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A B S T R A C T   

The repeated recurrence of COVID-19 has significantly disrupted learning for students in face-to- 
face instructional settings. While moving from offline to online instruction has proven to be one of 
the best solutions, classroom management and capturing students’ learning states have emerged 
as important challenges with the increasing popularity of online instruction. To address these 
challenges, in this paper we propose an online learning status recognition method based on 
shallow 3D convolution (S3DC-OLSR) for online students, to identify students’ online learning 
states by analysing their micro-expressions. Specifically, we first use the data augmentation 
method proposed in this paper to decompose the students’ online video file into three features: 
horizontal component of optical flow, vertical component of optical flow and optical amplitude. 
Next, the students’ online learning status is recognised by feeding the processed data into a 
shallow 3D convolution neural network. To test the performance of our method, we conduct 
extensive experiments on the CASME II and SMIC datasets, and the results indicate that our 
method outperforms the other state-of-the-art methods considered in terms of recognition accu-
racy, UF1 and UAR, which demonstrates the superiority of our method in identifying students’ 
online learning states.   

1. Introduction 

The unpredictability of COVID-19 has significantly disrupted normal life, especially as it pertains to in-school instruction. With the 
rapid development of information technology, it is necessary to conduct online teaching activities on network platforms to ensure the 
sustainability and effectiveness of student learning, as online learning has become the ‘new normal’. Online learning affords greater 
convenience and flexibility than classroom-based learning, allowing for instruction to be conducted at any time and anywhere. 

While online teaching offers convenience, it also raises many issues [1]. First, unlike traditional teaching activities, online teaching 
does not allow instructors to provide timely feedback on students’ learning status over the course of the learning process (before, 
during and after class). In traditional face-to-face settings, teachers can directly connect with students without barriers of distance, and 
students’ learning states are constantly observable through their facial micro-expressions. When conducting online teaching on 
network platforms, teachers cannot pay attention to the online learning status of each student in real time due to the constraints of the 
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teaching platform and software. Second, teachers find it more difficult to supervise the entire process of students’ online learning. 
Online learning sites are often less supervised and less focused than traditional teaching settings. When teaching online, it is difficult 
for teachers to give reminders to students within the limited classroom time. Third, online teaching is not conducive to improving 
students’ enthusiasm for learning. Due to the lack of mutual encouragement and competition, students’ enthusiasm and initiative for 
learning are lower when learning online. 

Discerning subtle changes in students’ micro-expressions is crucial to capture their learning states accurately and reliably. Micro- 
expression recognition methods can be divided into two main approaches: handcraft-based methods and deep learning-based methods 
[2]. Handcraft-based methods involve designing and extracting features from facial expressions using handcrafted rules and tech-
niques. These features may include information about the texture, colour and shape of specific facial regions. Machine learning al-
gorithms, such as support vector machines, are then used to classify the extracted features into different micro-expressions [3,4]. Wang 
et al. [5] proposed a method of recognising facial micro-expressions using colour space, while Huang et al. [6] introduced a method of 
distinguishing micro-expressions using spatio-temporal completed local quantised patterns. Handcraft-based methods exhibit a certain 
level of accuracy in recognising micro-expressions, and their high interpretability stems from the fact that the designed features can be 
understood and explained. However, they rely heavily on human-designed features and may not capture subtle variations in 
micro-expressions. Their ability to use large-scale datasets is also limited [7]. 

In contrast, deep learning-based methods have made substantial progress in micro-expression recognition. Deep learning models, 
especially convolutional neural networks (CNNs) and recurrent neural networks, can automatically learn expression representations 
from raw data [8]. Zhou et al. [8] predicted micro-expressions by extracting and merging salient and discriminative features of specific 
expressions. Zhao et al. [2] further improved the performance of deep learning-based micro-expression recognition methods by 
incorporating attention mechanisms. Instead of handcrafted features, deep learning-based methods learn high-level features from 
large-scale datasets through an end-to-end training process. This helps to capture the fine details and temporal dynamics of 
micro-expressions, leading to improved recognition performance. Although machine learning-based methods have shown significant 
advantages in micro-expression recognition tasks, the short duration of micro-expressions is a challenge for accurate detection, and 
current research datasets suffer from problems such as small sample size and unbalanced distribution. These challenges collectively 
contribute to the performance gap of deep learning-based micro-expression recognition methods in real-world applications [7]. 

Related studies have demonstrated that the performance of micro-expression recognition models can be further enhanced by 
combining handcrafted features and machine learning methods [9]. For example, Gan et al. [10] found that the apex frame in videos 
represented the highest intensity facial movements in all frames and that the optical flow signal effectively reflected facial expression 
changes. Based on this observation, the authors proposed a micro-expression recognition framework that combined handcrafted 
features with deep neural networks, achieving good classification results. Building on this framework, Liong et al. [11] suggested using 
a shallow network to extract detailed information from micro-expressions, thereby improving the model’s detection capability. 
Although the aforementioned methods provide satisfactory classification results, the computation of complex optical strains requires 
substantial computational power and time. To shorten the computational and training time of micro-expression recognition models, 
this paper proposes a method of extracting detailed information about micro-expressions from three dimensions: horizontal compo-
nent of optical flow, vertical component of optical flow and optical amplitude. In addition, micro-expression recognition predomi-
nantly deals with video data; thus, 3D convolution, unlike 2D convolution, can effectively model the temporal dimension of video data 
and extract contextual information, enhancing the model’s expressive power [12,13]. In conclusion, this study adopts a combined 
approach of handcrafted features and machine learning by first extracting features from micro-expression videos from three di-
mensions (i.e., horizontal component of optical flow, vertical component of optical flow and optical amplitude) and then using a 3D 
CNN to explore the detailed features of the three-dimensional data, enabling accurate micro-expression recognition. The experimental 
results demonstrate that the proposed micro-expression recognition method outperforms existing baseline algorithms in two repre-
sentative datasets. 

The main contributions of this paper are as follows.  

(1) This is the first method to organically combine a 3D CNN network with students’ online learning status recognition, thus 
addressing the difficulty of capturing students’ learning status.  

(2) This paper constructs a small and shallow 3D CNN network with excellent performance. The computational power required for 
network performance is low, and the model can detect very rich micro-expression features.  

(3) A data enhancement method is proposed to decompose two micro-expression datasets into three features: horizontal component 
of optical flow, vertical component of optical flow and optical amplitude. 

2. Related research 

Many scholars have conducted research on online learning. Ma et al. [14] provided a basic but detailed overview of online learning, 
predicted five macro development trends in online learning from a multi-focus perspective and emphasised the importance of rec-
ognising over online learning. Seeking to improve the contributions of online learners, Cui et al. [15] used the generalised linear model 
to conduct an in-depth analysis of online learner characteristics. Their research results showed that the fragmented channels had no 
obvious effect on the improvement of student knowledge. Zhan et al. [16] conducted an in-depth investigation into online peer 
feedback, demonstrating that the pathway from specific peer online feedback design elements to specific learning influences had not 
yet been established. Analysing online learning behaviour, Leng et al. [17] adopted a content analysis method to re-encode all content. 
Mu et al. [18] redefined deep learning in online settings according to its focus in the field of teaching, and presented its characteristics 
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and representation framework. Wu et al. [19] proposed a multi-level approach to developing students’ information literacy. Shen et al. 
[20] proposed a comprehensive and systematic behaviour and evaluation model for online learning that provides an effective basis for 
the process of online learning. Li et al. [21] conducted in-depth research on the factors responsible for the emergence of MOOCs as 
leaders in digitisation and remoteness. Aiming to improve teachers’ online teaching ability, Xu et al. [22] constructed a model of their 
online teaching from seven dimensions. From the perspective of teachers’ teaching ability, this model provides a concrete imple-
mentation path to improve the quality and efficiency of students’ online learning. Cai et al. [23] proposed a highly effective imple-
mentation path from different perspectives in view of students’ online learning feedback. Schnaubert et al. [24] conducted a detailed 
study of group consciousness with the aid of computer tools. 

3. Methodology 

The work reported in this paper includes data processing, model design and model training, as shown in Fig. 1. For data processing, 
we focus mainly on redesigning the CASME II and SMIC datasets and adjusting the complex optical strain to the optical amplitude. For 
the design of the model, we propose the S3DC-OLSR model. Model training mainly involves using the CASME II-TD and SMIC datasets 
to train the S3DC-OLSR model. 

3.1. Data processing module 

High computing resources are still relatively expensive considering the large amount of computing resources required by most 
users. How to achieve good training results with limited computing power has been the focus of many studies [25]. The method 
proposed by Liong et al. [11] increased the richness of the data. However, calculating the complex optical strain requires significant 
computing power and a lot of time. To shorten the calculation time and model training time, we extract the features of the CASME II 
and SMIC datasets and decompose them into three features to further increase data richness: horizontal component of optical flow, 
vertical component of optical flow and optical amplitude. Finally, the three features are combined to form a new three-channel dataset, 
which is used as the model input. The micro-expression video sequence is defined as Equation (1): 

V = [v1, v2, v3,⋯vn] (1) 

n represents the total number of videos. The definition of the i-th segment video is displayed in Equation (2): 

vi =
{

fij|i= 1, 2, 3,⋯n; j=F1,F2,F3,⋯,Fi} (2) 

i is the total number of video frames in the i-th video sequence. Each video contains a start frame, a vertex frame and an end frame, 
denoted by fi,1, fi,m and fi,Fi, respectively. The owning relationship of the vertex frame, end frame, and start frame is displayed in 
Equation (3): 

fi,m ∈ fi,1, fi,2, fi,3,⋯, fi,Fi (3) 

Optical flow is calculated by the starting frame and vertex frame. The applied calculation method is shown in Equation (4): 

Oi ={(u(x, y), v(x, y))|x= 1, 2, 3⋯,X, y = 1, 2, 3⋯, Y} (4)  

where X and Y represent the width and height of the video frame respectively. u and v represent the horizontal and vertical components 
of optical flow, respectively. The optical amplitude can be calculated according to Equation (5) as follows: 

γ =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
x2 + y2

√
(5)  

where u→= [u, v]T is the displacement vector. 

Fig. 1. Process diagram of this study.  
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3.2. S3DC-OLSR model design 

Considering that 2D CNN networks can only represent data spatially, 3D CNN networks are more suitable for spatial–temporal 
feature learning. A 3D CNN network can use 3D convolution and 3D pooling to fully characterise and model the data’s spatio-temporal 
information [12,13]. As shown in Fig. 2, the S3DC-OLSR model proposed in this paper first extracts the horizontal component of 
optical flow, the vertical component of optical flow and optical amplitude features from micro-expression data; then a multilayer 3D 
CNN is used to extract high-dimensional features from these data; finally, the model uses a fully connected layer to map the results into 
three classes, namely positive, negative and surprised. In the above process, the S3DC-OLSR model constructs multi-frame images 
adjacent to the horizontal component of optical flow, vertical component of optical flow and optical amplitude into a 
three-dimensional space-time cube as the model input. The specific calculation process of the j-th feature of position (x,y,z) in the i-th 
layer is shown in Equation (6): 

vxyz
ij = tanh

(

bij +
∑

m

∑Pi − 1

p=0

∑Qi − 1

q=0

∑Ri − 1

r=0
wpqr

ijm v(x+p)(y+q)(z+r)
(i− 1)m

)

(6)  

where tanh( ⋅) represents the equation of the double tangent positive curve, bij represents the deviation of the feature mapping, m 
represents the mapping from the previous layer to the current layer, ωpqr

ijm represents the value of the corresponding kernel function at 
(p,q,r), and Pi, Qi and Ri represent the height, width and depth of the kernel, respectively. 

In this paper, the micro-expression dataset is decomposed into three features: horizontal component of optical flow, vertical 
component of optical flow and optical amplitude. The S3DC-OLSR model better fits the temporal and spatial information character-
istics of the CASME II-TD and SMIC datasets. Furthermore, because of the advantages afforded by its shallow structure, it can be trained 
under the premise of non-harsh operating environment indicators such as computing power. The S3DC model contains a total of five 
layers in addition to the input and output layers. There are two convolutions in the third layer, C3a and C3b. These convolutions are 
intended to improve the abstraction of image features and the richness of expression, which helps to improve the accuracy of micro- 
expression recognition. The input sizes of the corresponding convolution layers are successively 28*28*3, 14*14, 7*7 and 7*7 from 
front to back. In the model design, batch normalisation is added to the first and second layers respectively. This allows for the input of 
the S3DC-OLSR model to maintain the same distribution in the training process. The specific calculation process is shown in Equations 
7–10: 

μβ =
1
n
∑n

i=1
xi (7)  

σ2
β =

1
n
∑n

i=1

(
xi − μβ

)2 (8)  

x̂i =
xi − μβ
̅̅̅̅̅̅̅̅̅̅̅̅̅
σ2

β + ε
√ (9)  

yi = γx̂i + β (10)  

where μ represents the mean value of all inputs, σ represents the variance of all inputs, ε represents a constant, and γ and β are the 
learning parameters of the model. 

Fig. 2. S3DC-OLSR model structure.  
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4. Experiment and discussion 

4.1. Setup  

(1) Datasets 

The objective of this study is to accurately recognise the listening state of students in online classes. Due to privacy concerns and 
legal regulations, it is difficult to obtain real online student lecture videos for practical application in research. Therefore, this study 
primarily relies on two publicly available micro-expression datasets that resemble the classroom setting to conduct relevant experi-
ments. Furthermore, as the degree of students’ understanding of the content presented by the teacher in class is broadly classified as 
positive, negative and surprised, the two datasets are divided into the three categories mentioned above. The datasets used in this study 
are presented below.  

● CASME II-TD (Chinese Academy of Sciences Micro-Expression II): CASME II-TD is a dataset of micro-expression videos for 
studying facial expressions and emotions. It consists of 246 sequences from 30 participants, covering various emotions. The 
dataset includes time-delayed frames to analyse the temporal dynamics of micro-expressions. It also provides detailed anno-
tations for developing automated recognition algorithms. CASME II-TD is useful for research on micro-expression analysis and 
emotion recognition.  

● SMIC (Selective Magnetic Induction Capture): The SMIC dataset is a collection of high-quality facial expression videos captured 
using magnetic induction technology. It includes 100 videos covering six emotions. This dataset is useful for developing facial 
expression recognition algorithms and studying emotions.  

(2) Baseline models 

To validate the effectiveness of the proposed model, this section mainly compares the performance of the S3DC-OLSR model with 
that of other micro-expression recognition methods that combine handcrafted features and machine learning, as well as methods that 
use 3D convolution for micro-expression recognition. To this end, six state-of-the-art micro-expression recognition algorithms, namely 
OFF-ApexNet [10], MECapsuleNet [25], STSTNet [11], MERSiamC3D [8], ME-PLAN [2] and FeatRef [26], are used as baseline models. 
A brief description of each algorithm is provided below.  

● OFF-ApexNet: This approach recognises micro-expressions by combining handcrafted features (i.e., optical flow-derived 
components) and a fully data-driven architecture (i.e., CNNs).  

● MECapsuleNet: In this approach, the author first detects and pre-processes the apex frames of the micro-expression sequences, 
and then a transfer learning mechanism is used to train the detection network.  

● STSTNet: In this approach, the author designs a shallow network to extract high-level features of micro-expressions from images 
of optical strain, horizontal and vertical optical flow.  

● MERSiamC3D: In this approach, the author first constructs the keyframe sequence to summarise the original micro-expression 
video, and then conducts micro-expression recognition using prior learning and target learning.  

● ME-PLAN: In this approach, the author proposes a prototype learning framework with local attention to learn the specific 
micro-expression features of the prototype through expression-related knowledge transfer and episodic training.  

● FeatRef: This approach seeks to obtain discriminative and salient features for specific expressions and predicts micro- 
expressions by merging expression-specific features.  

(3) Parameter settings 

The input sizes of the corresponding convolution layers are 28*28*3, 14*14, 7*7 and 7*7 from front to back. In model design, batch 
normalisation is added to the first and second layers. This allows the input of the S3DC-OLSR model to maintain the same distribution 
in the training process.  

(4) Evaluation index 

Table 1 
Performance of the proposed S3DC-OLSR model.  

Method CASME II  SMIC 

UF1 URA  UF1 URA 

OFF-ApexNet 0.8764 0.8764  0.6817 0.6695 
MECapsuleNet 0.6175 0.6420  0.5203 0.4649 
STSTNet 0.8382 0.8382  0.6801 0.6801 
MERSiamC3D 0.8818 0.8763  0.7356 0.7598 
ME-PLAN 0.8632 0.8778  0.7127 0.7256 
FeatRef 0.8915 0.8873  0.7011 0.7083 
S3DC-OLSR (Ours) 0.9776 0.9905  0.7106 0.7613  
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The evaluation indexes used in the experiment are accuracy (Acc), UF1 and UAR [11,27]. Acc is a measure of the number of correct 
results predicted by the model as a percentage of the total sample. UAR represents the average recall rate for each type of data sample. 

4.2. Performance of the S3DC-OLSR 

To validate the effectiveness of the proposed S3DC-OLSR model using the CASME II and SMIC datasets, this section compares the 
model’s performance with that of other state-of-the-art algorithms, namely OFF-ApexNet, MeCapsuleNet, STSTNet, MERSiamC3D, 
ME-PLAN and FeatRef. The evaluation metrics considered here are UF1 and UAR. The experimental results are shown in Table 1. 

As shown in Tables 1 and in the comparative experiments using the CASME II dataset, the MECapsuleNet model shows the worst 
classification performance, with UF1 and UAR scores below 0.65. The performance of the other baseline algorithms is superior to that 
of the MECapsuleNet model, with UF1 and UAR scores ranging from 0.8 to 0.9. Among them, the FeatRef algorithm performs the best. 
In comparison, the UF1 and UAR scores of the proposed S3DC-OLSR model are about 8 % and 10 % higher, respectively, than those of 
the FeatRef algorithm. In the comparative experiments based on the SMIC dataset, although the UF1 score of the proposed S3DC-OLSR 
model is slightly lower than that of the MERSiamC3D algorithm, the UAR score of the proposed model is higher than that of the other 
algorithms. Overall, the S3DC-OLSR model achieves state-of-the-art classification performance using the SMIC dataset. 

In summary, the S3DC-OLSR model proposed in this paper has two main advantages. First, by extracting the horizontal component 
of optical flow, vertical component of optical flow and optical amplitude from the original dataset, it can filter out redundant in-
formation and obtain salient micro-expression features. Second, by using a 3D CNN, the model can extract dynamic information from 
the data, thereby improving its ability to understand and analyse video data. The experimental results also indicate that the proposed 
S3DC-OLSR model significantly outperforms other state-of-the-art models in micro-expression recognition tasks. 

4.3. ROC and PR curves of the proposed method 

To further evaluate the performance of the proposed S3DC-OLSR model, this section evaluates its receiver operating characteristic 
(ROC) and precision-recall (PR) curve metrics using the CASME II and SMIC datasets. The experimental results are shown in Figs. 3 and 
4, respectively. 

As shown in Fig. 3a and b, in the evaluation experiments using the CASME II dataset, the S3DC-OLSR model has AUC values of 0.97 
or above for all emotion categories and its AP values are all above 0.83. These results indicate that the S3DC-OLSR model performs well 
in recognising the micro-expressions of individuals using the CASME II dataset. 

As shown in Fig. 4a and b, in the evaluation experiments based on the SMIC dataset, the overall performance of the S3DC-OLSR 
model in classifying different emotion categories is slightly inferior to its performance using the CASME II dataset. However, its re-
sults for recognising the micro-expressions of individuals using the SMIC dataset are still satisfactory. 

4.4. Comparison of the structure of the S3DC-OLSR model 

As can be seen from the network structure in Table 2, the network depth of the SS3DC-OLSR model is one layer higher than that of 
the STSTNet method. When the number of adjacent frames in the S3DC-OLSR model is 3, 4, 5 and 6, the time spent on each iteration is 
41, 39, 41 and 42 s, respectively. In terms of execution time, the training time of the S3DC-OLSR model corresponding to each iteration 
is more than 6 times that of STSTNet. Compared with the S3DC-OLSR model, the depth, number of parameters and input size of the 
VGG16 model are about 5 times, 13 times and 2 times greater, respectively, which indicates that the depth of the S3DC-OLSR model is 
indeed relatively shallow. Compared with the OFF-ApexNet model, the depth of the S3DC-OLSR model is 2 layers less than that of the 
OFF-ApexNet model, but the number of parameters of the S3DC-OLSR model is about 3.8 times that of the OFF-ApexNet model. 
Overall, the S3DC-OLSR model is characterized by shallow depth, moderate parameters and reasonable training time for each 
iteration. 

Fig. 3. Performance of the S3DC-OLSR using the CASME II dataset.  
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4.5. Ablation studies 

As mentioned, this study uses a 3D CNN to extract high-dimensional features from the three handcrafted features. This enables 
accurate recognition of micro-expression changes in video data. Among the dimensions, adjacent frames are a crucial parameter that 
affects the performance of 3D CNNs. Therefore, this section primarily investigates the influence of this parameter on the experimental 
results. Specifically, this subsection sets the adjacent frame parameter of the S3DC-OLSR model to 3, 4 and 5, and the classification 
performance of the above models on the CASME II dataset is recorded. The experimental results are presented in Table 3. 

As indicated by the experimental results, among the three experimental scenarios, the S3DC-OLSR model achieves the highest 
accuracy in micro-expression recognition when the adjacent frame parameter is set to 4. This suggests that an appropriate value for this 
parameter has a significant impact on the detection performance of the S3DC-OLSR model. Therefore, in this paper, the adjacent frame 
of the S3DC-OLSR model is set to 4. 

5. Conclusion 

In this paper, we first propose to organically combine a 3D CNN network with students’ online learning status recognition, and to 
build a shallow 3D CNN network with excellent performance, low computational power requirements and strong learning abilities. In 
addition, a data enhancement method is proposed to decompose the dataset into three features, i.e., horizontal component of optical 
flow, vertical component of optical flow and optical amplitude, which together effectively improve the model performance. The 
proposed S3DC-OLSR model is superior to the other state-of-the-art approaches considered in terms of UF1 and URA indexes. As the 
S3DC-OLSR model can accurately identify students’ online learning status, it will help teachers to analyse students’ learning status. As 
online teaching activities become the ‘new normal’, the method proposed in this paper will provide a new regulatory tool. We will 
delve into how online learning can be transformed to help students adjust to online learning. In the future, we plan to select three 
classes in the same grade (each class has about 40 students), capture the status photos of each class 5 times, and then use the proposed 
model to make real-time discrimination. Finally, the performance of the five times is given a comprehensive evaluation. 
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