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Software defined networking 
based network traffic classification 
using machine learning techniques
Ayodeji Olalekan Salau 1,3* & Melesew Mossie Beyene 2

The classification of network traffic has become increasingly crucial due to the rapid growth in the 
number of internet users. Conventional approaches, such as identifying traffic based on port numbers 
and payload inspection are becoming ineffective due to the dynamic and encrypted nature of modern 
network traffic. A number of researchers have implemented Software Defined Networking (SDN) 
based traffic classification using Machine Learning (ML) and Deep Learning (DL) models. However, 
the studies had various limitations such as encrypted traffic detection, payload inspection, poor 
detection accuracy, and challenges with testing models both in offline and real-time traffic modes. 
ML models together with SDN are adopted nowadays to enhance classification performance. In this 
paper, both supervised (Logistic Regression, Decision Tree, Random Forest, AdaBoost, and Support 
Vector Machine) and unsupervised (K-means clustering) ML models were used to classify Domain 
Name System (DNS), Telnet, Ping, and Voice traffic flows simulated using the Distributed Internet 
Traffic Generator (D-ITG) tool. The use of this tool effectively manages and classifies traffic types based 
on their application. The study discussed the dataset used, model selection, implementation of the 
model, and implementation techniques (such as pre-processing, feature extraction, ML algorithm, 
and model evaluation metrics). The proposed model in SDN was implemented in Mininet for designing 
the network architecture and generating network traffic. Anaconda Python environment was utilized 
for traffic classification using various ML techniques. Among the models tested, the Decision Tree 
supervised learning achieved the highest accuracy of 99.81%, outperforming other supervised and 
unsupervised learning algorithms. These results indicate that the integration of ML with SDN provides 
an efficient classification method for identifying and accurately classifying both offline and real-
time network traffic, enhanced quality of service (QoS), detection of encrypted packets, deep packet 
inspection and management.
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CNN  Convolutional neural network
DITG  Distributed internet traffic generator
DL  Deep learning
DNN  Deep neural network
DoS  Denial of services
DPI  Deep packet inspection
DT  Decision tree
LR  Logistic regression
ML  Machine learning
MLP  Multilayer perceptron
NB  Naive Bayes
NC  Nearest centroid
PCA  Principal component analysis

OPEN

1Department of Electrical/Electronics and Computer Engineering, Afe Babalola University, Ado-Ekiti, 
Nigeria. 2Department of Computer Science, Institute of Technology, Debre Markos University, Debre Markos, 
Ethiopia. 3Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil 
Nadu, India. *email: ayodejisalau98@gmail.com

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-024-70983-6&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2024) 14:20060  | https://doi.org/10.1038/s41598-024-70983-6

www.nature.com/scientificreports/

QoS  Quality of service
RF  Random forest
SDN  Software defined networking
SVM  Support vector machine
TC  Traffic classification

The classification of traffic flow in today’s Internet Protocol (IP) network has become an important research 
area, especially with the recent adoption of Machine Learning (ML) techniques and Software Defined Net-
working (SDN) principles. SDN redefines network architecture by separating the control plane from the data 
 plane1,2, thereby departing from the OSI model  hierarchy3–5. SDN integrates controllers, switches and hosts, 
enabling centralized controllers to optimize network management and packet routing, thereby overcoming 
conventional network limitations. Classification methods enhance network service quality by efficiently allo-
cating resources and detecting anomalies, though conventional rule-based approaches struggle with dynamic 
ports and unknown  applications6. Properly classifying network traffic using advanced classification metrics 
has become increasingly important as the number of internet users continues to grow rapidly. Effective traffic 
classification (TC) is essential for managing and optimizing network performance, ensuring QoS, and enhanc-
ing  cybersecurity7. With the dynamic and encrypted nature of modern network traffic, conventional methods 
such as port-based and payload  inspection8, are no longer efficient. Deep Packet Inspection (DPI) is effective at 
identifying traffic patterns but faces significant challenges when dealing with encrypted content due to high costs 
and practical limitations. As encryption becomes more prevalent, DPI effectiveness decreases, prompting the use 
of ML techniques for more accurate and efficient traffic  classification4,6. The existing studies have many limita-
tions: such as traffic detection with encrypted traffic, payload inspection in dynamic traffic data, poor detection, 
testing various offline and real-time traffic data. In addition, most of the existing studies have not implemented 
traffic detection in both offline and real-time networks, provides inaccurate traffic classification for real-time 
data, and poor QoS delivery. In this paper, we compared the proposed model with other models having different 
datasets and its performance using real-time traffic data to mimic real-world scenarios.

This paper integrates ML techniques with SDNs to classify Ping, Telnet, Voice, and DNS traffic data using 
ML-based flow classification. Processing large datasets from extensive internet traffic poses significant chal-
lenges, even for experienced professionals with advanced tools. Employing ML for TC and clustering is crucial 
for pinpointing network hotspots and bottlenecks. By using bandwidth and QoS metrics for classification, Traffic 
Engineering (TE) can adjust flow paths and allocate virtual resources in the network. This helps to boost perfor-
mance and enhances security. Unlike DPI, ML flow classification focuses on extracting flow characteristics such as 
packet size history, source IP addresses, protocol types and flow arrival times, without the need to inspect packet 
payloads. This approach renders ML particularly suitable for encrypted traffic analysis while offering advantages 
such as computational efficiency over conventional SDN  techniques1. ML algorithms are pivotal in minimizing 
packet loss and achieving highly precise classification  outcomes9. The current study utilizes a combination of 
supervised and unsupervised ML algorithms, leveraging tools like Scikit-learn to enhance classification accuracy. 
These enhancements support a variety of applications including QoS optimization, dynamic access control, law-
ful inspection, and streamlined network management  practices10. The proposed system integrates ML and SDN 
to mitigate critical challenges in accurately classifying dynamic and encrypted traffic, which is fundamental for 
advancing network reliability and performance in contemporary IP  networks11.

Literature review
Efficient traffic management ensures precise allocation of resources, which is crucial for demanding tasks like 
server-based code compilation. The authors  of6 presented a K-NN approach which achieved a 99.4% accuracy 
in classifying DNS, Telnet, Ping, and Voice traffic with real-time data within SDNs. Additionally, SDN cluster-
ing methods such as Simulated Annealing have proven effective in optimizing network lifespan and managing 
heterogeneous sensor data traffic  efficiently4. According to Ref.11, the integration of SDN with ML is crucial to 
analyze classical ML models and classify SDN-based network applications. This integration explores upcom-
ing ML advancements within SDN, bridging artificial intelligence (AI), big data and networking disciplines. 
Graph-based deep learning (DL) and graph neural network (GNN) in Ref.12 survey were used and provided a 
state-of-the-art performance in addressing diverse challenges across communication networks. However, the 
survey did not mention the use of graph-based DL and GNN on larger networks and also their performance was 
not evaluated with performance metrics.

The authors in Ref.13 presented the application of MLP, CNN and SAE models within an SDN framework for 
traffic classification. The models achieved competitive accuracies of 87.167%, 87.208%, and 87.079% respectively. 
Performance metrics such as accuracy, precision, recall, and F1-score were comprehensively employed to gauge 
their efficacy in traffic classification, which inturn demonstrated promising results for practical SDN deploy-
ments.  ByteSGAN14, is a Generative Adversarial Network (GAN)-based Semi-Supervised Learning method 
integrated into the SDN Edge Gateway for detailed traffic classification, which aims to optimize network resource 
utilization. It leverages a small set of labeled traffic samples and a larger pool of unlabeled samples by adjusting 
the structure and loss function of the GAN discriminator network for semi-supervised learning. However, the 
current implementation of GAN does not specifically address data imbalance issues in traffic classification. User 
privacy breaches can occur highly (through direct data theft) or passively (via DPI for profiling), now complicated 
by widespread encryption (HTTPS and QUIC, covering > 80% of internet traffic since 2017). The increasing 
diversity of network applications necessitates precise traffic  identification15. The study in Ref.15 introduced new 
ML features, evaluated on 28,000 time-frame samples, and achieved robust classification of mobile and desktop 
traffic (81%) and application actions (94% and 93% accuracy respectively).
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The authors in  Ref.8 deployed an  architecture for an enterprise network to gather traffic data. The 
authors explored available datasets and applied ML techniques for TC, achieving high accuracy with supervised 
learning methods. Rehab et al.5 presented the integration of SDN with ML to improve network security through 
proactive threat detection. Challenges in SDN-ML QoS integration and scalability in large-scale implementa-
tions  were also addressed. The authors in Ref.16 deployed traffic classifiers in a live network for DDoS  detection17 
using ML algorithms. Their findings underscore the challenges of adapting ML algorithms to dynamic SDN 
environments, where network interactions between switches and controllers play a crucial role in performance 
outcomes. Sherif et al.9 presented ML algorithms for detecting ad classifying network traffic using 15 features 
of simulated traffic flows like (WWW, DNS, FTP, ICMP, P2P, and VOIP) on a SDN and created a real-time dataset. 
The DT model achieved the highest accuracy at 99.8%, making it effective for SDN traffic classification with mini-
mal features. As described  in18, the authors presented a securing smart home IoT device which prevents DDoS 
attacks using VLAN-based network isolation managed by an SDN controller. It uses lightweight flow-based 
features for efficient data collection, including ICMP, TCP, and UDP protocol percentages, packet count and size, 
and IP diversity ratio. ML models such as KNN, RF, and SVM were employed to classify IoT devices and detect 
DDoS attacks based on TCP-SYN, UDP, and ICMP protocols. Evaluation on an OpenVSwitch and Faucet SDN 
controller setup using flow traces from IoT devices shows an average accuracy of 97% for device classification 
and 98% for DDoS detection, with an average latency of 1.18 ms. The authors in Ref.19 presented a traffic model 
which is used to categorize traffic in the network path, while monte carlo method was used to assign traffic 
routes to packet. Payload-based methods compare packet payloads against predefined patterns but are ineffective 
against encrypted  traffic14. Machine learning and statistical approaches, as discussed  in14, offer robust solutions 
by extracting features from data to train models effectively. Previous researches have extensively leveraged DL 
and ML  methodologies29 to detect and categorize traffic based on application types, with a primary focus on 
enhancing QoS, performance improvement, packet inspection for encrypted data, port-based detection, rout-
ing optimization, attack detection and mitigating security risks. This paper proposed integrating SDNs with ML 
techniques to enhance TC for efficient real-time traffic analysis and detection.

Methodology
The proposed model adopts a systematic approach which starts with a comprehensive data collection for train-
ing and validation. Preprocessing was used to enhance data quality, followed by structured training and testing 
phases using supervised and unsupervised ML techniques. This is aimed at optimizing the classification accuracy 
for various traffic types (e.g., ping, telnet, voice, DNS) and to ensure robust performance in real-world scenarios. 
This further aims to improve network management, enhance Quality of Service (QoS), and bolster network 
security through precise traffic analysis.

System architecture
This paper presents a model designed to detect and classify network traffic using ML algorithms in conjunction 
with SDNs. The proposed system architecture, depicted in Fig. 1, consists of three primary components: preproc-
essing, feature extraction, and classification. Data preprocessing encompasses procedures such as standardizing 

Fig. 1.  System architecture of the proposed model.
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data formats, handling missing values and applying data filtering techniques. Thereafter, feature extraction and 
classification stages were performed.

Software-defined network environment and dataset generation
Figure 2 illustrates the basic network topology in VirtualBox-VM environment with five virtual machines: a 
controller, a Layer-2 switch, and three hosts. The study highlights Mininet’s superiority in accurately simulating 
real-world network conditions. Unlike Mininet, which supports multiple virtual network elements and interac-
tions, single VM setups lack scalability and realism for effectively simulating large, interconnected networks. This 
preference ensures more reliable testing and validation of network configurations and models.

Upon enabling SDN, it becomes imperative for the controller to maintain real-time visibility of packet move-
ments among client computers via the switch. This necessitates continuous monitoring of flow details, as outlined 
in Table 1, which was updated every second through a dedicated Python script.

Data acquisition
We have used the D-ITG application to generate traffic flow data for training machine learning  models30. D-ITG 
accurately simulates both IPv4 and IPv6 traffic, mimicking various internet applications like Ping, Telnet, DNS, 
and Voice (using the G.711 codec)31. Due to the sensitive nature of network traffic, we believe most network 
traffic data will be encrypted in the future for security purposes. Hence, the dataset employed for TC was 
encrypted. Since the data capturing was done in a controlled environment, the applications were executed one 
after another, so the traffic was labeled. We simulated specific traffic flows between client machines and then 
employed a traffic classifier script with the RYU controller and a monitoring Python file as depicted in Fig. 3 to 
collect and classify the traffic data.

Data collection for the flow object is managed by a monitoring script that systematically gathers and processes 
traffic features, exporting them into CSV files. These files contain essential characteristics of traffic types such 
as Ping, Telnet, Voice (G.711), and DNS. Aggregated into a unified dataset, these CSV files serve as the core 
data for training and testing the machine learning models. Table 2 provides the instance counts for each traffic 
class—Ping, Telnet, Voice, and DNS used in the classification tasks employing different ML algorithms.

Fig. 2.  Simulation network topology.

Table 1.  Flow data features.

Flow Description

Time UTC value at the time of flow information

Datapath Key ID in RYU 

In-port Incoming traffic port

eth-src Source MAC address of the flow

eth-DST Destination MAC address of the flow

Out-port Outbound traffic port

Total-packets Total flow packets

Total-bytes The total size of flow packets (in Bytes)
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Data preprocessing
The preprocessing of the acquired dataset involved several critical steps to ensure data integrity and optimal 
classification performance. Missing data rows were handled using mean value imputation to maintain dataset 
completeness. Features showing linearly increasing trends, which could potentially bias analysis, were removed 
to enhance the dataset suitability for ML algorithms. Principal Component Analysis (PCA) was subsequently 
applied to reduce feature correlation, thereby improving the dataset’s efficiency in capturing essential patterns 
without redundancy. As a result, the dataset was refined to consist of 5628 instances and 13 attributes, where 12 
features were used for classification and 1 for the class label.

The dataset exhibited a balanced distribution across four distinct traffic types: Ping (1936), Telnet (1281), 
Voice (1237), and DNS (1174) packets. This balance facilitated robust training and evaluation of models. QoS 
class-based approaches were prioritized due to their adaptability across various internet applications and their 
ability to leverage common characteristics within QoS categories, ultimately aimed at optimizing network per-
formance and reliability.

Loading and cleaning data
The collected CSV data was imported into a Jupyter notebook for preprocessing. Rows containing NaN values, 
often resulting from abrupt script termination, are dropped to ensure data integrity. Features such as Forward 
Packets, Forward Bytes, Reverse Packets, and Reverse Bytes, which exhibit linear increases and lack meaningful 
contributions, are excluded from the dataset. Extensive literature on network traffic detection and classification 
methods informs the approach, highlighting various techniques and identifying research gaps. Data is sourced 
from Kaggle and live networks, categorized into distinct datasets for Ping, Voice, Telnet, and DNS traffic. These 
datasets are partitioned into 80% for training and a 20% is for validation and testing to assess and optimize 
model performance.

Feature selection
Often traffic datasets have the same source and destination IPs, same source and destination ports, and the same 
protocols, we have dropped these features leaving us time-based features. It is extremely important to select 
the subset of features that have the most impact on the classification task. Our feature size is not that large to 
warrant feature selection but one of the goals of this session of our work is to investigate how different feature 

Fig. 3.  Illustration of traffic collection.

Table 2.  Number of network traffic data taken from each category.

Network traffic (s) Data source Data type Data format Quantity

Ping
From Kaggle Packet .csv 1770

From live network Packet .csv 166

Voice
From Kaggle Packet .csv 1137

From live network Packet .csv 100

Telnet
From Kaggle Packet .csv 1181

From live network Packet .csv 100

DNS
From Kaggle Packet .csv 1154

From live network Packet .csv 20

Total 5628
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combinations contribute to the classification task. Also using feature selection will result in a reduced number 
of needed features hence reducing computation time which is very vital for real-time use. The PCA used in this 
paper are discussed below in each model discussion.

Distributed internet traffic generator
We used D-ITG to simulate traffic for Telnet, Voice (G.711 codec), Ping and DNS with stochastic models for 
packet size (PS) and inter-departure time (IDT). It is able to generate multiple unidirectional flows from many 
senders toward many receivers having many  features31. For Ping traffic, we ran a simple ping command to the 
destination host. The process involved several steps: first, we simulated traffic flows between hosts using D-ITG. 
Next, we ran a traffic classifier Python script configured with the RYU controller and a simple monitor to track 
and log traffic data. The simple monitor script collected data and updated the attributes of a Flow object, which 
were then periodically outputted to CSV files. Finally, these CSV files for each traffic type were combined into 
a single Pandas Data Frame for model training and testing, ensuring the dataset accurately represented realistic 
and comprehensive traffic data for reliable model evaluation.

Tool used
We implemented our model on a Linux system with an  Intel® Core™ i5-6100U CPU, 4 GB RAM, and a 500 GB 
hard drive. Our setup included Mininet for SDN simulation, Anaconda Python 3.7 with Jupyter for data analysis, 
and TensorFlow/Keras for machine learning.

Framework design
The proposed system, depicted in Fig. 4, integrates SDN components including a controller, Open Virtual Switch 
(OVS) and end devices. Once trained and validated on specific datasets, it effectively classifies new traffic data 
by evaluating how well it identifies and categorizes diverse traffic patterns.

Performance evaluation
To evaluate the performance of the proposed model different performance metrics were used. The effectiveness 
of classification can be evaluated in numerous ways. Accuracy, Recall, Precision and F1-score are widely used 
metrics to evaluate the classification performance.

Confusion matrix
It is used as a clean way to present the prediction results of a classifier. It consists of true class labels and predicted 
class labels. Table 3 presents the truth table of confusion matrix.

Fig. 4.  Framework for traffic classification in software defined networks.
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Results and discussion
After training our model, we carefully tested how well it could classify network traffic using standard metrics. 
We compared it with other models, datasets and checked its performance using real-time traffic data to mimic 
real-world scenarios. We used six different ML methods: RF, AdaBoost, SVM, DT, LR, and K-means Clustering. 
These were chosen because they are good at sorting different types of network traffic accurately. Our thorough 
testing helped confirm that our model performed well and can handle complex network situations effectively.

Supervised learning
Logistic regression
We employed Logistic Regression (LR) to predict categorical target variables. This statistical method analyzes 
datasets, where outcomes depend on independent variables, generating decision boundaries (see Fig. 5) that 
illustrate its high accuracy in classification tasks.

As we observed, the decision boundaries are well-defined. Classifying Voice and Telnet traffic is straight-
forward, while distinguishing between Ping and DNS poses challenges due to their similarities. To evaluate the 
model accuracy in handling these distinctions, a confusion matrix was used. This matrix aligns actual traffic 
labels on the X-axis with predicted labels on the Y-axis, highlighting any tendencies of the model to misclassify 
specific traffic types. Figure 6 exemplifies the minimal errors observed, particularly when employing LR.

The proposed model with LR achieved a classification accuracy of 99.68% with a dataset size of 5628 instances.

(1)Accuracy =
TP + TN

TP + TN + FP + FN

(2)Precision =
TP

TP + FP

(3)Recall =
TP

TP + FN

(4)F1 =
2× precision× recall

precision+ recall

Table 3.  Truth table of confusion matrix.

Predicted actual Positive Negative

Positive True positive (TP) False positive (FP)

Negative False negative (FN) True negative (TN)

Fig. 5.  Principal component analysis for logistic regression.
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AdaBoost classifier
AdaBoost, a widely popular boosting algorithm used for binary classification, combines multiple weak classi-
fiers into a robust single classifier. In our experiment, the AdaBoost classifier achieved a good accuracy of over 
99.77%, as illustrated in Fig. 7.

The AdaBoost classifier employs an ensemble approach, typically using one-level decision trees, which are 
highly effective within this algorithm. Initially, each data point is weighted equally, with weights adjusted in sub-
sequent iterations to focus on incorrectly classified points. PCA transforms correlated variables into orthogonal 
components known as principal components, capturing maximum variance in the data. In our method, we 
computed eigenvectors from the covariance matrix using singular value decomposition, producing results similar 
to PCA due to the covariance matrix’s properties, as shown in Fig. 8.

Fig. 6.  Confusion matrix for logistic regression.

Fig. 7.  AdaBoost classifier with different evaluation metrics.

Fig. 8.  Principal component analysis using AdaBoost classifier.
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In Fig. 8, Telnet and Voice traffic are accurately categorized, but distinguishing between Ping and DNS traffic 
remains challenging with only two components. The AdaBoost classifier confusion matrix (Fig. 9) highlights 
any misclassifications. Our model achieved relatively good performance: 99.77% accuracy with 5,628 instances.

Decision tree classifier
The Decision Tree (DT) method classifies unseen cases by traversing a tree structure where nodes make decisions 
based on feature values. Categorical features split based on possible values, while continuous features divide by 
thresholds. Figure 10 presents outcomes of the DT classifier, showing metrics like accuracy, precision, recall, 
and F1-score.

Figure 11 depicts PCA applied to the DT, transforming correlated features into orthogonal components to 
boost classification efficiency and lower computational complexity. PCA is beneficial before training a DT because 
it transforms the dataset to emphasize high-variance directions. These directions typically correspond to those 
providing the most Information Gain for the DT. In high-dimensional datasets with correlated variables, PCA 
improves classification accuracy by reducing redundancy and focusing on the most informative components.

As illustrated, the method effectively separates Telnet, voice and DNS traffic with clear boundaries. However, 
it struggles to classify Ping traffic correctly using only one component. Figure 12 shows a confusion matrix for 
the DT classifier, comparing predicted labels with actual labels. This helps us see where the classifier may make 
mistakes and where it can improve in accurately classifying traffic types.

The proposed model using the DT classifier achieved 99.81% accuracy with a dataset of 5,628 instances.

Support vector machine
In Support Vector Machines (SVM), a hyperplane is crucial for separating different classes effectively. The goal is 
to find the optimal hyperplane that accurately divides the network traffic classes. Figure 13 displays the confusion 
matrix for the SVM classifier, providing insights into how well the model classifies traffic.

PCA and SVM are implemented by first splitting the dataset into training and testing sets. PCA reduces the 
dimensionality of features, ensuring they are orthogonal. Before PCA, features are normalized using Standard 
Scaler to subtract the mean and scale to unit variance. Figure 14 illustrates the application of PCA to SVM.

Telnet, voice, and DNS traffics are clearly identifiable, but distinguishing Ping traffic with only one component 
is difficult. Figure 15 displays the confusion matrix for the SVM classifier, with predicted labels along the Y-axis 
and true labels along the X-axis. This matrix highlights where the model misclassifies traffic types, giving a clear 
view of its performance.

Fig. 9.  Confusion matrix for AdaBoost classifier.

Fig. 10.  Decision tree classifier with different evaluation metrics.
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Fig. 11.  Principal component analysis for decision tree.

Fig. 12.  Confusion matrix for decision tree classifier.

Fig. 13.  Support vector machine classifier with different evaluation metrics.
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The SVM-based model achieved 83.51% accuracy with a dataset comprising 5628 instances.

Random forest classifier
The Random Forest (RF) classifier in this study aggregates multiple tree classifiers, each trained on a randomly 
sampled subset of input vectors. Each tree then contributes a vote towards the most frequent class prediction. 
The RF classifier utilized in this paper employs randomly selected features or feature combinations at each node 
to construct each tree. Figure 16 presents the confusion matrix for random forest, the random forest principal 
component analysis in shown in Fig. 17.

Telnet, voice, and Ping traffics are easily categorized, while DNS remains challenging to identify with only 
one component. The proposed model using RF achieved a classification accuracy of 99.74% with a dataset 
comprising 5628 instances.

Fig. 14.  Support vector machine principal component analysis.

Fig. 15.  Confusion matrix for support vector machine.
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Unsupervised learning
K‑means clustering
K-Means Clustering, an unsupervised machine learning algorithm, groups data points in multidimensional 
space by assigning each point to the nearest cluster centroid. In our study, we identified four clusters represent-
ing distinct traffic types. Figure 18 illustrates the centroids of these clusters in a 12-dimensional vector space, 
with each square indicating a dimension and shading representing value magnitudes. This visualization provides 
insight into the cluster centroids’ positions and the distinct characteristics of each traffic type.

As we observed in Fig. 18 that K-means prioritizes certain features to differentiate between traffic categories. 
To visualize the model’s performance, Principal Component Analysis (PCA) is employed to reduce the dimen-
sions from 12 to 2, facilitating plotting in a two-dimensional space. This visualization clarifies why the algorithm 
achieved approximately 30% accuracy; it struggles with clustering non-circular data groups effectively. Figure 19 
illustrates the performance of K-means clustering.

Fig. 16.  Confusion matrix for random forest.

Fig. 17.  Random forest principal component analysis.

Fig. 18.  Visualization of cluster centroids.



13

Vol.:(0123456789)

Scientific Reports |        (2024) 14:20060  | https://doi.org/10.1038/s41598-024-70983-6

www.nature.com/scientificreports/

The labeling accuracy of the K-means model shows deficiencies: half of the Telnet flows are mislabeled, and 
the Voice category is split into two labels. This discrepancy arises because our traffic data exhibits a more linear 
structure, whereas K-means performs better with circular clusters. Figure 20, depicting the confusion matrix, 
confirms these performance issues.

In our evaluation of ML algorithms, the DT consistently showed superior performance in both accuracy and 
computational efficiency. It is used for real-time TC having fewer features and integrate decisions efficiently. 
Compared to LR and SVM, which excel with limited data, and AdaBoost and RF, which have their own strengths 
and limitations, the DT stood out with the highest average accuracy of 99.81%. As observed in Table 4, the results 
show that the accuracy of the proposed model with DT classifier is higher than others. In Table 5, a compara-
tive analysis with existing works is presented. The results show a comparatively high accuracy compared with 
existing works.

Fig. 19.  Visualizing K-means clustering performance.

Fig. 20.  Confusion matrix of K-means clustering.

Table 4.  Performance evaluation of the machine learning models.

Models Accuracy (%)

LR 99.68

RF 99.74

AdaBoost 99.77

SVM 83.51

DT 99.81

K-means 30
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Conclusion
Identifying traffic based on port numbers and payload inspection is becoming ineffective due to the dynamic 
and encrypted nature of modern network traffic. Accurately identifying both offline and real-time network 
traffic types such as ping, telnet, DNS, and voice is crucial for effective network management and ensuring 
quality service delivery. In this research work, we have integrated SDN with ML techniques including RF, DT, 
SVM, AdaBoost, LR, and K-means Clustering. This paper aimed to manage and classify network traffic based 
on applications within a SDN environment using a systematic approach to provide QoS. The Mininet tool in 
SDN  was used to design network architecture, generate traffic, and evaluate its performance with various metrics. 
Among the models tested, the Decision Tree was the most effective method due to its robustness in handling 
complex data and its performance in accurately classifying traffic across different network scenarios, including 
real-time simulations that replicate diverse network conditions. This integration not only enhances traffic clas-
sification but also improves network efficiency and reliability. For future work, since most of internet traffic in 
recent times are videos, D-ITG can be used to generate flows for video games or other video traffic.

Table 5.  Comparison of proposed approach with related works.

Authors Year Methods used Application Outcomes Limitation

3 2021

Supervised learning (ANN, Markov 
decision process, linear regression, LR, 
RF, Genetic algorithms (GA)
Unsupervised learning (K-means, 
hierarchical clustering, Self-organizing 
maps (SOM), gaussian mixture mod-
els (GMM)
Reinforcement learning (Q-learning, 
double Q-learning, state-action-
reward-state-action (SARSA), deep 
reinforcement learning (DRL), deep 
Q-learning)

Routing optimization

This article surveys the use of ML 
techniques for routing optimization 
in SDN based on three core categories 
(i.e. supervised learning, unsupervised 
learning, and reinforcement learning)

The paper does not elaborate an 
optimal routing with the use of AI, 
ML and SDN jointly

20 2003 SVM, NC, NB Traffic classification
The accuracy obtained for SVM is 
92.3%, NB is 96.79%, and the nearest 
centroid is 91.02%

The challenges are in the live NW data 
traffic capture and classification of 
applications in the SDN platform

21 2020 MLP and CNN Packet classification

CNN based method has a preference 
for the classification of audio traffic. 
Regarding picture and video traffic, 
the Precision of CNN based method 
is about 91% and 88% respectively, 
much less than that of MLP based 
method 95%

CNN is not suitable to be used in the 
classification of picture and video traf-
fic but it can make quite a difference 
in the classification of audio traffic

22 2019

NC, NB, DT, RF, SVM, Multi-Class 
Support Vector Machine (MCSVM), 
Laplacian (LapSVM), AdaBoost, Gra-
dient G-AdaBoost, Linear Regression, 
Polynomial Regression, K-means, 
CNN, Autoencoders (AE) and Recur-
rent Neural Network (RNN)

Traffic classification and prediction
It surveyed the ML and DL methods 
used for classification and prediction 
in SDNs

The limited availability of labeled 
data decreases the accuracy in clas-
sification and limits the choices of 
algorithms since DL requires a large 
amount of data

23,24 2021 DNN Intrusion detection

It employed MQTT enabled IoT for 
IDS. The model achieved the highest 
accuracy of 97.13% against LSTM 
and GRUs using a dataset with three 
types of attacks such as Man-in-the-
Middle(MitM), Intrusion in the NW 
and DoS

The paper does not investigate the 
vulnerability of new types of attacks 
on various IoT protocols

25 2023
ML and DL algorithms (RF, DT, KNN, 
MLP, CNN, and ANN)
SMOTE & XGBoost for data balanc-
ing and feature extraction respectively

Network intrusion detection system

The performance results show that 
among all ML and DL algorithms, 
RF has the highest accuracy rate of 
99.99% with the chosen features for 
the KDDCUP’99 dataset and 100% for 
the CIC-MalMem-2022 dataset

The model results not compared with 
those of the ensemble feature selection 
method for enhancing performance of 
intrusion detection

26 2020 Gated Recurrent Units (GRU) Defense against intrusion and DDoS 
attacks

GRU method is better both for Detec-
tion and Mitigation of attacks

The paper does not use GRU method 
as a multi-label classifier and it does 
not evaluate a drop time window 
usage

27 2021 PHY, MAC and Network Layer Performance improvement in wireless 
NW

Improved network QoS and quality of 
experience (QoE)

Implementing ML on constraint 
wireless devices & adapting the infra-
structure for massive data collection 
and transfer

28 2020 SVM, KNN Traffic management applications ML techniques was incorporated for 
efficient VANET

Some open challenges and pointed 
out areas that require more attention

Proposed 2024 LR, AdaBoast, SVM, RF, DT and K 
means

Detection and classification of net-
work traffic based on applications

Among the models tested, the DT 
algorithm achieved 99.80%, outper-
forming both the other supervised 
and unsupervised learning

Enhancing flow differentiation capa-
bilities and optimizing data handling
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