Brain Imaging and Behavior (2020) 14:787-796
https://doi.org/10.1007/511682-018-0019-6

ORIGINAL RESEARCH

@ CrossMark

Modifying the minimum criteria for diagnosing amnestic MCl to improve
prediction of brain atrophy and progression to Alzheimer’s disease

Eero Vuoksimaa' @ - Linda K. McEvoy? - Dominic Holland? - Carol E. Franz*® - William S. Kremen*>¢ .
for the Alzheimer’s Disease Neuroimaging Initiative

Published online: 4 December 2018
© The Author(s) 2018

Abstract

Mild cognitive impairment (MCI) is a heterogeneous condition with variable outcomes. Improving diagnosis to increase the
likelihood that MCI reliably reflects prodromal Alzheimer’s Disease (AD) would be of great benefit for clinical practice and
intervention trials. In 230 cognitively normal (CN) and 394 MCI individuals from the Alzheimer’s Disease Neuroimaging
Initiative, we studied whether an MCI diagnostic requirement of impairment on at least two episodic memory tests improves
3-year prediction of medial temporal lobe atrophy and progression to AD. Based on external age-adjusted norms for delayed free
recall on the Rey Auditory Verbal Learning Test (AVLT), MCI participants were further classified as having normal (AVLT+,
above —1 SD, n=121) or impaired (AVLT -, —1 SD or below, n=273) AVLT performance. CN, AVLT+, and AVLT- groups
differed significantly on baseline brain (hippocampus, entorhinal cortex) and cerebrospinal fluid (amyloid, tau, p-tau) bio-
markers, with the AVLT- group being most abnormal. The AVLT- group had significantly more medial temporal atrophy and
a substantially higher AD progression rate than the AVLT+ group (51% vs. 16%, p <0.001). The AVLT+ group had similar
medial temporal trajectories compared to CN individuals. Results were similar even when restricted to individuals with above
average (based on the CN group mean) baseline medial temporal volume/thickness. Requiring impairment on at least two
memory tests for MCI diagnosis can markedly improve prediction of medial temporal atrophy and conversion to AD, even in
the absence of baseline medial temporal atrophy. This modification constitutes a practical and cost-effective approach for clinical
and research settings.
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Introduction

The pathological process in Alzheimer’s disease (AD) begins
long before the onset of dementia (Braak et al. 2011; Jack et al.
2010) making early detection a primary concern. To aid in
early detection, mild cognitive impairment (MCI) has been
introduced as a prodromal stage of AD. However, MCI can
arise from causes other than AD (Albert et al. 2011; Sperling
et al. 2011). Improvement in MCI diagnosis is needed to en-
sure that those with MCI are actually at increased risk of
progressing to AD.

Although individuals with MCI are at elevated risk for
developing dementia, there is substantial variation in progres-
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sion rates across studies (Langa and Levine 2014). Amyloid
and tau biomarkers are used to support a diagnosis of AD in
research studies, and the National Institute on Aging-
Alzheimer’s Association (NIA-AA) framework also recom-
mends inclusion of these biomarkers for earlier identification
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of'individuals in preclinical or prodromal stages of the disease
(Jack et al. 2018). However, evidence suggests that cognitive
deficits may be able to predict progression to AD at an even
earlier stage (Edmonds et al. 2015; Gomar et al. 2011,
Jedynak et al. 2012, 2015).

The core clinical criteria of the NIA-AA definition of MCI
refer to impairment in one or more cognitive domains (Albert
et al. 2011); however no definition of cognitive impairment is
provided. Age- and education-adjusted scores falling 1 or 1.5
standard deviations below that expected for age and education
level may indicate MCI but these are considered as guidelines
rather than diagnostic cut-offs. Importantly, there is no recom-
mendation about the number of tests that must show impair-
ment within a domain.

The Alzheimer’s Disease Neuroimaging Initiative (ADNI)
criteria for amnestic MCI include a score lower than that ex-
pected for education level on delayed recall of the Wechsler
Memory Scale (WMS) story A (Petersen et al. 2010). Prior
neuropsychological studies indicate that reliance on a single
measure is problematic because impaired scores on at least
one measure are common in neurologically normal adults given
a large battery of tests (Heaton et al. 2004). Memory is also
phenotypically and genetically complex. Different memory tests
are not all influenced by the same genes and do not manifest the
same degree of age-related change (Kremen et al. 2014b;
Panizzon et al. 2011; Papassotiropoulos and de Quervain
2011). Relying on a single neuropsychological test to define
impairment is thus likely to be sub-optimal. Because gauging
memory impairment is easier and less expensive than assessing
cerebrospinal fluid (CSF) or neuroimaging biomarkers, it would
be advantageous if the simple addition of an extra neuropsycho-
logical test could aid in early diagnosis and prognosis of MCL

Cognitive deficits are, by definition, more subtle in MCI
than in dementia. As such, more extensive testing is important
for adequate sensitivity (Kremen et al. 2014a). The Jak/Bondi
approach, an actuarial-neuropsychological diagnosis of MCI,
provides strong support for this notion (Bondi et al. 2014; Jak
et al. 2009). Compared to the ADNI MCI diagnoses, when
diagnosis was based on the Jak/Bondi approach, there was a
smaller proportion reverting to normal, a higher proportion
progressing to AD, a higher proportion with at least one
APOE-¢4 allele, and higher proportions with abnormal CSF
levels of A3 and tau; thus, this approach appeared to improve
identification of individuals with prodromal AD (Bondi et al.
2014, Jak et al. 2009).

Cognitive measures are strong predictors of progression
from amnestic MCI to AD, sometimes even better than bio-
markers (Apostolova et al. 2010; Chang et al. 2010; Ewers et al.
2012; Gomar et al. 2011, 2014; Heister et al. 2011; Landau
et al. 2010; Moradi et al. 2016). In computational models of
progression to AD, changes in delayed recall on the Rey
Auditory Verbal Learning Test (AVLT)—a widely used list-
learning test—occurred prior to other indicators (Jedynak
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etal. 2012, 2015). Such findings challenge the notion that cog-
nitive deficits are always identified last in the progression to
AD (Edmonds et al. 2015; Jack et al. 2010, 2013). Importantly,
some ADNI MCI participants also performed well on the
AVLT, indicating a logical inconsistency in the diagnosis of
amnestic MCI that highlights the importance of employing
more than one test. That is, can someone truly have memory
impairment if they perform normally on the AVLT?

In the present study, we compared three groups of ADNI
participants: cognitively normal (CN) individuals; amnestic
MCI with normal AVLT performance (AVLT+); and amnestic
MCI with impaired AVLT performance (AVLT-). The defini-
tion of normal and impaired AVLT delayed recall performance
was based on the age-adjusted Mayo Older Americans
Normative Studies (MOANS) (Steinberg et al. 2005). We ex-
amined validators of MCI diagnosis: baseline hippocampal
volume and entorhinal cortex thickness; baseline CSF Af3_
42, tau and phosphorylated tau (p-tau); change in hippocampal
volume and entorhinal cortex volume over time; and progres-
sion to AD. We hypothesized that including just this one ad-
ditional memory test would improve diagnostic precision and
prediction, i.e., it would result in higher rates of progression to
AD and greater medial temporal atrophy over time. We also
tested whether this effect would be present even in those with-
out evidence of medial temporal neurodegeneration. If so, it
would constitute a labor- and cost-efficient improvement for
the core clinical and research criteria for MCI.

Materials and methods
Participants

Data were obtained from the ADNI database (http://adni.loni.
usc.edu) (Mueller et al. 2005; Petersen et al. 2010). The ADNI
began in 2003 as a public-private partnership with Michael W.
Weiner, M.D. as the principal investigator. Its primary goal
has been to determine whether combinations of longitudinal
neuroimaging, other biological markers, and clinical and neu-
ropsychological assessments can measure the progression of
MCI and early AD.

The present study included 624 participants with AVLT
data: 394 who fulfilled ADNI criteria for MCI and 230 who
were CN at baseline. CSF measures were available for 308—
312 participants. Baseline brain measures were available for
569 participants. The number of participants in longitudinal
brain analyses varied for each time point: 6 month [m] = 448;
12m=402; 18 m=216; 24 m=327; 36 m=169.

ADNI MCI diagnosis

Diagnosis of amnestic MCI was made according Petersen
et al. criteria: objective memory impairment defined by
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education-adjusted scores >1.5 SDs below the normative
mean on delayed recall of WMS Story A; subjective memory
complaints; global Clinical Dementia Rating Scale score of
0.5; and Mini-Mental State Examination score > 24 (Petersen
et al. 2010).

Demographics

Demographics included age, sex, education, and the
American National Adult Reading Test (ANART) as a
measure of premorbid cognitive ability. APOE genotype sta-
tus was based on presence/absence of an ¢4 allele.

Rey auditory verbal learning test (AVLT)

The AVLT includes five learning trials of a 15-word list
followed by an interference list, recall of the first list, and
20-min delayed recall of the first list. We used the age-
specific norms from the MOANS (Steinberg et al. 2005).
We further categorized those with MCI based on a cutoff of
1 SD below the mean on AVLT delayed recall: AVLT- (scaled
score <7); and AVLT+ (scaled score>8). We used a more
liberal threshold for defining AVLT impairment because, by
definition, MCI participants were already >1.5 SDs below the
normative mean on the WMS (Jak et al. 2009). In a secondary
analysis, we also investigated progression to AD in scaled-
score groups separately.

Biomarkers

The ADNI Biomarker Core Laboratory at the University of
Pennsylvania used standardized procedures to measure A3
42, tau and p-tau,g;,, in CSF (Shaw 2008). Low CSF levels of
A31_4; are thought to reflect accumulation of amyloid in se-
nile plaques in the brain (Zwan et al. 2016). Elevated CSF
levels of tau and p-tau are thought to reflect neurofibrillary
tangles (Zetterberg 2017). We used previously established cut-
offs for these measures (Shaw et al. 2009). ADNI participants
underwent brain magnetic resonance imaging with 1.5 T scan-
ners. We examined two key Alzheimer’s-related medial tem-
poral lobe regions of interest: bilateral hippocampal volume
and entorhinal cortex thickness based on FreeSurfer 5.1 (Dale
et al. 1999; Fischl et al. 1999, 2002). Change over time in
these structures was quantified using Quarc (Holland et al.
2011, 2012).

Statistical analysis

We first report prevalence rates, means, SDs, and x* and t-tests
comparing CN and ADNI-defined MCI participants. Next, we
report corresponding statistics comparing our AVLT+ and
AVLT- MCI subgroups. We used linear regression models
with the AVLT+ group as a reference in analyses of baseline

differences in CSF biomarkers and brain measures.
Figures contain raw values for the CSF and brain measures,
but the P-values are based on models with age and sex as
covariates in the CSF analyses, and age, sex and estimated
intracranial volume as covariates in the neuroimaging
analyses.

We used mixed models to investigate rate of change in
hippocampal volume and entorhinal cortices thickness.
Percent change from baseline was assessed at 6, 12, 18, 24
and 36 months; per the ADNI protocol, CNs were not tested at
18 months. Slopes for brain atrophy were estimated by includ-
ing an interaction term between diagnostic group and visit
month of follow-up.

Logistic regression models were used to compare the prev-
alence of AD for AVLT+ and AVLT- groups at each time
point. Cox proportional hazard models with the Breslow
method for ties were used to examine progression to AD in
AVLT+ and AVLT- groups. We also examined conversion to
AD separately in different AVLT scaled-score categories.

To test whether we could observe cognitive impairment in
the absence of neurodegeneration, we compared subgroups of
individuals who had no neurodegeneration at baseline. These
analyses included only individuals whose hippocampal vol-
ume or entorhinal cortex thickness was greater than the CN
group mean at baseline.

We considered a P value <.05 threshold for statistical sig-
nificance. Analyses were performed using Stata version 13.

Results
Descriptive statistics

There were significantly (x> = 8.66, P <.01) more men in the
MCI group (64%, 254/396) than in the CN group (52%, 120/
230). CN participants were older (P <.05) and had higher
ANART scores (P < .001) than those with MCI but education-
al level did not differ between these two groups (P =.14).
Having an APOE ¢4 allele was more common (x2 =42.52,
P <.001) in participants with MCI (54%) than in the CN
group (27%) (Table 1).

The AVLT- group (n=273) was younger than the AVLT+
group (n=121) (P<.01), but there were no differences in
educational level (P=.13) or ANART performance
(P=.34), and the sex ratios were similar (x2 =0.00,
P=.999, 64% men in both groups, 176 men in the AVLT-
and 78 men in the AVLT+ groups) (Table 1). Having an
APOE-¢4 allele was significantly (x2 = 14.04, P <.001) more
common in AVLT- group (60%) than the AVLT+ group
(40%). Not surprisingly, these groups also differed significant-
ly on other AVLT measures (Table 1, Online Resource:
Supplementary Fig. 1).
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Table 1 Demographic and memory measures in cognitively normal
individuals (CN) and those with amnestic mild cognitive impairment
(MCI) according to the Alzheimer’s Disease Neuroimaging Initiative

criteria, and in the two MCI subgroups classified according to
performance on the Rey Auditory Verbal Learning Test (AVLT) delayed
free recall

CN (n=230) MCI (n=394) AVLT+ (n=121) AVLT- (n=273)

M SD M SD t M SD M SD t
Age 76.12 5.02 74.92 7.44 2.40% 76.77 7.19 74.14 7.36 3.29%*
Education 16.03 2.85 15.67 3.04 1.48 16.02 2.84 15.51 3.13 1.52
ANART 40.28 9.13 36.33 9.90 5.02%%* 37.06 10.38 36.01 9.68 0.97
AVLT 1 5.17 1.66 4,19 1.53 7.43%%% 4.81 1.63 392 1.40 5.52%%*
AVLT 5 11.02 2.35 747 2.58 17.01%%* 9.76 2.55 6.45 1.85 12.88%%*
AVLT 1-5 43.35 9.13 30.64 8.97 16.85%** 38.08 9.54 27.34 6.36 11.337%%%
AVLT delayed 7.42 3.70 2.81 3.26 15.49%%% 6.76 2.89 1.07 1.29 20.80%**

ANART American National Adult Reading Test, MCI mild cognitive impairment diagnosis according to ADNI criteria; AVLT + = MCI individuals with
normal performance in Rey Auditory Verbal Learning Test, defined as age adjusted score of better than —1 SD; AVLT - = MCl individuals with impaired
performance in Rey Auditory Verbal Learing Test, defined as age adjusted score of —1 SD or below; AVLT 1 = number of correct words in AVLT trial 1;
AVLT 5 =number of correct words in AVLT trial 5; AVLT 1-5 = number of correct words in AVLT trials 1-5; AVLT del = number of correct words in
AVLT delayed free recall; Education indicate years of education. ANART indicate number of correctly pronounced words

*P<.05; ¥*¥P<.01; ¥***P <.001

Baseline CSF measures

The three groups differed on all CSF biomarkers (Table 2,
Fig. la—d). APBi_4> level was significantly (¢1=2.77,
P =.006) higher in the CN group than the AVLT+ group,
which in turn had significantly higher A3;_4, levels com-
pared to AVLT- group (=-3.11, P=.002). Both tau and
p-tau;g;, levels were significantly lower in the CN group
(tau: 1=-2.06, P=.040; p-tau;g;,: t=-2.16, P=.031)
than the AVLT+ group, and in the AVLT+ group compared
with the AVLT- group (tau: ¢=3.37, P=.001; p-tau;g;p:
t=2.83, P=.005).

The proportion of those with both abnormal AP 4,
(<192 pg/ml) and abnormal t-tau (>93 pg/ml) levels was sig-
nificantly (P <.001) higher in AVLT- group (49.6%) than the
AVLT+ group (23.6%). Also, the proportion of those with
both Af31_4;, and tau levels in the normal range was lower in
the AVLT- group (17.3%) (Fig. 1d) compared to AVLT+
group (40.0%) (Fig. 1c). In CN participants, just over half

(54.4%) had normal levels of both A3, 4, and total tau,
whereas only 10.5% had abnormal levels of both (Fig. 1b).

Baseline brain measures

CN participants had significantly greater hippocampal vol-
ume (¢=3.49, P=.001) and thicker entorhinal cortex
(t=2.85, P<.001) than the AVLT+ group (Table 2, Online
Resource Supplementary Fig. 2). The AVLT- group had sig-
nificantly smaller hippocampal volume (t=-4.86, P<.001)
and thinner entorhinal cortex (1=-5.74, P<.001) than the
AVLT+ group (Table 2, Online Resource Supplementary
Fig. 2).

Longitudinal brain measures
All groups had significant negative slopes for hippocampal

volume (CN slope=-.0050 [95%CI: —.0059; —.0040];
AVLT+ slope =—.0064 [95%CI: —.0079; —.0048]; AVLT-

Table 2 Baseline cerebrospinal
fluid (CSF) and brain biomarkers
in cognitively normal individuals
(CN) and two subgroups of

amnestic mild cognitive
impairment individuals classified
according to performance on the
Rey Auditory Verbal Learning
Test (AVLT) delayed free recall.
AVLT+ group is significantly
different from CN and AVLT-
groups in all biomarkers

CN AVLT+ AVLT-

M SD M SD M SD
CSF AR 45 (pg/ml) 205.59 55.09 181.39 65.81 155.58 4717
CSF tau (pg/ml) 69.68 30.37 85.69 42.70 110.78 65.72
CSF p-tau,g;,, (pg/ml) 24.86 14.58 30.61 17.14 37.64 18.07
Hippocampal volume (mm?) 3631 440 3432 470 3159 522
Entorhinal cortical thickness (mm) 3.25 0.30 3.12 0.44 2.85 045

AVLT +=MCI individuals with normal performance in Rey Auditory Verbal Learning Test, defined as age
adjusted score of better than —1 SD; AVLT -=MCI individuals with impaired performance in Rey Auditory
Verbal Learning Test, defined as age adjusted score of —1 SD or below
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slope =—.0120 [95%CI: —.0130; —.0110]) and entorhinal cor-
tex volume (CN slope =—.0048 [95%CI: —.0058; —.0038];
AVLT+ slope =-.0055 [95%CI: —.0071; —.0040]; AVLT-
slope=—.0121 [95%CI: —.0131; —.0111]) (Fig. 2a and b;
Online Resource Supplementary Tables 1-2).

The AVLT- group had significantly steeper negative trajecto-
ries of hippocampal (z=-9.94, P <.0001, Fig. 2a) and entorhi-
nal cortical volumes (z=-10.12, P <.0001, Fig. 2b) compared
to CN participants. However, the slopes of both hippocampal
(z=-1.48, P=.139, Fig. 2a) and entorhinal cortical volumes

ABETA142 pg/mL

(z=—0.73, P=.464, Fig. 2b) did not differ between the CN
and AVLT+ groups.

Progression to AD

The AVLT- group had substantially higher risk than the
AVLT+ group of progression to AD (HR =4.39 [95%CI:
2.70; 7.13], z=5.96, P <.001, Fig. 3). During the follow-up,
50.5% (138/273) of the AVLT- group met criteria for AD
compared to only 15.7% (19/121) of the AVLT+ group.
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Fig. 2 Volume change as a proportion of baseline size from 6 to
36 months in cognitively normal participants (CN) and in those with
amnestic mild cognitive impairment with normal (aMCI AVLT+) or

Months

impaired (aMCI AVLT-) Auditory Verbal Learning Test performance
for hippocampus (HV; panel a) and entorhinal cortex (ECV, panel b)
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Fig. 3 Kaplan-Meier survival estimates in individuals with amnestic mild
cognitive impairment either with good (aMCI AVLT+) or impaired
(aMCI AVLT-) Rey Auditory Verbal Learning Test performance

When we included APOE status as an additional covariate in
the model, having APOE ¢4 allele was associated with in-
creased risk of progression to AD (HR =1.81 [95%CI: 1.28;
2.55],z=3.35, P<.001). However, the overall result changed
little even after controlling for APOE status (HR =4.02
[95%CI: 2.46; 6.57], z=5.57, P<.001). Online Resource
Supplementary Table 3 shows the prevalence of AD at each
time point separately for conventional ADNI MCI criteria and
for the AVLT+ and AVLT- groups.

Participants with AVLT scaled scores of 3—7 had similar
risk of progression to AD compared to the reference group
with the lowest score of 2 (Ps>.05, Supplementary Fig. 3,
Supplementary Table 4). Participants with scores of 8 or
higher had significantly lower risk of progression to AD com-
pared to those with a score of 2 (Ps < .05, Online Resource
Supplementary Fig. 3 & Supplementary Table 4).

Subgroup analysis of individuals without baseline
neurodegeneration

The brain trajectory results were similar when we included
only those with hippocampal volume or entorhinal cortical
thickness that was equal or greater than the CN group mean:
hippocampal volume >3631 mm®; entorhinal cortical thick-
ness >3.25 mm. In these analyses, the AVLT- group did not
differ from CN and AVLT+ groups in baseline hippocampal
volume or entorhinal cortical thickness (all Ps=.177-.421).
Nevertheless, the AVLT- group had a significantly steeper
negative trajectory of hippocampal volume (z=-261,
P =.009) and entorhinal cortex (z=-2.50, P=.012) com-
pared to CN participants. In contrast, the slopes for both hip-
pocampal volume (z=-0.41, P =.680) and entorhinal cortex
(z=-0.11, P=.912) change did not differ between the CN
and AVLT+ groups.

In those with above average hippocampal volume, the
AVLT- group (35.7%, 15/42) still had a significantly higher
progression rate than the AVLT+ group (7.9%, 3/38) (HR =

@ Springer

5.27 [95%CTI: 1.41; 19.67], z=2.47, P=.013). Similarly, the
AVLT- group (31.9%, 15/47) had significantly higher risk of
progression to AD than AVLT+ group (15.9%, 7/44) when
including only those with above average baseline entorhinal
cortical thickness (HR =2.63 [95%CI: 1.06; 6.55], z=2.08,
P =.037). The results were similar in both cases even after
controlling for A3y 45 (27.3% [6/22] vs. 6.3% [1/16]; HR =
3.25[95%CTI: 0.39; 27.06], z=1.09, P =.275) for hippocam-
pal volume and (31.8% [7/22] vs. 18.2% [4/22]; HR=1.73
[95%CI: 0.46; 6.57], z=0.81, P =.418) for entorhinal cortex.
Despite the similar results, these differences were not signifi-
cant due to the reduced sample size for participants with A3,_
4> or hippocampal/entorhinal cortex data. In individuals with
both above average hippocampal volume and entorhinal cor-
tex thickness, more AVLT- individuals (26.3%, 5/19) than
AVLT+ individuals (11.1%, 3/27) progressed to AD, but this
difference was only at trend level in this even smaller sub-
group (HR=2.71 [95%CI: 0.63; 11.59], z=1.34, P=.179).

Discussion

A body of evidence supports the idea that more extensive
assessment with more than one measure in each cognitive
domain improves diagnostic accuracy (Bondi et al. 2014;
Edmonds et al. 2016; Jak et al. 2009). Several studies have
used the AVLT along with CSF and brain biomarkers as pre-
dictors of progression from ADNI-diagnosed MCI to AD
(Apostolova et al. 2010; Chang et al. 2010; Ewers et al.
2012; Gomar et al. 2011, 2014; Heister et al. 2011; Landau
etal. 2010; Moradi et al. 2016). In these studies, the AVLT was
treated as an external predictor despite the fact that AVLT
scores sometimes conflicted with the core clinical criteria for
diagnosis. Here we examined the impact of simply adding this
one additional episodic memory measure to the diagnostic
criteria, thereby creating AVLT+ and AVLT- subgroups.

More AVLT- participants than AVLT+ participants had an
APOE ¢4 allele and twice as many AVLT- participants as
AVLT+ participants had baseline levels of CSF beta amyloid
and tau consistent with AD (Shaw et al. 2009). AVLT- partic-
ipants also had significantly smaller baseline hippocampal
volume and entorhinal cortical thickness compared to
AVLT+ participants and greater rates of atrophy over time.
Most importantly, over three times as many AVLT- partici-
pants progressed to AD during the 36-month follow-up com-
pared with AVLT+ participants. Taken together, these results
strongly support the validity of our MCI diagnostic modifica-
tion, leading us to recommend that the core clinical criteria
defining amnestic MCI should incorporate the criterion of
impaired performance on at least two memory measures.

In keeping with the NIA-AA recommendations (Albert
et al. 2011), it is also essential that the degree of cognitive
impairment be abnormal for one’s age. Two studies defined
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single AVLT impairment cutpoints derived by comparing CN
and AD ADNI participants (Heister et al. 2011; Landau et al.
2010). The goal of these studies was not to modify the MCI
diagnostic criteria, and their uniform cutpoint would not be
optimal for defining MCI because there are substantial age
differences on AVLT performance. For example, an average
score for 85-year olds is 1 SD below the mean for 60-year olds
(Steinberg et al. 2005). Also, the original ADNI MCI criteria
used education-adjusted scores of WMS story recall, but
scores adjusted for both age and education are likely to further
improve MCI diagnosis.

One study of ADNI participants categorized individuals
with MCI based on the number of impaired tests and found that
this criterion worked better than the original ADNI MCI clas-
sification or the Jak/Bondi actuarial approach in predicting pro-
gression from MCI to AD (Oltra-Cucarella et al. 2018). This
study used the average number of low scores in the worst
performing 10% of ADNI CN participants as the basis for di-
agnosing MCI. Low scores were defined as performance of
>1.5 SD below the mean of the CN ADNI participants. Out
of 9 scores from 6 tests, the lowest 10% of CN participants had
>3 low scores. The highest progression rate (43%) to AD in a 3-
year period was in those with single domain amnestic MCI (i.e.,
individuals who were>1.5 SD below the mean in Logical
Memory delayed recall, AVLT delayed recall and AVLT recog-
nition) (Oltra-Cucarella et al. 2018). This rate was higher than
the progression rate of 33% for multiple-domain amnestic MCI,
probably because one could meet criteria for multiple-domain
amnestic MCI with only one or two impaired memory scores
but a single-domain diagnosis would require impairment on all
three. This approach may not be easily transferable into clinical
use for two reasons. First, the cutoff for impairment was based
on the distribution of scores in the ADNI sample rather than
external norms. Second, the criterion of three impaired scores in
the lowest 10% subgroup came from a set of 9 scores, but the
number of impaired tests in the lowest 10% will vary as a
function of how many are administered. Also, caution is war-
ranted when counting certain scores from the same test. For
example, almost all individuals with impaired AVLT recogni-
tion will have impaired AVLT recall. It is probably optimal to
use recall measures from two different tests, particularly for
diagnosing MCI when recognition deficits will be much less
common than in AD. Our approach simply added a second
memory recall test, and it resulted in a higher 3-year progres-
sion rate of 51%.

With 15.7% of the AVLT+ group progressing to AD, it
might be that some people with only one impaired memory
measure are in earlier stages of MCI. This may raise concern
about false negatives. Our results are consistent with prior
neuropsychological studies indicating that threshold yields
too many false positives (Heaton et al. 2004; Palmer et al.
1998), but direct comparisons of ADNI diagnoses with Jak/
Bondi diagnoses have also been consistent with ADNI

diagnoses resulting in more false negatives (Bondi et al.
2014; Edmonds et al. 2016). Indeed, 8% of the CN group
had AVLT scores >1.5 SDs below normative means. If diag-
nosis requires only one impaired memory measure, this could
indicate up to 8% false negatives. We also observed a signif-
icantly higher proportion of APOE €4 allele carriers in those
with two impaired tests. However, the group differences in
progression to AD held up even after controlling for APOE
status. This suggests that the AVLT- group may be at greater
genetic risk for AD, but it also indicates that the group differ-
ences were not simply driven by APOE.

The AVLT- group had the most baseline CSF and brain
biomarker abnormalities. According to the amyloid/tau/neu-
rodegeneration (A/T/(N)) framework (Jack et al. 2018, mem-
ory impairment occurs subsequent to A/T/(N). However,
when we included only individuals with above average hip-
pocampal volume, entorhinal cortex thickness, or both, rela-
tive to the CN group mean—i.e., those with no medial tem-
poral neurodegeneration—the AVLT- group still had signifi-
cantly steeper trajectories of brain atrophy and progression
rates than the AVLT+ group. Although power was limited,
the magnitude of increased risk in the AVLT- group was sim-
ilar even after controlling for A3, suggesting that the differ-
ences were not driven simply by amyloidosis.

The representativeness of ADNI is a limitation of our study
(Petersen et al. 2010). Over 90% of ADNI participants are white
and both CN individuals and those with MCI had a mean edu-
cation of 16 years, corresponding to four-year university de-
gree. In contrast, U.S. census data indicate that only about
10% of people with birth years comparable to that of ADNI
participants have a college education (Ryan and Bauman 2016).
In line with the high educational level, ADNI participants have
high estimated premorbid IQ levels, more than 1 SD above the
population mean (Petersen et al. 2010). Additionally, ADNI
excluded individuals who were likely to suffer from other dis-
eases that can affect cognition. Thus this approach requires
validation in a more representative sample.

In sum, we showed that simply employing two recall tests,
rather than one, substantially improved the validity of MCI
diagnoses by reducing false positives with respect to predic-
tion of medial temporal atrophy and progression to AD over a
3-year period. We showed essentially the same pattern even in
individuals with above average baseline medial temporal vol-
umes while controlling for biomarker levels. Although there is
as yet no definitive determination as to just how extensive a
test battery needs to be for optimizing the core clinical criteria
for MCI, we recommend that requiring impairment on more
than one recall memory test should be a criterion for the diag-
nosis of amnestic MCI. These findings are consistent with the
view that cognitive impairment may not always come after
biomarker and brain abnormalities in the progression to AD.
Of course, assessing biomarkers and brain structures is still of
great importance, but it may be that current detection
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thresholds do not always identify the earliest signs of bio-
marker or brain abnormalities. Moreover, on a practical level
for clinical practice or screening for clinical trials, neuropsy-
chological testing is low-cost and non-invasive in comparison
to neuroimaging or CSF or PET biomarker assays.
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