
A Bayesian analysis of the chromosome
architecture of human disorders by
integrating reductionist data
Frank Emmert-Streib1, Ricardo de Matos Simoes1, Shailesh Tripathi1, Galina V. Glazko2

& Matthias Dehmer3

1Computational Biology and Machine Learning Lab, Center for Cancer Research and Cell Biology, School of Medicine, Dentistry and
Biomedical Sciences, Queen’s University Belfast, 97 Lisburn Road, Belfast, UK, 2Division of Biomedical Informatics, University of
Arkansas for Medical Sciences, Little Rock, AR, USA, 3Institute for Bioinformatics and Translational Research, UMIT, Hall in Tyrol,
Austria.

In this paper, we present a Bayesian approach to estimate a chromosome and a disorder network from the
Online Mendelian Inheritance in Man (OMIM) database. In contrast to other approaches, we obtain statistic
rather than deterministic networks enabling a parametric control in the uncertainty of the underlying
disorder-disease gene associations contained in the OMIM, on which the networks are based. From a
structural investigation of the chromosome network, we identify three chromosome subgroups that reflect
architectural differences in chromosome-disorder associations that are predictively exploitable for a
functional analysis of diseases.

W
ithin the last few years a new approach to biomedical problems has emerged called network medicine or
systems biomedicine1–4. In contrast to classic approaches to biological or medical problems emphas-
izing individual genes or proteins5, these attempts emphasize the integration of molecular and cellular

data and the consideration of interactions and their hierarchy among key components on and between these
levels6–8. In general, systems biology approaches based on networks are among the most innovative contributions
to the recent progress in biology and medicine9,10. One reason for their success is the fact that a graphical
visualization of interacting genes or gene products leads naturally to a network representation which is easily
amenable for a theoretical analysis by statistical and computational means, because networks form also data
structures11. Hence, the graphical visualization of networks is not only appealing but the same networks pave the
way for a quantitative investigation of biological information represented by the network structure itself.

A crucial part of any sensible systems approaches, especially if aiming for novel insights into biomedical
problems, is the availability of data that provide information of the connection between the genetic or molecular
level with phenotypes. Here, by phenotype information, we mean either information about different grades or
subtypes of a disease or different stages of its pathogenesis or information about different types of disorders. An
interesting example for such an approach that is based on information provided by the Online Mendelian
Inheritance in Man (OMIM) database is a study conducted by van Driel et al.12. They constructed feature vectors
to represent phenotypes and the components of these feature vectors provide information about the occurrence
frequency of medical subject headings (MeSH) in the OMIM database. A correlation analysis revealed that similar
phenotypes correspond to modules of genes with a similar biological function. In addition, by comparing these
modules with information about protein-protein interactions (PPI) they found that these modules contain many
known protein interactions.

Probably the first study that casts a similar problem as studied by van Driel et al.12 explicitly into a network
context was proposed in a seminal work by Goh et al.13. There, a bipartite network, called the DISEASOME, was
constructed from disorder-disease gene associations based on the OMIM database. The DISEASOME network
consists of two different types of nodes. One type of nodes correspond to disorders, and the other type to disease
genes. Links can only occur between nodes of different types connecting disease causing genes with disorders. The
interesting role of the DISEASOME is that it allows to derive two further network from it, namely, the disease gene
network and the disease network. In the former, the nodes in the network consist of disease genes and two nodes
are connected if there is at least one disease that is co-associated with both disease genes. In the disease network
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nodes correspond to disorders and two disorders are connected if
there is at least one disease gene that is co-associated with both
disorders. Formally, both networks can be easily constructed from
the DISEASOME. In the meanwhile there are various applications of the
DISEASOME that studied in detail the modular structure of the disease
network14, improved algorithmic methods for predicting disease-
genes and modules15 or integrated additional data, e.g., in the form
of PPI networks or metabolic networks16–21. Also, it has been shown
that a DISEASOME can be constructed from various other data types,
e.g., from genome-wide association studies (GWAS)22–24. For a
detailed review of related approaches see25.

In this paper we tie in to these previous studies by further investi-
gating the connection of associations between disease genes and
disorders and the exploitation of the obtained results. More precisely,
the purpose of the present paper is three-fold. First, we study the
enrichment of disease genes on chromosomes to investigate if there
are specific chromosomes that have a significant association with
particular disorders. Second, we introduce a Bayesian framework
to estimate a chromosome and a disorder network from the
OMIM database. This is a methodological advancement over pre-
vious approaches13–15,22,24,26, because our approach is statistic in nat-
ure and not deterministic allowing for a quantification of the
uncertainty contained in the OMIM database. Third, we investigate
the resulting chromosome and disorder network estimated from our
Bayesian approach. Briefly, we define a chromosome network as a
graph where nodes correspond to chromosomes and a link connects
two chromosomes if there is at least one disease showing a statistical
association with disease genes on the two chromosomes. Similarly, in
the disorder network nodes correspond to ‘disorder categories’ and
two nodes are connected by a link if there is at least one chromosome
that is statistical associated with the two disorder categories. Due to
the fact that we estimate both networks from our Bayesian analysis of
the OMIM database, these networks form statistic rather than deter-
ministic networks. The advantage of this is that the level of uncer-
tainty in the estimated networks is controlable by a parameter, F,
reflecting the degree of statistical importance. Figuratively, this is
similar to a frequentist significance level allowing to control the
tolerable error rate for a Type I error27,28.

The underlying rationale of our investigations is based on the
assumption that chromosomes can be seen as a higher organizational
level, above genes. In this role, chromosomes can be perceived as
disease causing variables. Evidence in support of this for which
experimental results are available include studies about copy num-
bers variation (gain or loss of an entire chromosome), chromosomal
aberrations (gain or loss of a fragment of a genetic material) and
Single Nucleotide Polymorphisms (SNPs). So far, there are only a
few known genetic disorders, associated with an extra copy of genetic
material (duplication of the entire chromosome), such as Edwards
syndrome (trisomy of 18 chromosome), or Down syndrome (tris-
omy of 21 chromosome), probably because the majority of fetuses
with an increased number of other chromosomes are not viable. In
turn, copy number variations and changes in a gene dosage resulting
from the deletion or the amplification of a gene and its genomic
context are overwhelming in tumors, and can be even tumor-specific.
For example, a gain of 8q21.3-q24.3 and losses of 8p23.1-p21.1,
13q14.13-q22.1 and 6q14.1-q21 are considered as ‘characteristic’
aberrations in prostate tumors. That means, these aberrations were
observed in more than 20% of the examined tumors29. Similarly, in
colorectal cancer most studies reported frequent gains of chro-
mosome 7, 8q, 13q, 20q and losses of 4 and 18q30. That is, as an
example, chromosomes 13 and 6 can be associated with prostate
tumors and the chromosomes 4 and 18 with colorectal tumors.

Despite that fact that the most straightforward way of associat-
ing chromosomes with disorders is via disease genes, the cases when
a disease is the result of a single mutated gene are rare. In contrast, it
is more common that genes responsible for diseases reside on

different chromosomes. Importantly, genome-wide association stud-
ies (GWAS) are providing more and more cases of previously unsus-
pected associations between genes and disorders31. For example, in
genome-wide studies the susceptibility of age-related macular degen-
eration was found to be associated with allelic variants in the
complement factor H. However, there can be other causal variants
too31.

Based on such findings, we investigate the architecture of an esti-
mated chromosome network to identify disorder associated chromo-
somal subgroups. That means, e.g., similar to biological pathways
which represent an interacting group of genes essential to maintain
particular biological functions, we aim to identify subsets of chromo-
somes because the genes located on these are associated with the
malfunctioning of biological functions, which manifest in disorders.
Hence, our underlying rationale is inspired by pathway-based studies
utilizing significant modifications in the interaction structure among
genes32.

This paper is organized as follows. In the next section we, first,
present results about the enrichment of disease genes on chromo-
somes. Then, we present two Bayesian approaches that allow to study
disorder-chromosome associations statistically. The results from
these analyses are used to estimate a chromosome and a disorder
network. The results section finishes with a structural analysis of the
chromosome network and a discussion of the obtained results.
Finally, the paper finishes with concluding remarks and by high-
lighting differences of our approach and previous studies.

Results
Disease gene enriched chromosomes. The first analysis we perform
tests the enrichment of general disease genes on the chromosomes by
a hypergeometric test; also called Fisher’s exact test33. That means, we
categorize all genes in exactly two categories. The first category
consists of all 1722 known disease genes and the second consists of
18548 5 (20270–1722) genes, which are all other genes. Then, we test
for each chromosome separately the enrichment of the disease genes
(d-genes) among all protein coding genes (p-genes) on the
chromosome. This results in 24 p-values simulteneously obtained
by a hypergeometric test. Due to the fact that we are testing
multiple hypotheses we correct these p-values controlling the false-
discovery rate (FDR) with the Benjamini-Hochberg procedure34. For
our following analysis we use always the stringent value of FDR 5

0.01, if not stated otherwise, to declare only results as significant
which are uncontroversial. The results of this analysis leads only to
theX chromosome as significant. All other chromosomes test not
significant.

In order to obtain disease specific results for the enrichment on the
chromosomes, we repeat the above analysis for each of the 1284
disorders in the OMIM database separately. The results of this ana-
lysis are shown in table 1. We find a total of 7 different disorders that
lead to at least one enriched chromosome (listed in column three in
the table). It is interesting to note that only one disease, namely,

Table 1 | Disorders with at least 5 known disease genes which lead
to statistically enriched chromosomes for a false discovery rate of
FDR 5 0.01. The second column provides information about
wider disorder categories to which a disease belongs

disorder (# genes) category enriched Chr

Thalassemia (5) Hematological 11, 16
Schizophrenia (9) Psychiatric 22
Asthma (13) Respiratory 5
Factor VII deficiency (8) Hematological 13
Long QT syndrome (7) Cardiovascular 21
Mental retardation (24) Neurological X
Pancreatic cancer (9) Cancer 18
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Thalassemia a hematological disorder leads to two enriched chromo-
somes. An interpretation of these results is that each of these dis-
orders could be localized on specific, individual chromosomes only.
However, given that the number of known disease genes for these
disorders (shown in the first column in table 1 in bracket) is quite low
there might just not be enough disease genes to enrich more than one
or two chromosomes, despite the fact that a disease is not just loca-
lized on one or two chromosomes. Given the low number of disease
genes, the latter reason seems more likely.

As conjectured above, the number of available disease genes is in
general too low to lead to an enrichment of multiple chromosomes.
In order to compensate for this lack of information, we repeat an
enrichment analysis for 23 disorder categories, instead of individual
disorders. Due to the fact that each category is the sum of a larger
number of individual diseases, the available number of disease genes
in these categories is significantly enlarged. The results of this ana-
lysis are shown in table 2.

For the 23 disorder categories we find indeed several categories that
lead to an enrichment of multiple chromosomes. The category with
the highest number of enriched chromosomes is ‘Cancer’ (4). This is
not unexpected because cancer is know to be a very heterogeneous
disease having many subtypes and subgrades and also individual
tumors itself are composed of heterogeneous cells. Also the negative
results in table 2, showing no enriched chromosomes at all, are plaus-
ible. For example, the disorders underlying the categories ‘Psychiatric’,
‘Nutritional’ or ‘Endocrine’ are only poorly understood on the genetic
level. Further, it is of interest to note that the overlap between the 23
disorder categories is only marginal. That means, there is no category
consisting of more than one enriched chromosome which is part of
another category. This is also plausible because otherwise such a cat-
egory would be better classified as a subcategory of some other disease
class rather than to establish its own.

Two Bayesian approaches to disorder-chromosome associations.
Principally, the OMIM database provides directly information about

the associations between genes, their chromosomal locations and
disorders. Formally, this can be written as the following mapping:

g?C?D ð1Þ

Here, g corresponds to a gene, C is the chromosome the gene is
located, and D to a disorder associated with g. In the following, we
continue our investigation started in the previous section by studying
the connection of (enriched) chromosomes for disease genes and
their effect on a disorder. That means the mapping we are
considering in the following is limited to:

C?D ð2Þ

However, this limitation makes such a mapping inherently
probabilistic because we neglect information about genes, but
consider only the information about the chromosome a gene is
located on. Interestingly, this makes such a mapping more realistic
because biologically it would not be sensible to predict with certainty
that an enriched chromosome with mutations in some disease genes
will for sure lead to a certain disorder. For this reason, the mapping in
Eqn. 2 corresponds to a conditional probability, p(DjC). We would
like to remark that similar gene-disorder relations correspond also to
information typically provided by genome-wide association studies
(GWAS) on which the OMIM database is partially based on.

Interestingly, if one would like to investigate the chromosomes
associated with a particular disorder one would be interested in the
inverse probability, i.e., p(CjD). However, this information is not
provided by the OMIM database but needs to be inferred. In order
to obtain practical estimates for p(CijDj) we use a Bayesian approach
in the form:

p Ci Dj

��� �
~

p Dj Cij
� �

p Cið Þ
p Dj
� � ð3Þ

with

p Dj
� �

~
X

i[ all chromosomesf g
p Dj Cij
� �

p Cið Þ: ð4Þ

Here, Dj with j g {1, … , 24} correspond to the broad disease
categories listed in table 2 and Ci correspond to the chromosomes,
i.e., {C1, C2, … , C22, CX, CY}. Statistically, the conditional probabil-
ities p(DjjCi) are estimated from the OMIM database for all disorder
(Dj) chromosome (Ci) pairs. For the prior p(Ci) we study in the
following two different assumptions, namely a non-informative
prior and a prior that is empirically estimated from the OMIM data-
base. The latter will lead to an Empirical Bayes approach whereas the
former is a full Bayesian approach35. Specifically, we estimate the
empirical prior from the frequencies of chromosome appearances
in OMIM. Overall, the marginal probability in Eqn. 4 can be simply
obtained by integration over the likelihood and the prior probabil-
ities.

The results of our Bayesian analysis are shown in Fig. 1. The color
code we used is as follows. Dark green and light green symbols
corresponds to the non-informative (NI) and empirical (E) prior.
These probabilities are included for reasons of reference. The blue
stars and red pluses correspond to the posterior probabilities
obtained for the non-informative respectively empirical prior.
Further, we add to each plot vertical lines if the fraction of probabil-
ities (FOP), given by the posterior probability divided by the prior
probability, is larger than a factor of F, i.e., we add a vertical line if

FOPij FBð Þ~
pFB Ci Dj

��� �
pNI Cið Þ

w F [ add blue line ð5Þ

FOPij EBð Þ~
pEB Ci Dj

��� �
pEB Cið Þ

w F [ add red line ð6Þ

Table 2 | Disorder categories leading to statistically enriched chro-
mosomes for a false discovery rate of FDR 5 0.01. The first column
shows the name of the disorder category, the second column gives
the number of enriched chromosomes and the third column lists
these chromosomes

disorder category (# genes) # enriched Chr enriched Chr

Bone (62) - -
Cancer (372) 4 10, 13, 17, 22
Cardiovascular (125) - -
Connective tissue (1) 1 5
Connective tissue disorder (63) - -
Dermatological (123) 2 12, 17
Developmental (59) - -
Ear,Nose,Throat (57) - -
Endocrine (134) - -
Gastrointestinal (45) 1 5
Hematological (212) 2 4, X
Immunological (137) - -
Metabolic (345) - -
multiple (252) 1 X
Muscular (104) - -
Neurological (344) 1 X
Nutritional (26) - -
Ophthamological (196) 1 X
Psychiatric (36) - -
Renal (70) - -
Respiratory (38) - -
Skeletal (96) 1 4
Unclassified (32) 1 7
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Figure 1 | Shown are the posterior and prior probabilities for the full Bayes and empirical Bayes analysis.
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For reasons of a better visibility, in cases where both lines should be
added we introduce a slight jitter to prevent these lines from over-
lapping.

For our analysis we used F 5 2.0. That means, we require the
posterior probability to be twice as large as the prior probability in
order to be considered as statistically relevant. However, different
choices are possible and larger values of F lead to more conservative
and lower values of F to more liberal results. The reason for selecting
F 5 2.0 is partly based on our data. Estimating all values for FOP(FB)
and FOP(EB), we find that only about 10% in each case of these
values are larger than F 5 2.0. Further, from randomizations of
the data, we find all values below this threshold. Taken together,
the associations that pass our criterion are unlikely to happy by
change and in addition represent only the top findings. Further,
the need for a posterior probability to be twice as large as the prior
probability to be considered as statistically relevant appears a sensible
choice for the studied problem.

The main result of our analysis shown in Fig. 1 is that the full
Bayes and the empirical Bayes method result in very similar
results with respect to the modification of the posterior prob-
abilities. This can be visually seen by the strong coincidence of
the vertical lines in blue (full Bayes) and red (empirical Bayes).
There are only 8 exceptions (five for FB and three for EB) com-
pared to 52 matches. More specifically, the full Bayesian method
identifies chromosome 21 for immunological, chromosome 9 for
muscular and chromosome 2, 17 and X for renal disorders,
whereas for the empirical Bayesian method chromosome 20 for
endocrine and 16 for nutritional disorder are identified. This
large correspondence is also an indicator that in this case the
influence of the prior is not sensitive on the outcome, but the
data, as estimated in form of the conditional probabilities of
p(DjjCi), are sufficiently strong to dominate the posterior prob-
abilities. Further, the only disorder categories for which our
method does not lead to any increased posterior chromosomal
probabilities are from the categories ‘metabolic’ and ‘multiple’.
In contrast, the disorder categories with the largest number of
increased posterior chromosomal probabilities are ‘psychiatric’,
‘unclassified’, ‘bone’ and ‘renal’.

As a methodological alternative to the above analysis, the log-odds
(LOD) is also frequently used to obtain an indicator of the statistical
importance of an event in a Bayesian analysis. In order to dem-
onstrate the similarity of both approaches for our data, we repeat
the above analysis. More precisely, we estimate the log-odds (LOD)
of the involvement of chromosome Ci in disease Dj compared to the
none involvement of this chromosome by

LODij~log
p CijDj
� �

p not CijDj
� �

 !
: ð7Þ

The difference is that in this case, the outcome possibilities are lim-
ited to a binary case {Ci, not Ci}, instead of using all chromosomes
{C1, C2, …, CX, CY}. Hence, the posterior probabilities in Eqn. 7 are
calculated by

p CijDj
� �

~
p Dj

��Ci

� �
p Cið Þ

p Dj
� � ð8Þ

with p Dj

��Ci
� �

~
#disease genes on Ci?Dj

Sk #disease genes on Ci?Dkð Þ ð9Þ

and

p not CijDj
� �

~
p Dj

��not Ci
� �

p not Cið Þ
p Dj
� � ð10Þ

with p Dj

��Ci not
� �

~
#disease genes not on Ci?Dj

Sk #disease genes not on Ci?Dkð Þ ð11Þ

The results of the log-odds for non-informative and empirical priors
are shown in Fig. 2. Similar to Fig. 1, we include vertical lines if the
log-odds are larger than a factor F:

LODij FBð Þwlog Fð Þ[ add blue line ð12Þ

LODij EBð Þwlog Fð Þ[ add red line ð13Þ

This time there is a strong difference between the results for the two
priors. In order to explain this discrepancy we, first, explain why the
odds and the FOP are two different measures and then discuss why
priors have a stronger influence on the odds.

Regarding the former point we, first, want to note that the odds in
Eqn. 7 is comparing a hypothesis (p(CijDj)) with its alternative (p(not
CijDj)), instead of the gain of a belief in a hypothesis compared to our
prior information about the same hypothesis for the FOP, see Eqn. 5
and 6. Hence, the odds is generally smaller than the FOP whenever
the number of alternatives is large. In our case, there is a total number
of 24 different hypotheses, corresponding to the 22 autosome and the
two sex chromosomes, which constitutes a large number of categor-
ies. Second, the calculation of the odds involves two posterior prob-
abilities, whereas in Eqn. 5 and 6 a comparison between a posterior
and a prior probability is conducted. That means the denominator of
the odds (p(not CijDj)) can be larger than the associated prior making
the odds smaller than the FOP. Taken together, these two issues
make the odds in general smaller than the FOP.

Regarding the influence of the prior information, for the odds the
empirically estimated prior probabilities, i.e., p(Ci) and p(not Ci), give
a very strong preference for the alternative, because the number of
disease genes is broadly distributed over all chromosomes, see table 7,
and not concentrated on a very few of these. Numerically, we find for
the empirical priors from our data

0:905~ min
i

p not Cið Þf g ð14Þ

0:999~ max p not Cið Þf g
i

ð15Þ

This indicates that the empirical priors are too conservative, because
it would require an extremely strong signal in the data to compensate
for such a strong penalty biasing the analysis. This explains the fact
that only one LOD is larger than F, namely for connective tissue.

Interestingly, in addition to this result we observe that the LODs
for the non-informative prior match in 54 cases with the thresholded
FOPs, shown in Fig. 1. Considering that we find in total 61 cases of
the LODs and 58 cases for the FOPs larger than F, this corresponds to
a hit rate of 89% for the LODs and 93% for the FOPs. This large
correspondence provides a justification that a non-informative prior
used for the LODs is a reasonable choice, especially since for the
FOPs the results for the non-informative and the empirical prior
are almost identical. A summary of the results for the full Bayesian
analysis shown in Fig. 1 and 2 is given in table 3.

Estimation of a chromosome network. By using consensus
information from the two Bayesian analyses from the previous
section, we estimate now a chromosome network (CNet). Speci-
fically, we define the CNet in the following way. Nodes correspond
to chromosomes and two chromosomes Ci and Ck are connected by
an undirected link when their posterior probability for a common
disease Dj is larger than a factor of F compared to either the non-
informative prior or the complementary posterior probability, i.e.,

FOPij FBð ÞwF AND LODkj FBð Þwlog Fð Þ: ð16Þ
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Figure 2 | Shown are the log-odds for the full Bayes and empirical Bayes analysis.
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That means the chromosome network is constructed from consensus
information of the two Bayesian analyses from the previous section.

In Fig. 3 we show a visualization of the estimated CNet obtained by
application of the NetBioV package. In this figure, there are two link
colors. The green links correspond to the minimum spanning tree of
the network that connects all connectable chromosomes with each
other using a minimal number of links36. The orange links corre-
spond to all remaining connections. Overall, 19 of the 22 autosome
chromosomes are connected with each other, forming the giant con-
nected component37 of the chromosome network. Only the chromo-
somes 1, 2, 3 and the two sex chromosomes are unconnected. The
color of the nodes corresponds to three different chromosome cat-
egories, explained below.

From a structural analysis of the chromosome network, we find
that the chromosome with the largest degree is chromosome 18
which is connected to 12 other chromosomes. Interestingly, the
chromosomes with the largest degree within the minimum spanning
tree are chromosome 4, 15, 20 (degree of 9) which all have a direct
link to chromosome 18. In the chromosome network, a high degree
of a chromosome indicates that this chromosome is involved in
similar disorders as the chromosomes it is connected with. Hence,
it indicates a co-involvement in shared disorders. In order to assess
the ‘importance’ of the chromosomes within the CNet with respect to
their involvement in many different disorders, we calculate the (ver-
tex) betweenness centrality (bc) index, which is a frequently used
measure to assess the role of nodes within networks38–40. The
betweenness centrality index evaluates the fraction of shortest paths
that pass through a node in a network, connecting all other chro-

Table 3 | Summary of our full Bayesian analysis shown in Fig. 1
and 2. Column two gives the chromosomes for which FOPij(FB) . F
holds and column three shows results for LODij(FB) . log(F)

disorder category Chr Chr

Bone 4,11,12,18,20 4,11,12,18,20
Cancer 22 22
Cardiovascular 7,21 7,21
Connective tissue 5 5
Connective tissue disorder 6,9,15 6,9,15
Dermatological 12,15,17,18 12,15,17,18
Developmental 12,15 9,12,15
Ear,Nose,Throat 7,13,21 7,13,21
Endocrine 20,Y 20,Y
Gastrointestinal 5,7,13,18 5,7,12,13,18
Hematological 4,16,22 4,16,22
Immunological 6,21 6
Metabolic - -
multiple - -
Muscular 9,21 9,21
Neurological X X
Nutritional 5,8,16,18 3,5,8,16,18
Ophthamological 15 15
Psychiatric 6,13,15,20,21,22 6,13,15,20,21,22,X
Renal 2,16,17,19,X 16,19
Respiratory 5,8,14 5,8,14
Skeletal Y 4,Y
Unclassified 4,7,10,14,18 4,7,10,14,18

Figure 3 | The human chromosome network (CNet) where nodes correspond to chromosomes and two chromosomes Ci and Ck are connected if the
joint consensus condition in Eqn. 16 is fulfiled.
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mosome pairs with each other. A summary of our results is given in
table 4. We find that the chromosome 18 (bc 5 32.9) has the largest
betweenness centrality index followed by chromosome 4 (bc 5 26.4)
and chromosome 16 (17.0). At first, the appearance of chromosome
16 among the top three nodes with a high betweenness centrality
index may surprise since its degree is only 3. However, chromosome
16 is the bottleneck to connect chromosome 19 with the rest of the
giant connected component and, hence, needs to be on all shortest
paths to and from chromosome 19. For all other chromosomes, there
are always alternative paths connecting two chromosomes with each
other and, hence, the number of shortest paths is reduced leading to
lower betweenness centrality values. From the analysis of the degrees
and the betweenness centrality, we conclude that chromosome 4, 16
and 18 assume a central role within the chromosome network. This
implies that these chromosomes are least disorder specific, but co-
appear in many different disorders.

In order to categorize all chromosomes statistically with respect to
their importance, we randomize the chromosome network shown in
Fig. 3, B 5 105 times by conserving the number of edges, and estimate
from these networks the null distribution of mean betweenness cent-
rality values. From this, we obtain the betweenness centrality p-
values listed in table 4. We want to remark that these values have
been adjusted by the Benjamini & Hochberg procedure because we
are testing multiple hypotheses. The meaning of an adjusted p-value,
pi, that belongs to an observed betweenness centrality value, bci, is
that the probability to observe bc-values in the randomized networks
that are larger than bci is given by pi, i.e., pi 5 Prob(bc . bcijbc
observed in randomized networks).

The above analysis allows a categorization of the chromosomes in
three mutually exclusive subgroups. The first category consists of
chromosomes that have significant p-values for FDR 5 0.001. The
chromosomes 4, 13, 15, 16, 18, 20, 22 are in this category. In Fig. 3, we
highlight these chromosomes in purple. The second category con-
sists of chromosomes with the lowest betweenness centrality index of
zero, namely, 1, 2, 3, X, Y. These correspond to the unconnected
chromosomes, shown in blue, in Fig. 3. The interpretation of their
isolated role is that these chromosomes correspond to disorder spe-
cific chromosomes. That means they are only involved in specific,
individual disorders rather than in many different ones. Finally,
chromosomes with none vanishing betweenness centrality values
but none significant p-values are selectively informative for a small
number of particular disorders. The 12 chromosomes that fall within
this third category are 5, 6, 7, 8, 9, 10, 11, 12, 14, 17, 19, 21. These
chromosomes are in Fig. 3 shown in red.

As an indicator that the obtained chromosome categories are not
biased by, e.g., the dimension of the chromosomes, we estimate the
enrichment of ‘large’ and ‘small’ chromosomes, as measured by the
number of protein coding genes, see table 7, within the three categor-
ies. We find that for FDR 5 0.001, none of the three categories is

enriched by large or small chromosomes, according to a hypergeo-
metric test. For this analysis, we defined as ‘large’ and ‘small’ chro-
mosomes the top/bottom 10%–30% (including intermediate sizes) of
all chromosomes, without noticing any difference for any conducted
hypothesis test. This result is reassuring that the estimated chro-
mosome network and the derived three chromosome categories do
not reflect simple chromosome properties that would allow to obtain
such a categorization in a straight forward manner.

In our opinion the last category of chromosomes is from a prac-
tical point of view the most interesting one. The reason for this is the
selective nature of these chromosomes which are only involved in a
very limited number of different disorders. This enables a guided
search and a potential information transfer from the knowledge
available about one disease to use for another.

We would like to emphasize that the chromosome network pro-
vides information that is not directly contained in a, e.g., protein
interaction network. In order to demonstrate this, we use the human
protein interaction network available from the BioGrid database41.
This network consists of 8429 proteins. Using this PPI network we
construct another chromosome network in the following way. We
start with an unconnected C 3 C matrix M, with C 5 24, and increase
for every protein interaction between protein A, which is on chro-
mosome i, and protein B, on chromosome j, the edge weight between
chromosome i and chromosome j by one. That means, the elements
of the resulting matrix Mij provide the number of protein interac-
tions which occur between chromosome i and j, according to the
human PPI network. Our analysis gives the following results. First,
the obtained network is fully connected among the autosome chro-
mosomes. Only the Y chromosome is sparsely connected to other
chromosomes. Second, constructing a minimum spanning tree from
the count information in the matrix M, we find that the resulting tree
is actually a star graph centered around chromosome 1. This is
plausible because chromosome 1 contains by far the largest number
of genes. Third, by randomizing the assignment of proteins to chro-
mosomes but keeping the topology of the PPI network fixed, we
obtain cut-off values to declare count numbers between pairs of
chromosomes significant. Application of these cut-off values results
in a new network which has a minimum spanning tree with highly
connected chromosomes 1 and 3. Both results indicate that the
obtained chromosome networks are biased by the number of genes
on the chromosomes, which is plausible. However, for studying the
connection among diverse complex disorders this information is not
immediately exploitable. Repeating a similar analysis, however, lim-
ited to the disease genes present in the PPI network, gives qualita-
tively very similar results.

In order to identify relevant biological process, cellular compo-
nents or molecular functions, we perform a gene ontology (GO)42

analysis of the three chromosome categories obtained from our
CNet. More precisely, we compile a list of all disease genes that are

Table 4 | Summary statistics of the chromosome network shown in Fig. 3. Listed are values of the degree, betweenness centrality (bc) and the
FDR adjusted p-values of the betweenness centrality values for each of the chromosomes

Chr 1 2 3 4 5 6 7 8 9
degree 0 0 0 9 5 6 7 3 3
bc-value 0.0 0.0 0.0 26.4 1.9 2.3 7.6 0.0 0.0
p-value 1.0 1.0 1.0 ,1025 1.0 1.0 0.13 1.0 1.0

Chr 10 11 12 13 14 15 16 17 18
degree 4 4 6 8 6 9 3 3 12
bc-value 0.0 0.0 2.9 8.6 3.8 15.9 17.0 0.0 32.9
p-value 1.0 1.0 1.0 0.005 1.0 ,1025 ,1025 1.0 ,1025

Chr 19 20 21 22 X Y
degree 1 9 7 7 0 0
bc-value 0.0 9.2 6.2 14.1 0.0 0.0
p-value 1.0 0.0009 1.0 ,1025 1.0 1.0
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part of the three chromosome categories and test the enrichment of
these gene lists for gene ontology terms from the categories: ‘bio-
logical process’ (BP), ‘cellular component’ (CC) and ‘molecular func-
tion’ (MF). A summary of our results is shown in Fig. 4. There, the
color of the chromosome categories corresponds to the color of the
chromosome categories in Fig. 3. The triple numbers correspond to
the number of significantly enriched GO terms from the category BP/
CC/MF (in that order). To adjust for multiple testing, we use a
Bonferroni correction to control the family-wise error rate at 5%43.
The numbers outside the Venn diagram correspond to the total
number of enriched GO terms for the respective chromosome cat-
egories. For example, for the three chromosome categories we find
25/91/259 enriched GO terms in the category ‘biological process’, or
the number of none overlapping (unique), enriched GO terms for the
three chromosome categories for BP are 7/21/186. Finally, for the
number of none overlapping GO terms, we included also the
percentage compared to the total number of enriched GO terms.

That means, for example, for chromosome Category 3, we find that
the 186 unique GO terms in the category BP correspond to 72% (186/
259) of all enriched GO categories for this chromosome category.

Our results in Fig. 4 reveal that the uniqueness of the three chro-
mosome categories is in general quite high, ranging from about 25%
to over 80%. This implies that these chromosome categories repres-
ent specific biological processes, cellular components and molecular
functions. Interestingly, the highest uniqueness is obtained for chro-
mosome Category 3. This confirms our discussion provided above,
arguing that this category is the most rich from a biological perspec-
tive. In the tables 5–6, we show the top enriched GO terms for the
three chromosome categories.

From a systems perspective, different chromosomal categories
reflect, to some extent, biological processes operating at different
levels of cellular organization (see table 5 and 6): cell-cell interactions
(e.g. blood vessel remodeling, renal system process, responsible for
fluid volume regulation and detoxification in an organism: Category
1), cellular processes (e.g. cell cycle and differentiation, response to
substances: Category 2) and cellular metabolism (e.g. nucleotide bio-
synthetic processes, ATP metabolic process: Category 3). The degree
of co-involvement of chromosomes in various diseases in Categories
1, 2, 3 is echoed by the level of cellular organization of biological
processes, enriched in these categories. In other words, different
diseases are enriched in biological processes operating at the highest
levels of cellular hierarchy (cell-cell interactions), as reflected in
Category 1. Unconnected chromosomes (Category 2) are disease-
specific, and enriched biological processes operate at the level of a
single cell. A small number of particular disorders share several
biosynthetic and metabolic processes, operating at a single cell level,
too (Category 3).

This information is what one would generally expect biomedically.
However, it is interesting to see that this information could be
deduced from our chromosomal network. This hints that by using
more genes and an extended set of diseases categories one might
reveal further information from the chromosomal network that
could give new and important connections between different dis-
eases and biological processes tied with their development.

Finally, we conducted a GO analysis for testing the enrichment of
disorder categories within the three chromosome subgroups. From
this, we find hematological disorders significantly enriched in chro-
mosome Category 1, neurological disorders in chromosome

Figure 4 | Summary of the gene ontology analysis for the three categories
‘biological process’ (BP), ‘cellular component’ (CC) and ‘molecular
function’ (MF). The color of the chromosomal subgroups corresponds to

the color of the chromosomal subgroups in Fig. 3.

Table 5 | Statistically enriched GO categories for chromosome Category 1

GO.ID/BP GO term # of genes p-val

GO:0051925 regulation of calcium ion transport via … 8 1.9e-07
GO:0003014 renal system process 8 3.4e-07
GO:0009056 catabolic process 52 1.5e-06
GO:0001974 blood vessel remodeling 6 2.4e-06
GO:0050880 regulation of blood vessel size 10 2.4e-06
GO:0035150 regulation of tube size 10 2.7e-06
GO:0032412 regulation of ion transmembrane transpor… 8 4.5e-06

GO.ID/CC GO term # of genes p-val

GO:0045202 synapse 20 1.6e-06
GO:0005891 voltage-gated calcium channel complex 5 8.6e-06
GO:0030424 axon 13 8.6e-06
GO:0005913 cell-cell adherens junction 6 1.2e-05
GO:0044433 cytoplasmic vesicle part 16 1.3e-05
GO:0016529 sarcoplasmic reticulum 6 2.4e-05
GO:0016528 sarcoplasm 6 3.1e-05

GO.ID/MF GO term # of genes p-val

GO:0016836 hydro-lyase activity 7 1.5e-06
GO:0016835 carbon-oxygen lyase activity 8 1.5e-06

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 2 : 513 | DOI: 10.1038/srep00513 9



Category 2 and connective tissue and respiratory disorders in chro-
mosome Category 3.

We would like to emphasize that the reason for conducting the GO
analysis in this section only for the disease genes and not for all genes
is that the latter would us not allow to establish a sensible connection

to the inferred chromosome associations, as represented by the struc-
ture of the estimated chromosome network, because these were also
obtained from disease genes and their association with disorders, as
provided by the OMIM database.

Disorder category network. Finally, we use the result from the
Bayesian analysis in Fig. 2 to construct a network for the disorder
categories. That means, in this network nodes correspond to disease
categories, as listed in table 2 and two categories Di and Dj are
connected by an undirected link if there exists at least one
chromosome Ck with a log-odds larger than log(F), i.e.,

LODki FBð Þw log Fð Þ AND LODkj FBð Þw log Fð Þ: ð17Þ

The resulting network is shown in Fig. 5.
This figure provides a visualization of the interpretation given

above regarding the co-involvement of chromosomes in different
disorders. For example, the connection of different cancer types
and hematological disorders is well established for instance in the
form of lymphocytic leukemia, e.g., acute lymphoblastic leukemia
(ALL) or chronic lymphocytic leukemia (CLL)44,45. Also, the connec-
tion between cancer and psychiatric disorders has been studied since
decades and it is known that the prevalence of psychiatric disorders,
e.g., depression or anxiety, among cancer patients increases with the
severity of the patient’s condition46–49. Hence, the disorder category
network represents the disease susceptibility among different disor-
ders with respect to a common underlying genetic basis.

The category ‘cancer’ is also a good example of the above discussion
about the selective informativeness of chromosomes with respect to
different disorders. The implication of this can be seen in Fig. 5,
because cancer is only connected to two further disorders. This allows
a guided search focusing on the limited number of disorders associated
with cancer instead of searching the whole medical literature randomly,
which is inefficient, time consuming and costly. That means cancer,
connective tissue or immunological disorders are associated with chro-
mosomes of the third category, shown in red in Fig. 3. In contrast, the
categories multiple and metabolic disorders form isolated nodes in
Fig. 5 and, hence, correspond to chromosome category one with unspe-
cific associations to other chromosomes. This can also be seen from
Fig. 1 and 2 because these two disorder categories are the only disorders
not leading to an enlarged posterior probability for any chromosome
that would pass our threshold criterion. Lastly, bone, psychiatric, or
unclassified disorders are highly connected in the disorder network in
Fig. 5. This implies the involvement of many different chromosomes,
which can be also seen from Fig. 1 and 2. In addition to these three
disorders, there are also others with a larger number of connections to
other disorder categories but not necessarily with enlarged posterior
probabilities (compare Fig. 5 with Fig. 1 and 2) such as developmental,
hematological or muscular disorders. These connections are the result
of the Bayesian analysis we performed and the accompanied integrative
inference of information from all disorders. This provides another
example of the systems character of our analysis despite the fact that
the data we used are of reductionist origin.

As examples for predicting common genetic causes for disorders
in50 a connection between bipolar disease (BD) and hypertension
(HT), and between bipolar disease and type I diabetes (TID) has been
predicted based on GWAS data. From our disorder category network
in Fig. 5, we find direct connections between psychiatric (BD) and
cardiovascular (HT) disorders and endocrine (TID) and psychiatric
(BD) disorders. This provides independent support for this study,
because not only the data we use, but also our methodology is dif-
ferent.

Discussion
In recent years the fields Network Medicine and Systems Bio-
medicine emerged to approach biomedical problems from a systems

Table 6 | Statistically enriched GO categories for chromosome
Category 2

GO.ID/BP GO term # of genes p-val

GO:0010035 response to inorganic
substance

32 1.1e-12

GO:2000026 regulation of multicellular
organismal d…

42 3.5e-07

GO:0051094 positive regulation of
developmental pro…

31 3.6e-07

GO:0071241 cellular response to
inorganic substance

10 3.9e-07

GO:0050793 regulation of developmental
process

49 4.2e-07

GO:0000080 G1 phase of mitotic cell cycle 8 5.4e-07
GO:0070482 response to oxygen levels 18 9.5e-07
GO:0045597 positive regulation of cell

differentiat…
25 9.5e-07

GO:0051318 G1 phase 8 1.1e-06
GO:0001666 response to hypoxia 17 1.3e-06

GO.ID/CC GO term # of genes p-val

GO:0031967 organelle envelope 38 3.6e-08
GO:0031975 envelope 38 5.7e-08
GO:0000323 lytic vacuole 20 4.7e-07
GO:0005764 lysosome 20 4.7e-07
GO:0005773 vacuole 22 5.5e-07
GO:0031090 organelle membrane 71 2.3e-06
GO:0042383 sarcolemma 10 2.8e-06

GO.ID/MF GO term # of genes p-val

GO:0016705 oxidoreductase activity,
acting on paire…

17 3.1e-08

GO:0008395 steroid hydroxylase activity 7 4.3e-08
GO:0042803 protein homodimerization

activity
30 6.3e-08

GO:0004935 adrenergic receptor activity 5 4.6e-07
GO:0046982 protein heterodimerization

activity
19 1.9e-06

GO:0004936 alpha-adrenergic receptor
activity

4 2.7e-06

GO:0051400 BH domain binding 4 6.2e-06
GO:0070330 aromatase activity 6 7.8e-06
GO:0004937 alpha1-adrenergic receptor

activity
3 9.1e-06

GO:0016903 oxidoreductase activity, acting
on the a…

7 9.8e-06

Table 7 | The number of protein-coding genes (p-genes) at the
chromosomes according to the NCBI (accessed May 2012).
Further, known disease genes (d-genes) on the chromosomes are
listed

Chr 1 2 3 4 5 6 7 8 9
p-genes 2062 1266 1092 768 905 1056 939 704 808
d-genes 164 124 95 64 87 83 78 60 70

Chr 10 11 12 13 14 15 16 17 18
p-genes 768 1296 1041 338 616 613 847 1207 276
d-genes 70 121 86 40 47 44 71 103 24

Chr 19 20 21 22 X Y
p-genes 1421 554 226 449 833 185 total 5 20270
d-genes 76 32 20 49 111 3 total 5 1722
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perspective4,51–53. However, it proofed extremely challenging to pur-
sue these principle ideas practically. Our analysis constitutes an
example of such a practical realization.

In contrast to many previous approaches aiming to connect gen-
etic with phenotype information in order to obtain either disorder or
disease gene networks, our method for estimating such networks is
based on consensus information from two Bayesian analyses instead
of a deterministic method. This allows the statistical quantification of
the estimated uncertainty in the underlying disorder-disease gene
associations contained in the OMIM database resulting in paramet-
ric networks. The level of an acceptable uncertainty can be set by the
user, similarly to the significance level in a hypotheses testing frame-
work to control the Type I error rate of a test. In our study, we
demonstrated that a sensible numerical value for such a parameter
and a justification for the used priors can be obtained from the
consensus information of the two Bayesian analyses. In principle,
our chosen criterion could be loosened if a more exploratory estimate
is desired.

In addition to this methodological difference compared to pre-
vious studies, we were not aiming to estimate a disease gene network
from the OMIM database as, e.g.,13,15,18, but we were interested in a
higher organizational level in form of the chromosome network. This
was motivated by two reasons. First, to our knowledge the systematic
association among chromosomes and their co-involvement in dif-
ferent disorders has not been studied so far on a large scale. For this
reason, our results may help in fostering a general interest due to the
possibility of a practical information transfer between seemingly
different disorders. This might be especially useful considering the

fact that our analysis is purely computational not requiring the
direct involvement of patients. Second, if such a chromosome
network should be estimated from data, instead of deterministi-
cally constructed, sufficient data are needed. This implies that the
dimensionality of the problem should be balanced with the avail-
able samples. In our case this means that the number of nodes in a
network, which correspond to variables, should not be too large.
Specifically, when using disease genes as nodes in a network, the
number of variables is 1722, because that is the number of disease
genes available from OMIM. However, when using the chromo-
somes, we have only 22 autosomes and the two sex chromosomes
as variables. Here, it is important that the amount of data we have
available for our analysis is in both cases exactly the same, because
our analysis is based on the OMIM database. Statistically, it is
clear that the former estimation problem is more complex than
the latter one. In fact, we performed also a numerical analysis for
the disease genes, but the available data do not allow to perform a
robust statistical analysis on this level. Similar arguments hold for
disorders and disorder categories.

In summary, the major purpose of our study was the investigation
of the chromosome architecture of human disorders. In contrast, for
instance, to studies investigating the spatial architecture of chromo-
somes inside the cell nucleus54, our focus has been on the conceptual
organization and partitioning of chromosomes with respect to their
involvement in human disorders. This level of abstraction implies
that our obtained chromosomal subgroups cannot be experimentally
observed, e.g. by microscopy. Instead, our results constitute a pre-
dictive model that can be utilized by generating novel hypotheses

Figure 5 | The human disorder category network estimated from our Bayesian analysis.
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about the susceptibility of either disorders or disease genes in a target
pathology. Due to limitations of the data, for theoretical reasons, we
had to use broad disorder categories, instead of disease specific terms
as provided, e.g., by the International Classification of Diseases
(ICD)55. Hence, a future extension of our model, extending it down
to the level of individual disorders, could be based on an enlarged
database, possibly established from a variety of different sources in
order to obtain a finer coverage of all disorders.

Methods
For our analysis we use the OnlineMendelian Inheritance in Man (OMIM) database
http://www.ncbi.nlm.nih.gov/omim. The OMIMcontains information about known
associations between disease genes and disorders. Despite the fact that this database is
far from being complete, it represents currently a gold standard. Starting in the 1960s
as a repository to collect information about monogenic disorders, within recent years
OMIM includes more and more information about complex disorders. For our
analysis, we used information about 1, 284 disorders and 1, 777 disease genes. Further,
we utilize a classification of the 1, 284 disorders into 23 broad disease categories, as
compiled by13.

It is important to note that despite the fact that the OMIM database contains
information about hundreds of different disorders and disease genes, all this
information is collected from separate experiments. That means this information has
been generated by experiments focusing on individual disorders and disease genes,
frequently conducted in a reductionist manner.

An overview of the distribution of disease genes (d-genes) on the chromosome is
given in table 7. Further, this table shows the distribution of all protein coding genes
over the chromosomes. The protein coding genes have been obtained from NCBI via
ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/GENE_INFO/Mammalia/
Homo_sapiens.gene_info.gz.
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