSG2 c.G671A,

p.S224N

ARVC, definite No No 50% No I BB 0 0 0 VT

non-inducible

CAD, coronary artery disease; MI, myocardial infarction; ARVC, arrhythmogenic right ventricular cardiomyopathy; ICD, implantable cardioverter-defibrillator; VT, ventricular tachycardia; BB, beta-blocker; VF, ventricular fibrillation.

*Antiarrhythmic drugs present during the ablation procedure.
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assessed for the presence of blood; blood-contaminated samples
were discarded. A blood sample was collected from a femoral
vein sheath immediately after the pericardial access. Collected
pericardial fluid was centrifuged at 3,000 g at 4◦C for 15min, and
then supernatant was collected, aliquoted, and stored at−80◦C.

Genetic Testing
Genomic DNA was extracted from blood using FlexiGene
DNA Kit (Qiagen). Target sequencing of 108 cardiomyopathy-
and arrhythmia-associated genes was performed using Haloplex
target enrichment (Agilent) with subsequent sequencing on
MiSeq instrument (Illumina) as previously described (31). If
disease-related genetic variants had not been identified, exome
sequencing was performed as previously described (32). For the
genetic variant verification, Sanger sequencing using a BigDye
Terminator v3.1 kit and a 3,500 Genetic Analyzer (Applied
Biosystems) was performed.

RNA Extraction
Before RNA extraction, samples were additionally centrifuged
at 3,000 g at 4◦C for 15min and the obtained supernatant
was used for RNA extraction. Small RNAs were extracted
using SPLIT RNA Extraction Kit (Lexogen) according to
manufacturer’s recommendations.

Small RNA Library Preparation and
Sequencing
Small RNA libraries were generated using Small RNA-Seq
Kit (Lexogen) according to manufacturer’s recommendations.
The number of amplification cycles was 20 for all samples.
Libraries were quantified using capillary gel electrophoresis using
Bioanalyzer 2,100 (Agilent), then pooled in equimolar ratios
based on 143-bp peak area, and purified in 6% PAAG gel using
Gel Extraction Module (Lexogen). Sequencing was performed
using MiSeq Reagent Kit v3 2x75bp and MiSeq equipment
(Illumina) according to manufacturer’s recommendations.

Bioinformatic Analyses
Obtained paired-end reads were merged using FLASH tool
(33), length filtered 15–31 bp using Geneious Prime 2020.0.5
(https://www.geneious.com), and then aligned to the mature
microRNA database (miRbase, http://www.mirbase.org/) using
Novoalign implemented in mirPRo tool (34). Counts were
normalized, and differential expression was calculated using R
Studio version 1.2.5019 (35) with R version 3.0.1 (36) DESeq2
package (37). Hierarchical clustering and data visualization
were performed in Phantasus version 1.5.1 (https://artyomovlab.
wustl.edu/phantasus/). Tissue-specific expression profile of
microRNAs was determined using human microRNA tissue atlas
(38). MicroRNA set enrichment analyses were performed using
TAM 2.0 tool (http://www.lirmed.com/tam2/) (39). The data
discussed in this publication have been deposited in NCBI’s Gene
Expression Omnibus (40) and are accessible through GEO Series
accession number GSE164490.

Quantitative PCR
Levels of selected microRNA were evaluated by qPCR. To
remove heparin traces, RNA was treated with heparinase (Sigma)
as was described before (41). For reverse transcription and
qPCR microRNA-specific TaqMan Assays, TaqMan MicroRNA
Reverse Transcription Kit and TaqMan Universal Master
Mix II no UNG (all Thermo Fisher Scientific) were used
according to manufacturer’s recommendations. For miR-3679-
5p measurement, a reverse transcription stem-loop primer
and a primer pair for amplification were designed using
sRNAPrimerDB online service (42). In this case, reverse
transcription was performed using TaqMan MicroRNA Reverse
Transcription Kit (Thermo Fisher Scientific), and real-time
PCR was performed using qPCRmix-HS SYBR (Evrogen).
TaqMan Assays and designed primer sequences are indicated in
Supplementary Table 1.

Correlation Analysis
Pearson’s correlation coefficient (r) and p-value were calculated
using GraphPad Prism v.5.00 to explore the association between
small RNA sequencing data and real-time PCR data. Linear
regression was used to plot the line of best fit shown in
each graph.

RESULTS

Patient Characteristics
Among 40 patients undergoing epicardial ablation during the
study period, nine subjects were eligible according to the
inclusion and exclusion criteria: six patients with definite ARVC
according to 2010 ARVC Task Force Criteria (19) and three
control patients with coronary artery disease and the history
of previous myocardial infarction, with no suspicion toward
inherited channelopathy syndromes (Table 1). Four out of six
ARVC patients (patients 4, 5, 7, 9) carried genetic variants in
genes (PKP2,DSG2, and JUP) coding for desmosomal proteins—
plakophilin-2, desmoglein-2, and junctional plakoglobin. One
ARVC patient (patient 8) carried a genetic variant in FLNC gene
coding for actin-binding filamin C protein. Target sequencing
and subsequent whole-exome sequencing did not reveal disease-
linked genetic variants in patient 6.

Presence of MicroRNA in Pericardial Fluid
Sequencing of microRNA revealed its presence in all pericardial
fluid samples. In each sample, 145–411 microRNAs were
detected, with the average number of 269microRNAs per sample.
Here, 105 microRNAs were shared between all samples (Table 2).

Description of Pericardial MicroRNAs
We analyzed microRNAs found in pericardial fluid according to
the following criteria: (1) affiliation to a particular microRNA
family; (2) cell- and tissue-specific expression. We identified
19 microRNA families presented in pericardial fluid by two or
more microRNAs (Table 3). The most abundant in pericardial
fluid microRNA family was the ubiquitous let-7 family with
11 detected microRNAs. Since the pericardial fluid could be
enriched by cardiac microRNAs, we evaluated the presence
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TABLE 2 | List of microRNAs shared between all samples.

hsa-let-7a-3p hsa-miR-26a-5p hsa-miR-99b-5p hsa-miR-181a-5p hsa-miR-320c

hsa-let-7a-5p hsa-miR-26b-3p hsa-miR-99a-3p hsa-miR-181b-5p hsa-miR-335-3p

hsa-let-7b-5p hsa-miR-26b-5p hsa-miR-99a-5p hsa-miR-181c-5p hsa-miR-335-5p

hsa-let-7c-5p hsa-miR-27a-3p hsa-miR-100-5p hsa-miR-181d-5p hsa-miR-345-5p

hsa-let-7d-3p hsa-miR-27b-3p hsa-miR-101-3p hsa-miR-182-5p hsa-miR-361-3p

hsa-let-7d-5p hsa-miR-28-3p hsa-miR-106b-3p hsa-miR-183-5p hsa-miR-378a-3p

hsa-let-7e-5p hsa-miR-28-5p hsa-miR-122-5p hsa-miR-186-5p hsa-miR-421

hsa-let-7f-5p hsa-miR-29a-3p hsa-miR-125a-5p hsa-miR-191-5p hsa-miR-423-5p

hsa-let-7g-5p hsa-miR-29c-3p hsa-miR-125b-5p hsa-miR-192-5p hsa-miR-451a

hsa-let-7i-5p hsa-miR-30a-3p hsa-miR-130a-3p hsa-miR-193a-5p hsa-miR-484

hsa-miR-10a-3p hsa-miR-30a-5p hsa-miR-140-3p hsa-miR-195-5p hsa-miR-486-5p

hsa-miR-10a-5p hsa-miR-30b-5p hsa-miR-141-3p hsa-miR-199a-3p hsa-miR-497-5p

hsa-miR-10b-5p hsa-miR-30c-5p hsa-miR-143-3p hsa-miR-199b-3p hsa-miR-532-5p

hsa-miR-15b-5p hsa-miR-30d-5p hsa-miR-146a-5p hsa-miR-200a-3p hsa-miR-574-5p

hsa-miR-16-5p hsa-miR-30e-3p hsa-miR-146b-5p hsa-miR-200b-3p hsa-miR-652-3p

hsa-miR-19b-3p hsa-miR-30e-5p hsa-miR-148a-3p hsa-miR-203a-3p hsa-miR-744-5p

hsa-miR-21-5p hsa-miR-34a-5p hsa-miR-148b-3p hsa-miR-204-5p hsa-miR-769-5p

hsa-miR-22-3p hsa-miR-92a-3p hsa-miR-151a-3p hsa-miR-221-3p hsa-miR-888-5p

hsa-miR-23b-3p hsa-miR-93-5p hsa-miR-151a-5p hsa-miR-222-3p hsa-miR-1180-3p

hsa-miR-24-3p hsa-miR-95-3p hsa-miR-152-3p hsa-miR-320a-3p hsa-miR-1246

hsa-miR-25-3p hsa-miR-98-5p hsa-miR-181a-3p hsa-miR-320b hsa-miR-4286

of known cardiomyocyte-specific microRNAs: hsa-miR-1-3p,
-133a-3p, -208a-3p, -208b-3p, -486-5p, and -486-3p. Hsa-
miR-486-5p was detected in all samples, hsa-miR-1-3p was
presented in six samples, hsa-miR-133a-3p in four samples,
hsa-miR-486-3p was detected only in two samples, and hsa-
miR-208a-3p and hsa-miR-208b-3p were not detected. Besides
cardiomyocytes, the heart also consists of fibroblasts and
endothelial cells. Thus, we identified in all pericardial fluid
samples the microRNAs from miR-29 and miR-30 families, also
having a high expression level in fibroblasts. Moreover, hsa-miR-
21-5p, known to be expressed in cardiac fibroblasts (43), was
presented in all studied samples. Two microRNAs (hsa-miR-93-
5p; hsa-miR-106b-3p) from endothelial-specific family miR-17
were also detected in all pericardial fluid samples. Blood cell-
derived microRNAs are also likely to contribute to pericardial
fluid microRNA profile. Erythrocyte-specific hsa-miR-144-3p
and hsa-miR-451a were detected in five samples and in all
samples correspondingly.

Clustering and Differential Expression
Analyses
Analysis of sample similarity revealed the high similarity
of microRNA profiles of control group (post-infarction
VT) and ARVC samples (Figure 1A). Principal component
analysis (PCA) was performed in order to determine whether
microRNA expression pattern is able to separate control and
ARVC pericardial fluid samples. PCA showed no segregation
of control or ARVC samples over the first two principal
components (Figure 1B). Then, differential expression analysis
was performed to reveal microRNA expression levels that

significantly differ between patients with ARVC and the control
group. Only microRNAs with at least one non-zero count
between samples were taken into analyses. Although none of the
microRNAs passed the multiple testing correction, we used non-
corrected p-values taking into account the small group size and
pilot nature of the study (Figure 1C). We found five differentially
expressed microRNAs: two were downregulated in the ARVC
group compared to the control group (hsa-miR-3679-5p and
hsa-miR-21-5p), and three were upregulated in the ARVC group
compared to the control group (hsa-miR-122-5p, hsa-miR-206,
and hsa-miR-1-3p).

Enrichment Analysis of Differentially
Expressed MicroRNAs
To provide the functional annotation ofmicroRNAs differentially
expressed between ARVC and control groups and to prove these
microRNAs are associated with disease development, we
performed microRNA set enrichment analysis. Comparison
of differentially expressed microRNAs found in pericardial
fluid with databases of disease-associated microRNAs showed
overrepresentation of cardiovascular pathology terms—chronic
atrial fibrillation, coronary heart disease, arrhythmia, heart
diseases, and hypertension. Also, various muscular pathology
termswere found includingmuscular dystrophy,musculoskeletal
abnormalities, and distal myopathy (Figure 2A). MicroRNA
set mapping against databases containing biological processes
resulted in diverse terms including cell cycle, heart and muscle
development, inflammation, hormone-mediated signaling
pathway, T-helper 17 cell differentiation, muscle development,
skeletal muscle cell differentiation, cell death, cell proliferation,
and cardiogenesis (Figure 2B).
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TABLE 3 | MicroRNA families with two or more microRNAs detected in all pericardial fluid samples.

MicroRNA family Number of microRNAs MicroRNAs

let-7 11 hsa-let-7a-3p; hsa-let-7a-5p; hsa-let-7b-5p; hsa-let-7c-5p; hsa-let-7d-3p; hsa-let-7d-5p;

hsa-let-7e-5p; hsa-let-7f-5p; hsa-let-7g-5p; hsa-let-7i-5p; hsa-miR-98-5p

miR-10 9 hsa-miR-10a-3p; hsa-miR-10a-5p; hsa-miR-10b-5p; hsa-miR-99a-3p; hsa-miR-99a-5p;

hsa-miR-99b-5p; hsa-miR-100-5p; hsa-miR-125a-5p; hsa-miR-125b-5p

miR-30 7 hsa-miR-30a-3p; hsa-miR-30a-5p; hsa-miR-30b-5p; hsa-miR-30c-5p; hsa-miR-30d-5p;

hsa-miR-30e-3p; hsa-miR-30e-5p

miR-181 5 hsa-miR-181a-3p; hsa-miR-181a-5p; hsa-miR-181b-5p; hsa-miR-181c-5p; hsa-miR-181d-5p

miR-28 4 hsa-miR-28-3p; hsa-miR-28-5p; hsa-miR-151a-3p; hsa-miR-151a-5p

miR-8 3 hsa-miR-141-3p; hsa-miR-200a-3p; hsa-miR-200b-3p

miR-15 3 hsa-miR-15b-5p; hsa-miR-16-5p; hsa-miR-195-5p

miR-26 3 hsa-miR-26a-5p; hsa-miR-26b-3p; hsa-miR-26b-5p

miR-148 3 hsa-miR-148a-3p; hsa-miR-148b-3p; hsa-miR-152-3p

miR-320 3 hsa-miR-320a-3p; hsa-miR-320b; hsa-miR-320c

miR-17 2 hsa-miR-93-5p; hsa-miR-106b-3p

miR-25 2 hsa-miR-25-3p; hsa-miR-92a-3p

miR-27 2 hsa-miR-27a-3p; hsa-miR-27b-3p

miR-29 2 hsa-miR-29a-3p; hsa-miR-29c-3p

miR-95 2 hsa-miR-95-3p; hsa-miR-421

miR-146 2 hsa-miR-146a-5p; hsa-miR-146b-5p

miR-199 2 hsa-miR-199a-3p; hsa-miR-199b-3p

miR-221 2 hsa-miR-221-3p; hsa-miR-222-3p

miR-335 2 hsa-miR-335-3p; hsa-miR-335-5p

Quantitative PCR Validation of
Differentially Expressed MicroRNAs
To validate microRNA expression data obtained by small
RNA sequencing technique, we measured levels of differentially
expressed microRNAs using qPCR and performed correlation
analyses. Expression levels of three differentially expressed
microRNAs (hsa-miR-1-3p, hsa-miR-21-5p, and hsa-miR-122-
5p) measured by qPCR strongly correlated with sequencing data,
whether expression levels of two other microRNAs (hsa-miR-
206 and hsa-miR-3679-5p) demonstrated inconsistency between
qPCR and small RNA sequencing (Figure 3).

DISCUSSION

In the present study, we performed profiling of microRNAs in
pericardial fluid samples obtained from patients with ARVC or
post-infarction VT patients. In contrast to previous studies that
used open-heart surgery for pericardial fluid collection (9, 15, 16),
we obtained pericardial fluid samples during transcutaneous
epicardial access. This approach allowed us to obtain high-quality
pericardial fluid samples from rare patient groups.

To date, qPCR is a gold standard approach to detect
microRNAs including a circulating pool of microRNAs (44, 45).
However, rapidly developing technologies of next-generation
sequencing (NGS) allow to perform accurate quantitative
and qualitative assessment of nucleic acids including small
RNAs extracted from solid or liquid tissue samples (46–
48). In the current study, we performed sequencing of
microRNAs extracted from pericardial fluid samples, described

the pericardial fluid microRNA composition, and performed the
differential expression analysis with subsequent microRNA set
enrichment analysis.

In line with previously published reports (9, 16), we
detected microRNAs in all investigated samples and revealed
a similar spectrum of pericardial fluid microRNAs, indicating
the validity of NGS-based approaches for microRNA detection.
Pericardial fluid is formed by the diffusion from both pericardial
and epicardial vessels, as well as trans-myocardial diffusion.
Consequently, pericardial fluid microRNA repertoire is at least
partially formed by secretion of cardiac cells—cardiomyocytes,
endothelial cells, and cardiac fibroblasts (9). Since most
microRNAs are expressed in a broad spectrum of cell types
and tissues, it is hardly possible to precisely determine their
origin. However, we detected several microRNAs known to
be expressed predominantly in fibroblasts (including cardiac
fibroblasts), endothelial cells, or erythrocytes. As was previously
reported (9, 15), cardiac-specific microRNAs were not present in
all pericardial fluid samples and their average expression levels
were low. This observation indicated the moderate release of
these microRNAs from cardiomyocytes and likely the absence of
acute myocardial injury in the studied patient group, as opposed
to early stages of myocardial infarction, which is accompanied by
the elevation of cardiac microRNA levels in serum (49).

It has been suggested that microRNA composition of
pericardial fluid could reflect cellular and molecular events
underlying cardiac pathologies (9). Consistent with a previous
report (9), high levels of five microRNAs associated with
cardiac disease (let-7b-5p, hsa-miR-16–5p, hsa-miR-21–5p,
hsa-miR-125b-5p, and hsa-miR-451a) were found in pericardial
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FIGURE 1 | Results of samples clustering and microRNA differential expression analysis. (A) Similarity matrix of pericardial fluid samples calculated based on their

microRNA expression patterns. (B) Principal component analysis of pericardial fluid samples. (C) Expression heatmap and result of statistical analyses of five

differentially expressed microRNAs between control and arrhythmogenic right ventricular cardiomyopathy (ARVC) pericardial fluid samples.

fluid samples (Table 2). Some of these microRNAs could be
potentially relevant for ARVC pathogenesis even in the absence
of severe cardiac pathological remodeling.

Expression analysis revealed five microRNAs differentially
expressed between ARVC and control groups. Among
differentially expressed microRNAs, hsa-miR-1-3p and
hsa-miR-21-5p were reported to be highly expressed by
cardiomyocytes and cardiac fibroblast correspondingly (50, 51).
These two microRNAs are well-known to contribute to various
cardiovascular diseases including ischemic heart injury, atrial
fibrillation, and cardiomyopathies of different origins (52).
Hsa-miR-206 was reported to be highly expressed in skeletal
muscle but can also be present in the myocardium. Heart-
specific overexpression of hsa-miR-206 in transgenic mice
led to Cx43 downregulation and subsequently contributed to
abnormal heart rate and PR interval and shortened life span.
At the same time, hsa-miR-122-5p and hsa-miR-3679-5p do
not reveal any specific heart-expression profile; while the first
one is present in the liver in high amounts (53) and in blood
cells at lower levels (53), the second one does not have any

tissue-specific expression pattern (38). Hsa-miR-122-5p is
essential for embryonic liver development and also was reported
to regulate multiple physiological and pathological processes
in the adult liver (53, 54). Intriguingly, hsa-miR-122-5p levels
in heart tissue and blood samples were shown to discriminate
arrhythmogenic cardiomyopathy patients from unaffected
family members and patients with other cardiomyopathies
(29). In contrast, little is known about hsa-miR-3679-5p,
the novel player in cardiovascular biology. Originally, it
was discovered in peripheral blood (55). Later, two histone
demethylases, KDM7A and KDM6A (UTX), were identified as
hsa-miR-3679-5p direct targets in monocytes. Downregulation
of these genes by hsa-miR-3679-5p led to the reduction of
adhesion molecules and regulation of monocyte adhesion to
endothelial cells, which could be linked to an inflammatory
response (56). Future studies are needed to prove whether these
processes are relevant to ARVC. Surprisingly, a link between
differentially expressed microRNAs and fibrosis-related genes
encoding for proteins responsible for extracellular matrix
deposition was found. Four out of five differentially expressed
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FIGURE 2 | Enrichment analyses of microRNAs differentially expressed between control and arrhythmogenic right ventricular cardiomyopathy (ARVC) pericardial fluid

samples. (A) MicroRNA set mapping against database containing disease-associated microRNA sets. (B) MicroRNA set mapping against database containing

biological processes-associated microRNA sets. The number of microRNAs overlapping between the datasets is indicated in round brackets.

microRNAs (hsa-miR-1-3p, hsa-miR-21-5p, hsa-miR-206, and
hsa-miR-122-5p) were reported to regulate directly or indirectly
matrix metalloproteinase 2 gene (43, 57–59) and genes coding
for collagen isoforms (60–63). These microRNAs were also
reported to regulate vimentin expression—a protein being a
strong marker of mesenchymal cell- and fibroblast-specific
intermediate filament (64–67).

In line with these data, the enrichment analysis found a
strong association between differentially expressed microRNA

set and cardiovascular diseases including persistent atrial
fibrillation, coronary artery disease, unspecified heart disease,
and arrhythmias. A number of associations with skeletal
muscle pathologies were found likely due to the overlap of
microRNA expression profiles between cardiac and skeletal
muscle tissues. Analyses of associations with various biological
processes found the associations with muscle development and
differentiation and with basic biological processes like cell cycle,
cell proliferation, and cell death. Moreover, an association with
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FIGURE 3 | Correlation analyses of microRNA expression between qPCR and small RNA sequencing data. (A) hsa-miR-1-3p. (B) hsa-miR-21-5p. (C)

hsa-miR-122-5p. (D) hsa-miR-206. (E) hsa-miR-3679-5p. RQ, relative quantity. Pearson’s correlation coefficient (r) and p-value are indicated in each plot.

inflammation, which is frequently concomitant with the heart
pathology, was observed.

Despite the fact that small RNA sequencing could be used
for accurate microRNA quantification, the variation of detection
levels between different methods and platforms was reported
(68, 69). The combination of sequencing data with subsequent
qPCR analyses of selected targets allows to take advantage of
both techniques and validate the results using an independent
approach (69). We performed correlation analyses of five
differentially expressedmicroRNA levels measured by small RNA
sequencing and qPCR. Surprisingly, only a partial correlation
between small RNA sequencing and qPCR results was observed,
and a similar fact was earlier reported in other studies (68,
69). In the present study, only three out of five microRNAs
differentially expressed between ARVC and control group
showed a strong correlation between the two techniques used
for quantification.

Our study has several limitations. First, similarly to the
previous studies, we were not able to profile pericardial fluid
microRNAs of healthy subjects due to the invasive technique of
sample collection. Consequently, as a result, there was an age
difference between the experimental groups that could introduce
additional bias to the microRNA expression. In addition, the
study included a very limited number of patients meeting
the inclusion criteria. At last, a low number of differentially
expressed genes were identified, which restrict the power of
enrichment analyses.

In conclusion, we performed microRNA profiling of
pericardial fluid obtained from patients with recurrent VT
due to ARVC or previous myocardial infarction using small

RNA sequencing technique. We described the pericardial
fluid microRNA composition and revealed five differentially
expressed microRNAs. Once confirmed in future studies
with a larger number of patients, these microRNAs might
be used in differential diagnosis of structural heart diseases
in patients undergoing invasive procedures involving
epicardial access.
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