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Abstract 

 
This study aimed to assess the effect of intra-habenular injection of morphine on acute trigeminal pain in 
rats. Also here, we examined the involvement of raphe nucleus opioid and 5HT3 receptors on the 
antinociceptive activity of intra habenular morphine to explore the possibility of existence of descending 
antinociceptive relay between the habenula and raphe nucleus. The numbers of eye wiping response elicited 
by applying a drop (40 µL) of NaCl (5 M) solution on the corneal surface were taken as an index of acute 
trigeminal nociception. Intra habenular microinjection of morphine at a dose of 2 μg was without effect, 
whereas at doses of 5 and 8 μg significantly produced antinociception. Microinjection of naltrexone (4 µg) 
and ondansetron (1 µg) into the dorsal raphe nucleus prior to intra-habenular saline did not produce any 
significant effect on corneal pain perception. Pretreatment of the raphe nucleus with ondansetron but not 
naltrexone prevented intra habenular morphine (8 μg) induced antinociception. Also, intra habenular 
injection of lidocaine (2%, 0.5 µL) reduced corneal pain response. Moreover, intra-habenular microinjection 
of L-glutamic acid (1 and 2 µg/site) did not produce any analgesic activity in this model of pain. In 
conclusion, the present results suggest that the activation of the habenular µ opioid receptor by 
microinjection of morphine or inhibition of habenular neurons by microinjection of lidocaine produced an 
analgesic effect in the acute trigeminal model of pain in rats. The analgesic effect of intra habenular 
morphine was blocked by intra-dorsal raphe injection of serotonin 5-HT3 antagonist. 
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INTRODUCTION 

 
The habenular complexes (include the 

medial and the lateral nuclei) are small 
bilateral epithalamic structures that modulate a 
wide range of physiological behaviors 
involving nociception, depression, stress, 
endocrine, reward function and addiction (1,2).  

A wealth of evidence suggests a key role 
for the lateral habenula in central modulation 
of acute and chronic models of pain in the 
animals and human (3,4). It has been shown 
that the electrical stimulation of the habenula 
induces an antinociceptive effect in the 
formalin test (5).  

Microinjection of morphine into the lateral 
habenula produced analgesia in the formalin 
test (6). Moreover, it is well established that µ 
opioid receptors are dense in the habenula but 

delta and kappa receptors have less density in 
this region (7). Also, morphine is exhibited 
inhibition and facilitation of excitatory 
synaptic transmission in the habenular nucleus 
neurons of rat (8).  

Depending on the intensity of the noxious 
stimuli (but not non-noxious stimuli) lateral 
habenular neurons are responsive to peripheral 
nociceptive stimulation in excitatory or 
inhibitory patterns (9).  

Lateral habenula received pain inputs from 
direct (via trigeminal nucleus and lamina I of 
the dorsal horn) and indirect (via structures 
such as the lateral hypothalamus) afferents 
(4,10,11).  

 
 
 



Khalilzadeh and Vafaei / RPS 2017; 12(3): 241-248 

 

242 

It has been shown that the lateral habenula 
(LHb) sends its projections to the dorsal and 
median raphe nuclei, ventral tegmental area, 
substantia nigra pars compacta and 
periaqueductal gray (12-14). Dorsal raphe 
nucleus is one of the important nucleus in pain 
modulation. This nucleus is involved in the 
pain perception through serotoninergic, 
opioidergic and GABAergic system (15). 
Dorsal raphe sends some afferents directly into 
the spinal trigeminal nucleus and spinal cord 
to contribute in descending serotoninergic 
inhibitory pain pathway (15,16). 

The connection between habenula and 
midbrain regions such as the PAG and dorsal 
raphe seems to be important in the habenular 
modulation of nociception. Therefore the 
present study was aimed to investigate the 
effect of morphine, L-glutamic acid and 
lidocaine (for pharmacological blockage of the 
habenula) microinjection into the lateral 
habenula in the acute trigeminal model of pain. 
The possible existence of a descending pain 
modulatory pathway from the lateral habenula 
to the dorsal raphe, which is may be involved 
in the intra-habenular morphine induced 
analgesia was determined by blocking of µ 
opioid and 5HT3 serotonin receptors in the 
dorsal raphe by microinjection of opioid 
receptor antagonist naltrexone and 5HT3 
serotonin receptor antagonist ondansetron 
before intra habenular injection of morphine. 

 
MATERIALS AND METHODS 

 
Animals 

Adult male Wistar rats, weighing 250-280 g 
were used in this study. They were randomly 
housed in polyethylene cages with ad libitum 
access to food and water in a room with 
controlled temperature (22 ± 1 °C) and under a 
12 h light–dark cycle (lights on from 07:00 h). 
Six rats were used in each test group. All 
experiments were performed between 11:00 h 
and 15:00 h. All research and animal care 
procedures were approved by the Veterinary 
Ethics Committee of the Faculty of Veterinary 
Medicine (University of Tabriz) (Registration 
No. D/2013.31) and were performed in 
accordance with the current guidelines for the 
care of laboratory animals and the ethical 

guidelines for investigations of experimental 
pain in conscious animals (17). 
 
Drugs and chemicals  

Morphine sulfate was purchased from 
TEMAD Co. (Tehran, Iran). Naltrexone 
hydrochloride and ondansetron hydrochloride 
were purchased from Sigma-Aldrich Chemical 
Co. (St. Louis, MO, USA). NaCl and                  
L-glutamic acid were purchased from Merck 
Chemicals Co. (Darmstadt, Germany). All 
drugs and chemicals were dissolved in 
physiological saline, and just only NaCl 
dissolved in distilled water. 
 
Surgical procedure 

The rats were bilaterally implanted with 
two guide cannulas into the habenular nucleus. 
In addition, all rats concurrently were 
implanted with a guide cannula into the dorsal 
raphe nucleus. Briefly, rats were anesthetized 
with a mixture of ketamine (80 mg/kg, 
Alfasan, Woerden, Holland) and xylazine (10 
mg/kg, Alfasan, Woerden, Holland) injected 
intraperitoneally (i.p.), and then placed in a 
stereotaxic apparatus (Stoelting, Wood Lane, 
IL, USA). The scalp was incised, and the skull 
was leveled off around the bregma. A 23-gauge, 
15 mm stainless steel guide cannula was 
introduced at the following coordinates: 
habenular complex: AP: -3.3, L: 0.7, V: 4.8 
and dorsal raphe: AP: -7.8, L: 0, V: 6.4 with 
respect to bregma at a 0º angle. The cannulas 
were then fixed to the skull using three screws 
and dental acrylic (SR Triplex Cold, Ivoclar 
Vivadent AG, Liechtenstein). A 15-mm stylet 
was inserted on each cannula to keep them 
patent prior to injection. At least 10 days was 
allowed for recovery from the surgery (18). 
 
Injection protocol 

For intra-habenular or dorsal raphe 
microinjections of chemicals a 30 gauge, 15 
mm injection needle was attached to a 30 cm 
PE10 polyethylene tube fitted to a 1 μL 
Hamilton syringe. After stylet removal, the 
rats were placed on a wooden plate for a 
period of 15 min for habituation, thereafter the 
injection needle was inserted into the guide 
cannula. The volume of the drug solution to be 
injected into the each site was 0.5 μL and the 
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injection was slowly made over a period of 1 
min. The injection needle was left in place for 
a further 1 min after completion of injection to 
facilitate diffusion of the drug. Intra-dorsal 
raphe microinjection of saline, naltrexone (4 
µg) and ondansetrone (1 µg) were performed 5 
min before intra-habenular injection of 
chemicals. The possible analgesic activity of 
morphine (2, 5 and 8 µg/site), l-glutamic acid 
(1 and 2 µg/site) and lidocaine (2%) were 
evaluated 5, 15, 30 and 45 min after                    
intra-habenular injection. Morphine doses were 
chosen from previous studies because these 
doses effectively prevent from nociception in the 
different models of pain (19,20). The glutamate, 
naltrexone and ondansetron doses were chosen 
based on the previous studies (21-23). 
 
Cannula verification 

Cannula tip placement determined at the 
end of the experiment. Briefly at the end of the 
study, rats euthanized with the high dose of 
ether and then methylene blue dye (0.5 μL) 
was injected into each nucleus. The brains 
were removed and placed in the 10% formalin 
at least for 7 days. After fixation, the brains 
were cut coronally, and examined under a 
stereo-microscope for identification of the 
injection site to localize in diagrams from the 
rat brain atlas (Fig. 1) (18). Only data obtained 
from animals with the correct injection site 
were contributed in the statistical analysis.  
 

Acute trigeminal test 
Each rat was placed on a 50 × 50 × 1 cm 

wooden table and after a 15 min habituation 
period, one drop (40 µL) of NaCl 5 M solution 
was topically applied on the surface of the 
cornea using a pipette (Transferpette® S 10-
100 µL Brand CO, Germany). After topical 
application of NaCl 5 M solution, rats always 
wiped with the forepaw and sometimes rapidly 
scratched the eye with the hind paw. The 
numbers of eye wipes performed with 
ipsilateral forepaw were counted for a period 
of 30 s. Also, each burst of hind paw scratches 
was counted as one wipe (24,25). The test was 
performed pre-drug and post-drug 
administration at the same eye of the same 
animal with minimum 30 min interval. The 
effect of drugs from the maximal possible 
effect (%MPE) was calculated for eye-wipes 
according to the following formula:  
%MPE = 100× post drug wipes count - pre 
drug wipes count / (0 - pre drug wipes count) 

 
Statistical analysis 

Statistical differences were determined by 
two-way analysis of variance (ANOVA) with 
repeated measures, followed by Bonferroni 
post hoc test using GraphPad Prism® software 
version 5 (GraphPad Prism Software, Inc., 
USA). In figures, all values are expressed as 
Mean ± SEM. A value of P < 0.05 was 
considered statistically significant. 

 
 
Fig. 1. Schematic illustration of coronal sections of the rat brain showing the location of (A) the lateral habenula and 
(B) dorsal raphe from the atlas of Paxinos and Watson (indicated by gray color). Location of the injection cannulas tip 
in the lateral (C) habenula and (D) dorsal raphe in this study.  
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RESULTS 
 
Morphine at a dose of 2 μg was without 

effect, whereas at a dose of 5 μg significantly 
produced an antinociceptive effect 15 min 
(39.93 ± 7.16%, P < 0.05), 30 min (41.78 ± 
8.90%, P < 0.01), and 45 min (46.35 ± 4.81%, 
P < 0.01) after intra-habenular injection. Also, 
morphine at a dose of 8 µg/site, significantly 
produced an antinociceptive effect 15 min 
(46.42 ± 10.74%, P < 0.01), 30 min (54.30 ± 
7.85%, P < 0.0001), and 45 min (58.42 ± 
9.44%, P < 0.001) after intra-habenular 
injection (treatment effect: F (3, 80) = 29.35, P 
< 0.0001; time effect: F (3, 80) = 2.80, P = 0. 
0455; treatment and time interaction effect: F 
(9, 80) = 0.55, P = 0.8352; Fig. 2). Lidocaine 
(2%, 0.5 µL) significantly reduced corneal 
pain response in 30 min (38.66 ± 13.52%, P < 
0.05) and 45 min (42.66 ± 9.23%, P < 0.05) 
after intra-habenular injection. Moreover, 
intra-habenular microinjection of L-glutamic 
acid (1 and 2 µg/site) did not produce any 
analgesic activity in this model of pain 

(treatment effect: F (3, 76) = 15.33, P < 
0.0001; time effect: F (3, 76) = 1.33, P = 0. 
2707; treatment and time interaction effect: F 
(9, 76) = 0.23, P = 0.9887; Fig. 3). 

Microinjection of naltrexone (4 µg) and 
ondansetron (1 µg) into the dorsal raphe 
nucleus prior to intra-habenular saline did not 
produce any significant effect on corneal pain 
perception. Intra-dorsal raphe injection of 
ondansetron (1 µg) prior to intra-habenular 
morphine (8 µg) completely block morphine 
induced analgesia in the acute corneal pain 
response.  

Intra-dorsal raphe injection of naltrexone (4 
µg) prior to intra-habenular morphine (8 µg) 
did not alter morphine induced analgesia 15 
min (54.34 ± 9.35%, P < 0.001), 30 min 
(56.70 ± 10.07%, P < 0.0001), and 45 min 
(62.30 ± 8.34%, P < 0.001) after intra-
habenular injection of morphine (treatment 
effect: F (4, 100) = 17.43, P < 0.0001; time 
effect: F (3, 100) = 1.06, P = 0. 3711; 
treatment and time interaction effect: F (12, 
100) = 0.84, P = 0.6109; Fig. 4). 

 
 

 

Fig. 2. Effect of intra-habenular microinjection of morphine after intra-dorsal raphe microinjection of saline (0.5 
µL/site) on corneal pain response induced by NaCl 5 M solution applied to the corneal surface in rats. Maximal possible 
effect (MPE%) is considered as an index for comparison between the results of two tests (for calculation of % MPE see 
the text). The values are expressed as mean ± SEM (n = 6 per group). The data are compared with two-way analysis of 
variance (ANOVA) followed by bonferroni post hoc test; ***P < 0.0001, **P < 0.001, *P < 0.01 and †P < 0.05 as 
compared to normal saline treated group. Raphe, dorsal raphe; habenula, lateral habenula.  
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Fig. 3. Effect of intra-habenular microinjection of l-glutamic acid and lidocaine after intra-dorsal raphe microinjection 
of saline (0.5 µL/site) on corneal pain response induced by NaCl 5 M solution applied to the corneal surface in rats. 
Maximal possible effect (MPE%) is considered as an index for comparison between the results of two tests (for 
calculation of % MPE see the text). The values are expressed as mean ± SEM (n = 6 per group). The data are compared 
with two-way analysis of variance (ANOVA) followed by bonferroni post hoc test; *P < 0.01 and †P < 0.05 as 
compared to normal saline treated group. Raphe, dorsal raphe;  habenula, lateral habenula; glutamate, L-glutamic acid. 

 

Fig. 4. Effect of intra-dorsal raphe microinjection of naltrexone and ondansetron before intra-habenular injection of 
saline (0.5 µL/site) and morphine on corneal pain response induced by NaCl 5 M solution applied to the corneal surface 
in rats. The values are expressed as mean ± SEM (n = 6 per group). The data are compared with two-way analysis of 
variance (ANOVA) followed by bonferroni post hoc test; ***P < 0.0001, **P < 0.001 and *P < 0.01 as compared to 
normal saline treated group. Raphe, dorsal raphe; habenula, lateral habenula. 
 

DISCUSSION 
 
In the present study intra-habenular 

injection of l-glutamic acid did not alter eye 
wiping responses, but microinjection of 
morphine and lidocaine into the habenular 
complex produced significant analgesia in 

acute trigeminal model of pain in rats. More 
importantly, analgesia produced by intra 
habenular injection of morphine, blocked by 
intra dorsal raphe injection of ondansetron but 
µ-opioid receptor antagonist naltrexone did not 
prevent the analgesic effect of intra-habenular 
morphine. These results probably indicate that 
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activation of 5-HT3 serotonin receptor in the 
dorsal raphe nucleus following morphine 
microinjection into the habenula, could cause 
analgesia in the acute trigeminal model of pain 
in rats. Habenula receives direct pain signals 
from trigeminal nucleus and lamina I of the 
dorsal horn and indirectly receive signals from 
other brain structures that contribute in pain 
processing like lateral hypothalamus, limbic 
forebrain structures and nucleus accumbens 
(4,10,11). Projections from habenula are 
terminated on the some well-known structures 
that involved in pain processing like 
periaqueductal gray and dorsal raphe nuclei 
(4,12). These anatomical evidences are 
supported by some other electrophysiological 
(9), behavioral (6) and immunohistological 
(26) evidences that confirming pain processing 
role of the habenular complex in the brain. 
Moreover, habenula is one of the few regions 
in the brain that play an important role in the 
regulation of both dopamine and serotonin 
systems (2). 

It has been reported that stimulation of 
lateral habenula can modulate dorsal raphe 
neuronal activity (27). Lidocaine injection into 
the habenular complex or its lesion could 
improve depressive signs via increasing of 
serotonin level in dorsal raphe nucleus of 
depressed rats (28). Also, the increase in 
serotonin release is reported in the striatum 
after electrical stimulation of lateral habenula 
and this effect blocked by microinjection of 
the non-selective N-methyl-D-aspartate 
receptor coupled glycine B receptor 
NMDA/GLYB receptor antagonist kynurenic 
acid into the dorsal raphe nucleus (29,30). 
Furthermore, extracellular level of serotonin in 
the dorsal raphe significantly decreased 
following intra-habenular microinjection of l-
glutamic acid in normal rats (28). On the other 
hand, in the behavioral study, it was observed 
that activation of the lateral habenula by 
microinjection of l-glutamic acid decreased 
tail flick latency in rats (31). However, in this 
study, we found that microinjection of L-
glutamic acid into the habenular complex did 
not produce any effect on hypertonic saline 
induced eye wiping response. 

Analgesia produced by microinjection of 
morphine into the habenular complex has been 

reported previously in the formalin and the tail 
flick test (6,32). Habenula is one of the brain 
sites with high levels of µ opioid receptor 
expression (7). Microinjection of morphine 
into the lateral habenula induced both 
inhibition and facilitation of glutamatergic 
synaptic transmission (8). There are some 
reports indicate that habenulo-raphe projection 
is excitatory and synapses on GABA 
interneurons, which in turn inhibit 
serotonergic projections and reduced serotonin 
level, particularly in the dorsal raphe (33-35). 
Our results suggest that inhibition, but not 
activation of habenular complex by morphine 
(like lidocaine effect) may lead to decrease of 
glutamate release from habenulo-raphe 
excitatory projection thus decrease 
GABAergic interneurons activity and 
subsequently increase serotonin release from 
dorsal raphe serotonin-containing neurons.  

It is well established that serotonin is one of 
the key neurotransmitters in the descending 
pain inhibitory pathways (36) that also 
involved in morphine-induced antinociception 
(37). Serotonin 5-HT3 receptors have both pro- 
and antinociceptive role depending on their 
expression site (peripheral or central). The 
existence of 5-HT3 receptors in dorsal raphe 
has been demonstrated by Laporte, et al. (38). 
Serotonin 5-HT3 receptors have an undeniable 
role in the antinociceptive activity of serotonin 
in the central nervous system (39-41). The 
analgesic effect of intrathecal injection of 
serotonin and 1-(m-chlorophenyl)-bi-guanide 
(5-HT3 receptor agonist) inhibited by 
intrathecal pretreatment of rats with 
tropisetron and granisetron (5-HT3 receptor 
antagonists) (41).  
 

CONCLUSION 
 
In conclusion, the present results suggest 

that the activation of the habenular µ opioid 
receptor by microinjection of morphine or 
inhibition of habenular neurons by 
microinjection of lidocaine produced an 
analgesic effect in the acute trigeminal model 
of pain in rats. The analgesic effect of intra 
habenular morphine was blocked by intra-
dorsal raphe injection of serotonin 5-HT3 
antagonist. 
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