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ABSTRACT Characterizing variation in the rate of recombination across the genome is important for understanding several
evolutionary processes. Previous analysis of the recombination landscape in laboratory mice has revealed that the different subspecies
have different suites of recombination hotspots. It is unknown, however, whether hotspots identified in laboratory strains reflect the
hotspot diversity of natural populations or whether broad-scale variation in the rate of recombination is conserved between subspecies.
In this study, we constructed fine-scale recombination rate maps for a natural population of the Eastern house mouse, Mus musculus
castaneus. We performed simulations to assess the accuracy of recombination rate inference in the presence of phase errors, and we
used a novel approach to quantify phase error. The spatial distribution of recombination events is strongly positively correlated
between our castaneus map, and a map constructed using inbred lines derived predominantly from M. m. domesticus. Recombination
hotspots in wild castaneus show little overlap, however, with the locations of double-strand breaks in wild-derived house mouse
strains. Finally, we also find that genetic diversity in M. m. castaneus is positively correlated with the rate of recombination, consistent
with pervasive natural selection operating in the genome. Our study suggests that recombination rate variation is conserved at broad
scales between house mouse subspecies, but it is not strongly conserved at fine scales.
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IN many species, crossing-over events are not uniformly
distributed across chromosomes. Understanding this varia-

tion and its causes is important for many aspects of molecular
evolution. Experiments in laboratory strains or managed
populations that examine the inheritance of markers through
pedigrees have produced direct estimates of crossing-over
rates in different genomic regions. Studies of this kind are
impractical for many wild populations, however, because
pedigrees are largely unknown (but see Johnston et al.
2016). In mice, there have been several genetic maps pub-
lished (e.g., Jensen-Seaman et al. 2004; Paigen et al. 2008;
Cox et al. 2009; Liu et al. 2014), typically using the classical
inbred laboratory strains, which are predominantly derived
from the Western European house mouse subspecies, Mus

musculus domesticus (Yang et al. 2011). Recombination rate
variation in laboratory strains may not, therefore, reflect
rates and patterns in wild mice of other subspecies. In addi-
tion, recombination rate modifiers may have become fixed in
the process of laboratory strain management. On the other
hand, directly estimating recombination rates in wild house
mice is not feasible without both a population’s pedigree and
many genotyped individuals (but see Wang et al. 2017).

Patterns of linkage disequilibrium (LD) in a sample of
individuals drawn from a population can be used to infer
variation in the rate of recombination across the genome.
Coalescent-based methods have been developed to indirectly
estimate recombination rates at very fine scales (Hudson
2001; McVean et al. 2002, 2004; Auton and McVean 2007;
Chan et al. 2012). Recombination rates estimated in this way
reflect long-term variation in crossing-over in the popula-
tion’s history, and are averages between the sexes. Methods
using LD have been applied to explore variation in recombi-
nation rates among mammals and other eukaryotes, and
have demonstrated that recombination hotspots are associ-
ated with specific genomic features (Myers et al. 2010;
Paigen and Petkov 2010; Singhal et al. 2015).
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The underlying mechanisms explaining the locations of
recombination events have been the focus of much research.
In house mice and in most other mammals, the PRDM9 zinc-
finger protein binds to specific DNA motifs, resulting in an
increased probability of double-strand breaks (DSBs), which
can then be resolved by reciprocal crossing-over or gene con-
version (Grey et al. 2011; Baudat et al. 2013). Accordingly, it
has been shown that recombination hotspots are enriched for
PRDM9 binding sites (Myers et al. 2010; Brunschwig et al.
2012). PRDM9-knockout mice still exhibit hotspots, but in
dramatically different genomic regions (Brick et al. 2012).
Variation in PRDM9, specifically in the exon encoding the
zinc-finger array, results in different binding motifs (Baudat
et al. 2010). Davies et al. (2016) generated a line of mice in
which the exon encoding the portion of the PRDM9 protein
specifying the DNA binding motif was replaced with the
orthologous human sequence. The recombination hotspots
they observed in this “humanized” line of mice were enriched
for the human PRDM9 binding motif.

Great ape species each have different PRDM9 alleles
(Schwartz et al. 2014) and relatively little hotspot sharing
(Winckler et al. 2005; Stevison et al. 2016). The broad-scale
recombination landscapes of the great apes are, however,
strongly positively correlated (Stevison et al. 2011, 2016),
suggesting that hotspots evolve rapidly, but that the overall
genetic map changes more slowly. Indeed, broad-scale re-
combination rates are positively correlated between closely
related species pairs with different hotspot locations
(Smukowski and Noor 2011), and between species that share
hotspots or lack them altogether (Singhal et al. 2015;
Smukowski Heil et al. 2015).

It has been suggested that a population ancestral to theM.
musculus subspecies complex split into the present-day sub-
species �350,000 years ago (Geraldes et al. 2011). In this
time, functionally distinct PRDM9 alleles and distinct suites
of hotspots evolved in the different subspecies (Smagulova
et al. 2016). In addition, there is variation in the recombina-
tion rate at relatively broad scales across several regions of
the genome between members of theM. musculus subspecies
complex (Dumont et al. 2011), and recombination rates vary
between recently diverged M. m. domesticus populations
(Wang et al. 2017). Brunschwig et al. (2012) analyzed single
nucleotide polymorphism (SNP) data for classical laboratory
strains of mice and used an LD-based approach to estimate
the sex-averaged recombination landscape for the 19 auto-
somes. Their genetic map is similar to a genetic map gener-
ated using crosses by Cox et al. (2009). However, both studies
were conducted using inbred lines whose ancestry is largely
M. m. domesticus (Yang et al. 2011), so their recombination
landscapes may be different from other members of the
M. musculus subspecies complex.

In this study, we constructed genetic maps for the house
mouse subspecies M. m. castaneus. We used the genome se-
quences of 10 wild-caught individuals of M. m. castaneus
from the species’ assumed ancestral range, originally reported
by Halligan et al. (2013). In our analysis, we first phased

SNPs and estimated rates of error in phasing. Second, we
simulated data to assess the power of estimating recombi-
nation rates based on only 10 individuals, and the extent
by which phase errors lead to biased estimates of the rate
of recombination. Finally, using an LD-based approach,
we inferred a sex-averaged genetic map and compared
this to previously published maps for M. musculus. We
show that broad-scale variation in recombination rates in
M. m. castaneus is similar to that seen in the classical inbred
strains. However, we show that the locations of potential
recombination hotspots in M. m. castaneus exhibit little
overlap with those reported in wild-derived laboratory
strains.

Materials and Methods

Polymorphism data for Mus musculus castaneus

We analyzed the genome sequences of 10 wild-caught
M. m. castaneus individuals (Halligan et al. 2013). Samples
were from North-West India, a region that is believed to be
within the ancestral range of the house mouse. Mice from
this region have the highest genetic diversity among the
M. musculus subspecies (Baines and Harr 2007). In addition,
the individuals sequenced showed little evidence for substan-
tial inbreeding, and a population structure analysis suggested
that they represent a single population (Halligan et al. 2010).
Halligan et al. (2013) sequenced individual genomes to high
coverage using multiple libraries of Illumina paired-end
reads, andmapped these to themm9 reference genome using
BWA (Li and Durbin 2009). Mean coverage was .203 and
the proportion of the genome with.103 coverage was.80%
for all individuals sampled (Halligan et al. 2013). Variants were
called with the Samtoolsmpileup function (Li et al. 2009) using
an allele frequency spectrum (AFS) prior. TheAFSwas obtained
by iteratively calling variants until the spectrum converged.
After the first iteration, all SNPs at frequencies.0.5were swap-
ped into the mm9 genome to construct a reference genome
for M. m. castaneus, which was used for subsequent variant
calling (for further details see Halligan et al. 2013). The variant
call format (VCF) files generated by Halligan et al. (2013) were
used in this study. In addition, alignments of Mus famulus and
Rattus norvegicus to the mm9 genome, also generated by
Halligan et al. (2013), were used as outgroups.

For thepurposeof estimating recombination rates, variable
sites were filtered on the basis of the following conditions.
Insertion/deletion polymorphisms were excluded, because
the method used to phase variants cannot process these sites.
Sites at which more than two alleles segregated and those
that failed the Samtools Hardy-Weinberg equilibrium test
(P , 0.002) were also excluded. The hypermutability of
CpG sites violates the assumption of a single mutation rate.
We defined sites as CpG-prone if they were preceded by a C,
or followed by a G, in M. m. castaneus, M. famulus or
R. norvegicus.

298 T. R. Booker, R. W. Ness, and P. D. Keightley



Inferring phase and estimating switch error rates

LDhelmet estimates recombination rates from a sample of
phased chromosomes or haplotypes drawn fromapopulation.
To inferhaplotypes,heterozygousSNPscalled inM.m. castaneus
were phased using read-aware phasing in ShapeIt2 (Delaneau
et al. 2013), which phases variants at the level of whole
chromosomes using sequencing reads that span multiple
heterozygous sites (phase-informative reads, PIRs), and LD.
Incorrectly phased heterozygous sites, termed switch errors,
tend to upwardly bias estimates of the recombination rate,
because they appear identical to legitimate crossing-over
events. To assess the impact of incorrect phasing on recom-
bination rate inference, we quantified the switch error rate as
follows. The sample of M. m. castaneus comprised seven
females and three males. The X-chromosome variants in
males therefore represent perfectly phased haplotypes.
We merged the BAM alignments of short reads for the
X-chromosomes of the three males (samples H12, H28, and
H34 from Halligan et al. 2013) to make three datasets of
pseudofemales where the true haplotypes are known (H12 +
H28 = H40; H12 + H34 = H46; H28 + H34 = H62).
We then jointly recalled variants in the seven female samples
plus the three pseudofemales using an identical pipeline as
Halligan et al. (2013), using the same AFS prior.

Switch error rates in Shapeit2 are sensitive both to cov-
erage and quality (per genotype and per variant) (Delaneau
et al. 2013). We explored the effects of different filter pa-
rameters on switch error rates using the X-chromosomes of
the pseudofemales. We filtered SNPs based on combinations
of variant and genotype quality scores (QUAL and GQ, re-
spectively) and on an individual’s sequencing depth (DP)
(Supplemental Material, Table S1). For the individual-
specific statistics (DP and GQ), if a single individual failed
a particular filter, then that SNP was excluded from further
analyses. By comparing the known X-chromosome haplo-
types and those inferred by ShapeIt2, we calculated switch
error rates as the ratio of incorrectly resolved heterozygous
SNPs to the total number of heterozygous SNPs for each
pseudofemale individual. We used these results to apply
filter parameters to the autosomal data that generated a
low switch error rate, while maintaining a high number of
heterozygous SNPs. We obtained 20 phased haplotypes for
each of the 19mouse autosomes, and 14 for the X-chromosome
(plus the three from the male samples). With these, we esti-
mated the recombination rate landscape forM. m. castaneus.

Estimating genetic maps and validation of the approach

LDhelmet (v1.7; Chan et al. 2012) generates a sex-averaged
genetic map from a sample of haplotypes assumed to be
drawn from a randomlymating population. Briefly, LDhelmet
examines patterns of LD in a sample of phased chromosomal
regions and uses a composite likelihood approach to infer
recombination rates between adjacent SNPs. LDhelmet ap-
pears to perform well for species of large effective population
size (Ne) and has been shown to be robust to the effects of

selective sweeps, which appear to reduce diversity in and
around functional elements of the M. m. castaneus genome
(Halligan et al. 2013). The analyses of Chan et al. (2012), in
which the software was tested, were performed with a larger
number of haplotypes than we have in our sample. To assess
whether our smaller sample size still gives reliable genetic
maps, we validated and parameterized LDhelmet using sim-
ulated datasets (see below). It should be noted, however, that
model underlying LDhelmet assumes recombination-drift
equilibrium. Violation of this assumption may therefore re-
sult in biased recombination rate estimates.

A key parameter in LDhelmet is the block penalty, which
determines the extent by which likelihood is penalized by
spatial variation in the recombination rate, such that a high
block penalty results in a smoother recombination map. We
performed simulations to determine the block penalty that
produces the most accurate estimates of the recombination
rate in chromosomes that have diversity and base content
similar to M. m. castaneus. Chromosomes with constant val-
ues of r (4Ner) ranging from 2 3 1026 to 2 3 101 were
simulated in SLiM v1.8 (Messer 2013). For each value of r,
0.5 Mbp of neutrally evolving sequence was simulated for
populations of N = 1000 diploid individuals. Mutation rates
in the simulations were set using the compound parameter
u = 4Nem, where m is the per-base, per-generation mutation
rate. The mutation and recombination rates of the simula-
tions were scaled to u/4N and r/4N, respectively. uwas set to
0.01 in the simulations, because this value is close to the
genome-wide average for our data, based on pairwise differ-
ences. Simulations were run for 10,000 generations in order
to achieve equilibrium diversity, at which time 10 diploid
individuals were sampled. Each simulation was repeated
20 times, resulting in 10 Mbp of sequence for each value of
r. The SLiM output files were converted to sequence data
suitable for analysis by LDhelmet using a custom Python
script that incorporated the mutation rate matrix estimated
for non-CpG prone sites in M. m. castaneus (see below). Fol-
lowing (Chan et al. 2012), we inferred recombination rates
from the simulated data in windows of 4400 SNPs with a
200 SNP overlap between windows. We analyzed the simu-
lated data using LDhelmet with block penalties of 10, 25, 50,
and 100. The default parameters of LDhelmet are tuned to
analyze Drosophila melanogaster data (Chan et al. 2012).
Since the D. melanogaster population studied by Chan et al.
(2012) has comparable nucleotide diversity to M. m. casta-
neus, we used default values for other parameters, with the
exception of the block penalty.

Errors in phase inference, discussed above, may bias our
estimatesof the recombination rate, since theyappear tobreak
apart patterns of LD.Weassessed the impact of these errors on
recombination rate inference by incorporating them into the
simulated data at a rate estimated from the pseudofemale
individuals. For each of the 10 individuals drawn from the
simulated populations, switch errors were randomly intro-
duced at heterozygous positions at the rate estimated using
the SNP filter set chosen on the basis of the pseudofemale
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analysis (see Results). We then inferred recombination rates
for the simulated population using these error-prone data, as
above. We assessed the effect of switch errors on recombina-
tion rate inference by comparing estimates from the simulated
data with and without switch errors. It is worth noting that
switch errors may undo crossing-over events, and thereby re-
duce inferred recombination rates if they affect heterozygous
SNPs located at recombination breakpoints.

Recombination rate estimation for M. m. castaneus

We used LDhelmet (Chan et al. 2012) to estimate recombi-
nation rate landscapes for each of theM.m. castaneus autosomes
and the X-chromosome. A drawback of LD-based approaches is
that they estimate sex-averaged recombination rates. This is a
limitation of our study as there are known differences in recom-
bination rates between the sexes inM.musculus (Cox et al. 2009;
Liu et al. 2014).

We usedM. famulus and R. norvegicus as outgroups to assign
ancestral states for polymorphic sites. LDhelmet incorporates
the mutation matrix and a prior probability on the ancestral
allele at each variable position as parameters in the model.
We obtained these parameters as follows. For non-CpG prone
polymorphic sites, if the two outgroups shared the same al-
lele, we assigned that allele as ancestral, and such sites were
then used to populate themutationmatrix (Chan et al. 2012).
This approach ignores the possibility of back mutation and
homoplasy. To account for this uncertainty, LDhelmet incor-
porates a prior probability on the ancestral base. Following
Singhal et al. (2015), at resolvable sites (i.e., where both
outgroups agreed) the ancestral base was given a prior prob-
ability of 0.91, with 0.03 assigned to each of the three
remaining bases. This was done to provide high confidence
in the ancestral allele, but also to include the possibility
of ancestral allele misinference. At unresolved sites (i.e., if
the outgroups disagreed or there were alignment gaps in
either outgroup), we used the stationary distribution of
allele frequencies from the mutation rate matrix as the prior
(Table S2).

We analyzed a total of 44,835,801 SNPs in LDhelmet to
construct geneticmaps for theM.m. castaneus autosomes and
the X-chromosome. Following Chan et al. (2012), windows of
4400 SNPs, overlapping by 200 SNPs on either side were
analyzed. We ran LDhelmet for a total of 1,000,000 itera-
tions, discarding the first 100,000 as burn-in. A block penalty
of 100 was chosen to obtain conservatively estimated broad-
scale genetic maps. For the purposes of identifying recombi-
nation hotspots, we reran the LDhelmet analysis with a block
penalty of 10. We analyzed all sites that passed the filters
chosen using the pseudofemale phasing analysis regardless
of CpG status; note that excluding CpG-prone sites removes
�50% of the available data, and thus would substantially
reduce the power to infer recombination rates. We assumed
u = 0.01, the approximate genome-wide level of neutral di-
versity inM.m. castaneus, and included ancestral allele priors
and themutation ratematrix for non-CpG sites as parameters in
the model. Following the analyses, we removed overlapping

SNPs and concatenated SNP windows to obtain recombination
maps for whole chromosomes.

It is worthwhile noting that our genetic maps were con-
structed with genotype calls made using the mm9 version of
the mouse reference genome. This version was released in
2007 and there have been subsequent versions released since
then. However, previously published genetic maps for
M. musculus were constructed using mm9, so we used that
reference to make comparisons (see below).

Broad-scale comparison to previously published maps

We compared theM. m. castaneus genetic map inferred using
a block penalty of 100 with two previously published maps
for M. musculus. The first map was generated by analyzing
the inheritance patterns of markers in crosses between inbred
lines (Cox et al. 2009) (downloaded from http://cgd.jax.org/
mousemapconverter/). We refer to this map as the Cox map.
The second map was generated by Brunschwig et al. (2012)
by analyzing SNPs in classical inbredmouse lines using LDhat
(Auton andMcVean 2007), the software upon which LDhelmet
is based (available at http://www.genetics.org/content/early/
2012/05/04/genetics.112.141036).We refer to thismap as the
Brunschwig map. The Cox and Brunschwig maps were con-
structed using far fewer markers than the present study, i.e.,
�500,000 and �10,000 SNPs, respectively, compared to the
�45,000,000 used to generate ours. Recombination rate varia-
tion in the Cox andBrunschwigmaps likely reflects that ofM.m.
domesticus, since both were generated using classical strains of
laboratory mice, which are predominantly of M. m. domesticus
origin (Yang et al. 2011). For example, in the classical inbred
strains analyzed by Cox et al. (2009), the mean genome-wide
ancestry attributable to M. m. domesticus, M. m. musculus and
M. m. castaneus are 94.8, 5.0, and 0.2%, respectively [data
downloaded from the Mouse Phylogeny Viewer (Wang et al.
2012) http://msub.csbio.unc.edu]. The ancestry propor-
tions for all classical strains, 60 of which were analyzed by
Brunschwig et al. (2012), are similar (Yang et al. 2011).

Recombination rates in the Brunschwig map and our cas-
taneus map were estimated in units of r = 4Ner. For compar-
ison purposes, we converted these units to centimorgans per
megabase using frequency-weighted means, as follows.
LDhat and LDhelmet provide estimates of r (per kilobase pair
and base pair, respectively) between pairs of adjacent SNPs.
For each chromosome, we calculated cumulative r, while
accounting for differences in the physical distance between
adjacent SNPs by using the number of bases separating a pair
of SNPs to weight that pair’s contribution to the total. By
setting the total map length for each chromosome to that of
Cox et al. (2009), we converted the cumulative r at each
analyzed SNP position to centimorgan values.

At the level of whole chromosomes, we compared mean
recombination rate estimates for castaneus with several pre-
viously published maps. Frequency-weighted mean recombi-
nation rates (in terms of r) for each chromosome in the
castaneus and Brunschwig maps were compared with centi-
morgans per megabase values obtained by Cox et al. (2009),
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and with independent estimates of per chromosome recom-
bination rates (Jensen-Seaman et al. 2004). Pearson correla-
tions were calculated for each comparison.

At the megabase pair scale, we compared variation in
recombination rates across the autosomes in the different
mapsusingwindowsof varying length.WecalculatedPearson
correlations between the frequency weighted-mean recombi-
nation rates (in centimorgans per megabase) in nonoverlap-
ping windows of 1–20 Mbp for the castaneus, Cox and
Brunschwig maps. For visual comparison of the castaneus
and Coxmaps, we plotted recombination rates in sliding win-
dows of 10 Mbp, offset by 1 Mb.

Fine-scale recombination rate variation

To assess the distribution of recombination events in
M. m. castaneus on a fine scale, we used Gini coefficients and
Lorenz curves as quantitative measures of the extent of hetero-
geneity (e.g., Kaur and Rockman 2014). In the context of a ge-
netic map, Gini coefficients close to zero represent more uniform
distributions of crossing-over rates, whereas values closer to one
indicate that recombination events are restricted to a small num-
ber of locations. We analyzed genetic maps generated using a
block penalty of 10 to construct Lorenz curves and calculated
their Gini coefficients for each chromosome separately.

Recombination hotspots can be operationally defined as
small windows of the genome that exhibit elevated rates of
recombination relative to surrounding regions. To estimate the
locations of potential recombination hotspots, we adapted a
script used by Singhal et al. (2015). We divided the genome
into nonoverlapping windows of 2 kbp, and, using themaps
generated with a block penalty of 10, classified as putative
hotspots all windows where the recombination rate was at
least 53 greater than the recombination rate in the surround-
ing 80 kbp. Recombination hotspots may be .2 kbp, so
neighboring analysis windows that exhibited elevated recom-
bination rates were merged.

We investigated whether fine-scale recombination rate
variation in wild-caught M. m. castaneus is similar to that
reported for wild-derived inbred lines. Smagulova et al.
(2016) generated sequencing reads corresponding to the lo-
cations of DSBs (hereafter DSB hotspots) in inbred strains
of mice derived from each of the principal M. musculus sub-
species and M. m. molossinus, an intersubspecific hybrid of
M. m. castaneus and M. m. musculus. We used the overlap
between our putative hotspots and their DSB hotspots for
testing similarity. However, the coordinates of DSB hotspots
were reportedwith respect to themm10 genome (Smagulova
et al. 2016). To allow comparisons with our putative hot-
spots, we converted the coordinates of DSB breaks in the
mm10 reference to mm9 coordinates using the University of
California Santa Cruz (UCSC) LiftOver tool (https://genome.
ucsc.edu/cgi-bin/hgLiftOver), with default parameters. We
compared the locations of putative hotspots identified in our
castaneusmapwith the locations of DSB hotspots using BedTools
v2.17.0 (Quinlan and Hall 2010) by counting the number
that overlapped. To determine the number of overlaps expected

to be seen by chance, we used a randomization approach as
follows. The locations of our putative hotspots were randomized
with respect to chromosome, and these shuffled coordinates
were compared to the locations of DSB hotspots. For each of
the inbred strains analyzed by Smagulova et al. (2016), this
procedure was repeated 1000 times. The maximum number of
overlapping DSB and putative castaneus hotspots observed
across all 1000 replicates was taken as an �0.1% significance
threshold.

Examining the correlation between recombination rate
and properties of protein-coding genes

We used our castaneus map to examine the relationship be-
tween recombination rates and nucleotide diversity and di-
vergence as follows. We obtained the coordinates of the
canonical spliceforms of protein coding genes, orthologous
between mouse and rat from Ensembl Biomart (Ensembl Da-
tabase 67; http://www.ensembl.org/info/website/archives/
index.html). For each protein-coding gene, we calculated the
frequency-weighted mean recombination rate from the
broad-scale map. Using the approximate castaneus reference
described above, along with the outgroup alignments, we
obtained the locations of fourfold degenerate synonymous
sites and current GC content for each gene. If a site was
annotated as fourfold in all three species considered, it was
used for further analysis. We removed poor quality align-
ments between mouse and rat that exhibited spurious ex-
cesses of mismatched sites, where .80% of sites were
missing. We also excluded five genes where there were mis-
matches with the rat sequence at all non-CpG prone fourfold
sites, since it is likely that these also represent incorrect align-
ments. After filtering, there were a total of 18,171 protein-
coding genes for analysis.

We examined the correlation between the local recombi-
nation rate in protein-coding genes and nucleotide diversity,
divergence from the rat and GC-content. Variation in the
mutation rate across the genome is a potentially important
confounding factor. For example, if the recombination rate
and mutation rate are positively correlated, we would expect
a positive correlation between neutral nucleotide diversity
and recombination rate. Because of this, we also examined
the correlation between the ratio of nucleotide diversity
to divergence from R. norvegicus at putatively neutral sites
and the rate of recombination. We calculated correlations
for all sites and for non-CpG-prone sites only. We used non-
parametric Kendall rank correlations for all comparisons.

Analyses were conducted using Python scripts, except for the
correlationanalyses,whichwereconductedusingR(RCoreTeam
2016) and hotspot identification, whichwas done using a Python
script adapted from one provided by Singhal et al. (2016).

Data availability

The authors confirm that all data necessary for performing the
analyses described in the article are fully described in the text.
Recombination maps are available in a compressed form from
https://github.com/TBooker/M.m.castaneus_recombination-maps.
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Results

SNP phasing and estimating the switch error rate

To infer genetic maps using our sample of individuals, we
required phased SNPs. Taking advantage of the high sequenc-
ing depth of the sample generated by Halligan et al. (2013),
and using a total of 44,835,801 SNPs (Table S3), we phased
SNPs using ShapeIt2, an approach that uses LD and sequenc-
ing reads to resolve haplotypes.

Wequantified the switcherror rate incurredwhen inferring
phase by analyzing pseudofemale individuals. After filtering
variants, ShapeIt2 returned low switch error rates for all
parameter combinations tested (Table S1). We therefore ap-
plied a set of filters (GQ . 15, QUAL . 30) to apply to the
actual data that predicted a mean switch error rate of 0.46%
(Table S1). When applied to the actual data these filters re-
moved 44% of the total number of called SNPs (Table S3).
More stringent filtering resulted in slightly lower mean
switch error rates, but also removed many more variants
(Table S1), reducing our ability to estimate recombination
rates at a fine scale.

Simulations to validate the application of LDhelmet

We used simulations to assess the performance of LDhelmet
when applied to our dataset. In the absence of switch errors,
LDhelmet accurately inferred the average recombination rate
down to values of r/bp = 2 3 1024. Below this value,
LDhelmet overestimated the scaled recombination rate (Fig-
ure 1). With switch errors incorporated into simulated data,
LDhelmet accurately estimated r/bp in the range 2 3 1023

to 2 3 102. When the true r/bp was,2 3 1023, however,
LDhelmet overestimated the mean recombination rate for
0.5 Mbp regions (Figure 1). This behavior was consistent
for all block penalties tested (Figure S1). We found that
inferred rates of recombination typically fell within the range
accurately estimated by LDhelmet (Figure S2 and Table 1).

Recombination rates in the M. m. castaneus genome

We constructed two maps of recombination rate variation for
M. m. castaneus using LDhelmet. The first was a broad-scale
map, constructed using a block penalty of 100 (hereafter re-
ferred to as the broad-scale map). For the second fine-scale
map, we used a block penalty of 10 (hereafter referred to as
the fine-scale map). A comparison of broad and fine-scale
maps for a representative region of the genome is shown in
Figure S2. We analyzed a total of 44,835,801 phased SNPs
across the 19 mouse autosomes and the X-chromosome.
From the broad-scale map, the frequency-weighted mean es-
timate of r/bp for the autosomes was 0.0092. This value is
higher than the lower detection limit suggested by the simu-
lations with and without switch errors (Figure 1). For the
X-chromosome, the frequency-weighted mean r/bp was
0.0026, which is still above the lower detection limit (Figure
1). The lower SNP density on the X-chromosome (Table S3),
and the smaller number of alleles available (17 compared to
20 used for the autosomes), may reduce precision.

We assessed variation in whole-chromosome recombina-
tion rates between our LD-based castaneus map and direct
estimates of recombination rates published in earlier studies.
Comparing themean recombination rates ofwhole chromosomes

Figure 1 The effect of switch errors on the mean recombination rate inferred using LDhelmet with a block penalty of 100. Each black point represents
results for a window of 4000 SNPs, with 200 SNPs overlapping between adjacent windows, using sequences simulated in SLiM for a constant value of
r/bp. Red points are mean values. Switch errors were randomly incorporated at heterozygous SNPs with probability 0.0046. The dotted line shows the
value when the inferred and true rates are equal.
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provides us with a baseline for which we have two a priori
expectations. First, we expect that chromosome 19, the short-
est in physical length, should have the highest mean recom-
bination rate, since at least one crossing-over event is required
per meiosis per chromosome. Second, we expect that the
X-chromosome, which only undergoes recombination in fe-
males, should have the lowest rate. These expectations are
borne out in the results (Table 1), and are consistent with
previous studies (Jensen-Seaman et al. 2004; Cox et al. 2009).
We also found that frequency-weighted chromosomal recom-
bination rates (inferred in terms of r = 4Ner) were highly
correlated with the direct estimates (in centimorgans per
megabase pair) from Jensen-Seaman et al. (2004) (Pearson
correlation coefficient = 0.59, P = 0.005) and Cox et al.
(2009) (Pearson correlation coefficient = 0.68, P = 0.001).
Excluding the X-chromosomes does not substantially change
these correlations. These results therefore suggest that our anal-
ysis captures real variation in the rate of recombination on the
scale of whole chromosomes.

Comparison of the M. m. castaneus map with maps
constructed using inbred lines

We then compared intrachromosomal variation in recombi-
nation rates between our broad-scale castaneusmap and pre-
viously published maps. Figure 2 shows a comparison of
recombination rates inferred from the castaneus and Cox
maps for the longest and shortest autosomes, chromosomes
1 and 19, respectively. It is clear that the castaneus and Cox
maps are very similar (see also Figure S3). We compared
recombination rates in the castaneus and Cox maps in geno-
mic intervals of various sizes, and found that correlation co-

efficients were.0.8 for window sizes of$8 Mbp (Figure 3).
The correlations are smaller if chromosomes are considered
separately (Figure S4). Although the correlation coefficients
are generally high (Figure 3), there are several regions of the
genome where the castaneus and Cox maps have substan-
tially different recombination rates, for example, in the cen-
ter of chromosome 9 (Figure S3). The Cox and castaneus
maps are more similar to one another than either are to the
Brunschwig map (Figure 3). This is presumably because the
Brunschwig map was constructed with a relatively low SNP
density and by an LD-based approach using a sample of in-
bred mouse strains, which violates key assumptions of the
method. Population structure in the lines analyzed by
Brunschwig et al. (2012) or the subspecies from which they
were derived would elevate LD, resulting in lower chromo-
some-wide values of r. The average scaled recombination
rate estimates differ substantially between the castaneus
andBrunschwigmaps, i.e., the castaneus chromosomal estimates
are �5003 higher (Table 1). This is also reflected in Ne, esti-
mated on the basis of the frequency-weighted average recom-
bination rates for each chromosome. Independent polymorphism
data suggest that effective populations sizes for M. m. castaneus
and M. m. domesticus are �100,000 and 500,000, respec-
tively (Geraldes et al. 2008, 2011). Estimates of Ne from
the castaneus map are therefore in line with expectation,
while those from the Brunschwig map are not (Table 1).

Analysis of fine-scale recombination rates

To locate potential recombination hotspots in wild M. m.
castaneus, we generated a fine-scale map, from which we
identified 39,972 potential recombination hotspots. For each

Table 1 Summary of sex-averaged recombination rates estimated for the M. m castaneus autosomes compared with published rates

Chromosome Coxa cM/Mb

castaneus Brunschwigb

Freq. Weighted Mean Ne Estimate Freq. Weighted Mean Ne Estimate

1 0.50 0.0079 395,000 0.000015 745
2 0.57 0.0088 386,000 0.000015 653
3 0.52 0.0083 400,000 0.000014 693
4 0.56 0.0091 408,000 0.000020 889
5 0.59 0.0090 382,000 0.000015 646
6 0.53 0.0089 421,000 0.000015 728
7 0.58 0.0100 429,000 0.000019 801
8 0.58 0.0094 404,000 0.000014 610
9 0.61 0.0096 394,000 0.000018 749

10 0.61 0.0096 392,000 0.000023 928
11 0.70 0.0102 365,000 0.000019 689
12 0.53 0.0089 420,000 0.000019 897
13 0.56 0.0095 426,000 0.000014 629
14 0.53 0.0084 395,000 0.000013 632
15 0.56 0.0083 371,000 0.000024 1080
16 0.59 0.0091 386,000 0.000017 721
17 0.65 0.0087 335,000 0.000052 2020
18 0.66 0.0098 371,000 0.000021 785
19 0.94 0.0122 323,000 0.000026 681
X 0.48 0.0026 137,000 — —

Mean 0.0092 0.000020

Rates for the castaneus and Brunschwig maps are presented in terms of 4Ner/bp. Estimates of Ne were obtained by assuming the recombination rates from Cox et al. (2009).
a Cox et al. (2009)
b Brunschwig et al. (2012)
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chromosome, there was an average of 15 hotspots per meg-
abase pair. The total number of putative hotspots is more
than twice the number identified in CAST/EiJ, an inbred
strain derived from wild M. m. castaneus (Smagulova et al.
2016).

To obtain a measure of the amount of fine-scale recombi-
nation rate heterogeneity across the genome, we constructed
Lorenz curves and calculated their Gini coefficients (Figure
S5). Themean Gini coefficient for all chromosomes was 0.78.
This estimate is very similar to that of Kaur and Rockman’s
(2014) median Gini coefficient of 0.77 for chromosome 1,
obtained from a high-density map of crossing-over locations
in inbred mice (Paigen et al. 2008). The Gini coefficients
calculated from our fine-scale map suggest that the distribu-
tion of recombination rates in wild and inbred mice are sim-
ilarly heterogeneous. However, the Lorenz curve for the
X-chromosome is clearly distinct from that of the autosomes
(Figure S5), and its Gini coefficient is 0.95.

There was only a small amount of overlap between the
locations of putative recombination hotspots we identified in
wild castaneus and the locations of DSB hotspots observed in
wild-derived inbred strains (Smagulova et al. 2016) (Table
S4). As may be expected, DSB hotspots in the inbred strain
derived from M. m. castaneus (CAST) exhibited the greatest
amount of overlap with the locations of recombination hot-
spots identified in M. m. castaneus. Of all DSB hotspots in
CAST, 12.2% (or 4.1% after correcting for the null expecta-
tion) overlapped with one of the putative hotspots we iden-
tified. Such a low proportion strongly suggests that, even
within the M. m. castaneus subspecies, the locations of re-
combination hotspots are highly variable. The PWD strain,
which was derived from wild M. m. musculus, exhibited the
second highest amount of overlap;,1% of the DSB hotspots
in each of the three strains derived from M. m. domesticus
overlapped with putative hotspots in M. m. castaneus, after
correcting for the number of overlaps expected to be seen by
chance. Table S4 shows the overlap for each of the strains
analyzed by Smagulova et al. (2016).

Correlation between recombination rate and properties
of protein coding genes

There is evidence of pervasive natural selection acting in
protein-coding genes and conserved noncoding elements of
the murid genome (Halligan et al. 2010, 2011, 2013). This is
expected to reduce diversity at linked neutral sites via back-
ground selection and/or selective sweeps, and is therefore
expected to generate a positive correlation between diversity
and recombination rate, as has been observed in multiple
species (Cutter and Payseur 2013).

We examined the correlation between genetic diversity
and recombination rate to determine whether our map cap-
tures variation in Ne across the genome. We found that the
rate of recombination at autosomal protein-coding genes is
significantly and positively correlated with genetic diversity
of putatively neutral sites (Table 2). Furthermore, the corre-
lation between recombination rate and neutral diversity
scaled by divergence (from the rat) was both positive and
significant, regardless of base context (Figure S6 and Table
2). This indicates that natural selection may have a role
in reducing diversity via hitchhiking and/or background
selection.

Biased gene conversion can influence levels of between-
species nucleotide substitution (Duret and Galtier 2009).
GC-biased gene conversion (gcBGC), where G/C alleles are
preferentially chosen as the repair template following DSBs,
can generate a positive correlation between nucleotide diver-
gence and recombination rate (Duret and Arndt 2008). Gene
conversion occurswhether or not aDSB is resolved by crossing-
over (Duret and Galtier 2009) and models of gcBGC pre-
dict an increase in the rates of nucleotide substitution in
regions of high crossing-over (Duret and Arndt 2008). In-
deed, human–chimp divergence is positively correlated with
rates of crossing-over when considering all base contexts.
Consistent with this, we found that fourfold site nucleotide
divergence was significantly positively correlated with re-
combination rate for the case of all sites (Table 2). In the case
of non-CpG-prone sites, however, we found only a weak

Figure 2 Comparison of sex-averaged recombination
rates for chromosomes 1 and 19 of M. musculus casta-
neus inferred by LDhelmet (red) with rates estimated in
the pedigree-based study of Cox et al. (2009) (blue). Re-
combination rates were scaled to units of centimorgans
per megabase for the castaneus map by setting the total
map length of each chromosome to the corresponding
map length of Cox et al. (2009).
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negative correlation (Table 2). A recent study by Phung et al.
(2016) found a positive correlation between human–chimp
divergence and recombination rate that persisted after re-
moving CpG-prone sites, so further study is required to ana-
lyze the effects of gene conversion on patterns of divergence
in mice.

Discussion

Our analyses suggest that the recombination landscapes of
wild house mice and their laboratory counterparts are similar
at broad-scales, but are dissimilar at fine-scales. Our broad-
scalemap captures variation in the recombination rate similar
to that observed in amore traditional linkagemap, both at the
level ofwhole chromosomes and genomicwindows of varying
sizes. However, we found that a relatively small proportion of
DSB hotspots identified in wild-derived strains (Smagulova
et al. 2016) overlapped with putative recombination hotspots
inM.m. castaneus. This suggests that recombination rates are
highly variable within, and between, the subspecies at the
kilobase scale. We discuss potential reasons for this below.

Recombination landscapes inferred using coalescent ap-
proaches, as in this study, reflect ancestral variation in re-
combination rates. In M. m. castaneus, we have shown that
this ancestral variation is highly correlated with contempo-
rary recombination rate variation in inbredmice derived from
M. m. domesticus, suggesting that the broad-scale genetic
map has not evolved substantially since the subspecies
shared a common ancestor, �350,000 years ago (Geraldes
et al. 2011). At a finer scale, however, there is considerable
variation in the locations of recombination hotspots between
theM. musculus subspecies. This was also observed in studies
of the great-apes, which suggested that the locations of re-
combination hotspots have strongly diverged between spe-
cies, but that broad-scale patterns are relatively conserved
(Lesecque et al. 2014; Stevison et al. 2016). There are, how-
ever, several relatively large regions of the genome showing
substantially different recombination rates between our
M. m. castaneus map and the Cox map. For example, there

are recombination rate peaks in M. m. castaneus on chromo-
somes 4, 5, 14, and 15, which are not present in the Cox map
(Figure S3). Directly estimating recombination rates at fine
scales in M. m. castaneus individuals could potentially reveal
whether the broad-scale differences in recombination rate,
mentioned above, are present in modern day populations.

The positive correlation between the castaneus map and
the Cox map (constructed using a pedigree-based approach)
is weaker for the X-chromosome than for autosomes of sim-
ilar physical length (e.g., chromosomes 2 and 3) (Figure S4).
However, SNP density on theM. m. castaneus X-chromosome
is substantially lower than the autosomes (Table S3). Greater
physical distance between adjacent SNPs restricts the resolu-
tion of recombination rates in the coalescent-based approach.
Thus, in our study, recombination rates are resolved at finer
scales on the autosomes than on the X-chromosome.
Additionally, we inferred recombination rates on the
X-chromosome using 17 gene copies rather than the 20 used
for the autosomes. Our findings are consistent, however, with
the results of Dumont et al. (2011), who constructed linkage
maps inM.m. castaneus andM.m.musculus (both by crossing
with M. m. domesticus) using a small number of markers. In
that study, the authors found multiple genomic intervals that
significantly differed in genetic map distance between the
two subspecies, and a disproportionate number of differences
were on the X-chromosome. Thus, their results and ours sug-
gest that the recombination landscape of the X-chromosome
has evolved faster than that of the autosomes.

A recent study by Stevison et al. (2016) examined pairs of
great ape species, and found that correlations between re-
combination maps (at the 1 Mbp scale) declined with genetic
divergence. For example, betweenhumans and gorillas, genetic
divergence is �1.4%, while the Spearman-rank correlation
of their respective recombination rate maps is �0.5. Genetic
divergence between M. m. castaneus and M. m. domesticus is
reported to be �0.5% (Geraldes et al. 2008), and we find a
Spearman-rank correlation of 0.47 between the castaneus
map and the Cox map, also at the 1 Mbp scale. Although this
is only a single data point, it suggests that recombination

Figure 3 Pearson correlation coefficients between the re-
combination map inferred for M. m. castaneus, the
Brunschwig et al. (2012) map and the Cox et al. (2009)
map. Correlations were calculated in nonoverlapping win-
dows of varying size across all autosomes. Confidence
intervals (95%) are indicated by shading.
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rate differences may have accumulated faster relative to di-
vergence betweenM. m. castaneus andM. m. domesticus than
they have between great ape species. The recombination
maps constructed for the great apes by Stevison et al.
(2016) were all generated using the same methodology,
which is not the case for the comparison we make between
our map and that of Cox et al. (2009), so quantitative com-
parisons between the studies should be treated with caution.
Performing a comparative analysis of recombination rates in
the different subspecies of house mice and related mouse
species (for example, Mus caroli and Mus spretus) using
LD-based methods may help us understand whether the rate
of evolution of the recombination landscape in wild mice is
more rapid than in the great apes.

The locations of the vast majority of recombination hot-
spots inmice are directed by the binding of thePRDM9protein
(Brick et al. 2012), and there are unique landscapes of DSB
hotspots associated with the different PRDM9 alleles present
in different wild-derived inbred strains (Smagulova et al.
2016). However, in natural populations there is a great di-
versity of PRDM9 alleles in each of the M. musculus subspe-
cies (Kono et al. 2014), therefore the binding motif will vary,
causing different suites of hotspot locations. Thus, the DSB
hotspot maps obtained by Smagulova et al. (2016) likely
represent a fraction of the diversity of hotspot locations
in wild M. musculus populations. Indeed, we found that
only 12% of the DSB hotspots reported for CAST/EiJ by
Smagulova et al. (2016) overlapped with hotspots we
inferred for M. m. castaneus (Table S4). However, the mean
Gini coefficient we estimated forM. m. castaneus was almost
identical to the value obtained by Kaur and Rockman (2014)
from crossing-over data of M. musculus. This similarity sug-
gests that, while the locations of hotspots may differ, the
distribution of recombination rates is similarly heteroge-
neous in wild and inbred mice.

The castaneusmap constructed in this study appears to be
more similar to the Cox map than the Brunschwig map (Fig-
ure 3). There are number of potential reasons for this. First,
we used a much larger number of markers to resolve recom-
bination rates than Brunschwig et al. (2012). Second, it
seems probable that population structure within, and be-
tween, the inbred and wild-derived lines studied by
Brunschwig et al. (2012) could have resulted in biased esti-
mates of the recombination rate. The Brunschwig map does,

however, capture true variation in the recombination rate,
since their map is also highly correlated with the Cox map
(Pearson correlation .0.4) for all genomic windows .8 Mbp
(Figure 3). Indeed, Brunschwig et al. (2012) showed by simu-
lation that hotspots are detectable by analysis of inbred lines,
and validated their hotspots against the locations of those ob-
served in crosses among classical strains of M. m. domesticus
(Smagulova et al. 2011). This suggests that while estimates of
the recombination rate in theBrunschwig et al. (2012)mapmay
have been downwardly biased by population structure (see
above), variation in the rate and locations of hotspots were still
accurately detected.

By simulating the effect of switch errors on estimates of
the recombination rate,we inferred the rangeoverwhichr/bp
is accurately estimated. Switch errors appear identical to le-
gitimate crossing-over events, and, if they are randomly dis-
tributed along chromosomes, a specific rate of error will
resemble a constant rate of crossing-over. The rate of switch
error will then determine a detection threshold below which
recombination cannot be accurately inferred. We investi-
gated this detection threshold by introducing switch errors,
at random, into simulated data at the rate we estimated using
the X-chromosome. We found that, in the presence of switch
errors, LDhelmet consistently overestimates the recombina-
tion rate when the true value is below 2 3 1023 r/bp (Fig-
ure 1 and Figure S1). This highlights a possible source of bias
affecting LD-based recombination mapping studies that use
inferred haplotypes, and suggests that error in phase infer-
ence needs to be carefully considered.

We obtained an estimate of the switch error rate, using a
novel approach that took advantage of the hemizygous sex
chromosomes ofmales. This allowedus to assess the extent by
which switch errors affected our ability to infer recombination
rates. Our inferred switch error rate may not fully represent
that of the autosomes, however, because multiple factors
influence the ability to phase variants (i.e., LD, SNP density,
sample size, depth of coverage, and read length), and some of
these factors differ between the X-chromosome and the au-
tosomes. The sex-averaged recombination rate for the
X-chromosome is expected to be three-quarters that of the
autosomes, so it will likely have elevated LD, and thus there
will be higher power to infer phase. In contrast, X-linked
nucleotide diversity in M. m. castaneus is approximately
one-half that of the autosomes (Kousathanas et al. 2014),
so there would be a higher number of phase informative
reads on the autosomes. While it is difficult to assess whether
the switch error rates we estimated from the X-chromosome
will be similar to those on the autosomes, the analysis
allowed us to explore the effects of different SNP filters on
the error rate.

Consistent with studies in a variety of organisms (Cutter
and Payseur 2013), we found a positive correlation between
genetic diversity at putatively neutral sites and the rate of
recombination. Both unscaled nucleotide diversity and diver-
sity divided by divergence between mouse and rat, a proxy
for the mutation rate, are positively correlated with the

Table 2 Correlation coefficients between recombination rate and
pairwise nucleotide diversity and divergence from the rat at
fourfold degenerate sites for protein coding genes

Correlation Coefficient

Non-CpG Prone Sites All Sites

Nucleotide diversity (p) 0.090 0.20
Divergence from rat (drat) 20.038 0.062
Corrected diversity (p/drat) 0.10 0.18

Nonparametric Kendall correlations were calculated for non-CpG prone sites and
for all sites, regardless of base context. All coefficients shown are highly significant
(P , 10210).
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recombination rate (Table 2). Cai et al. (2009) found evi-
dence suggesting that recombination may be mutagenic, al-
though insufficient to account for the correlations they
observed. The Kendall correlation betweenp/drat and recom-
bination rate is 0.20 for all fourfold sites (Table 2), which is
similar in magnitude to the corresponding value of 0.09 re-
ported by Cai et al. (2009) in humans. The correlations we
report may be downwardly biased, however, because switch
errors may result in inflated recombination rates for genomic
regions where the recombination rate is low (see above).
Genes that have recombination rates lower than the detec-
tion limit set by the switch error rate may be reported as
having inflated r/bp (Figure 1 and Figure S1), and this would
have the effect of reducing correlation statistics. It is difficult
to assess the extent of this bias, however, and, in any case, the
correlations we observed between diversity and recombina-
tion suggest that our recombinationmap does indeed capture
real variation in Ne across the genome. This indicates that a
recombination-mediated process influences levels of genetic
diversity. Previously, Halligan et al. (2013) showed that there
are reductions in nucleotide diversity surrounding protein
coding exons in M. m. castaneus, characteristic of natural
selection acting within exons reducing diversity at linked
sites. Their results and ours suggest pervasive natural selec-
tion in the M. m. castaneus genome. In contrast, a previous
study inwildmice found that, whileM.m.musculus exhibited
a significant correlation between diversity and recombination,
the relationshipwas nonsignificant for bothM.m. castaneus and
M. m. domesticus (Geraldes et al. 2011). This study analyzed
only 27 loci, sowas perhaps underpowered to detect a relatively
weak correlation. It should be noted, however, that the mea-
sure of recombination rate we used (r/bp) and neutral ge-
netic diversity are both functions of the effective population
size, so the positive correlation we detected could be partly
driven by random fluctuations of Ne across the genome.

Furthering our understanding of the evolution of the re-
combination landscape in house mice would be helped by
comparing fine-scale rates in the different subspecies. In this
study, we have assumed that inbred lines derived fromM. m.
domesticus reflect natural variation in recombination rates in
that subspecies, though this is not necessarily the case. Di-
rectly comparing natural population samples of the different
subspecies may help reconcile several potentially conflicting
results. For example, the hotspots we detected in our study
show more overlap with M. m. musculus than with M. m.
domesticus, based on the DSB hotspots reported by Smagulova
et al. (2016). However, overall rates of crossing-over in male
M. m. musculus are higher than in either M. m. castaneus or
M. m. domesticus (Dumont and Payseur 2011). Additionally,
there is evidence of recombination rate modifiers of large
effect segregating within M. m. musculus populations
(Dumont et al. 2011). So, although overall rates of cross-
ing-over in M. m. musculus are higher than in the other spe-
cies, its recombination landscape may be more similar to
M. m. castaneus than to M. m. domesticus. A broad survey
comparing recombination rate landscapes in the different

subspecies of mice would most efficiently be performed using
LD-based approaches.

In conclusion, we find that sex-averaged estimates of the
ancestral recombination landscape for M. m. castaneus are
highly correlated with contemporary estimates of the recom-
bination rate observed in crosses of inbred lines that predom-
inantly reflect M. m. domesticus (Cox et al. 2009). It has
previously been demonstrated that the turnover of hotspots
has led to rapid evolution of fine-scale rates of recombination
in the M. musculus subspecies complex (Smagulova et al.
2016), and our results suggest that evenwithinM.m. castaneus
hotspot locations are variable. On a broad scale, however,
our results suggest that the recombination landscape is
very strongly conserved between M. m. castaneus and M. m.
domesticus at least. In addition, our estimate of the switch-
error rate implies that phasing errors lead to upwardly biased
estimates of the recombination rate when the true rate is low.
This is a source of bias that should be assessed in future
studies. Finally, we showed that the variation in recombina-
tion rate is positively correlated with genetic diversity, sug-
gesting that natural selection reduces diversity at linked sites
across the M. m. castaneus genome, consistent with the find-
ings of Halligan et al. (2013).
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