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Abstract: Ketogenic Diet is a nutritional pattern often used as dietotherapy in inflammatory diseases,
including neurological disorders. Applied on epileptic children since 1920, in recent years it has been
taken into account again as a tool to both reduce inflammatory burdens and ameliorate the nutritional
status of patients affected by different pathologies. Multiple sclerosis (MS) is considered an immune-
mediated neuro-inflammatory disease and diet is a possible factor in its pathogenesis. The aim of
this work is to investigate the main potential targets of MS-related impairments, in particular the
cognitive deficits, focusing on the alteration of biomarkers such as the Brain Derived-Neurotrophic
Factor and the Tryptophan/Kynurenine ratio that could play a role on neuroprotection and thus
on MS progression. Furthermore, we here propose nutritional suggestions which are useful in the
development of a ketogenic diet protocol that takes advantage of the anti-inflammatory properties of
low-carbohydrate foods from the Mediterranean diet to be applied to subjects with MS. In conclusion,
this approach will allow one to develop the ketogenic diet combined with a modified Mediterranean
diet as a possible tool to improve neuroinflammation in multiple sclerosis.

Keywords: Mediterranean; ketogenic; multiple sclerosis; diet; neuroinflammation; Tryptophan/
Kynurenine ratio; brain derived neurotrophic factor

1. Introduction

Multiple sclerosis (MS) is a neurological disease characterized by an autoimmune
response, inflammation, demyelination, gliosis, and neuronal loss [1]. It has a multifactorial
nature and various environmental factors or metabolic conditions may have a role in
its etiology [1]. Nutrition is now recognized as one of the possible risk factors for the
development of MS and has potential applications in the management and treatment of
the disease: eating habits and lifestyles can exacerbate or improve the symptoms of the
disease, modulating the inflammation, interacting with human cells and the commensal
gut microbiota [2].

In this context, the ability of dietary factors to interact with enzymes, transcription
factors, and nuclear receptors of human cells is of striking importance [3,4]. Food can have
medium and long-term effects on the production of circulating hormones which influence
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many physiological mechanisms responsible for the development of an inflammatory state
and for an alteration of the redox cellular state [4,5]. Many MS patients are malnourished,
clinically manifesting weight loss, overweight or obesity, as well as vitamin deficiency [6].
In patients with MS, malnutrition has been associated with impairment of the immune
system, with negative impacts on cognitive function, inducing a chronic inflammatory
state that increases the frequency of relapse and worsens the progression of the disease [7].
In addition, nutritional status negatively influences the effectiveness of drug therapy [8].
Several dietary strategies have been proposed over the years for the treatment of MS, com-
plementary to drug therapy. Some of the models proposed appear particularly restrictive
and difficult to implement over time, potentially leading to deficiencies in some nutrients.
Despite the differences between the various diets, there are also some aspects in common,
such as avoiding processed foods, foods with a high glycaemic index and foods rich in
saturated fat; reducing the consumption of fatty red meat; and increasing the consumption
of fruit and vegetables. However, clear evidence is lacking to support the benefit of any
specific dietary regimen and well-designed, randomized controlled trials are needed [9].
The subject affected by MS often asks for a specific dietary regimen, but without guidelines,
it could lead to malnutrition [6].

The Mediterranean diet (MeDi) in MS modulates the gut microbiota and low-grade
inflammatory state. It has also recently been shown to reduce the risk of mental disorders,
including depression and cognitive decline [10]. The influence of MeDi, rich in polyphenols,
is reflected in Brain Derived Neurotrophic Factor (BDNF) levels, improving cognitive
function, as shown in clinical trials [11]. This link becomes important if we consider the
promising role of BDNF on neuroprotection demonstrated in experimental models of MS
and clinical studies.

MeDi foods, especially vegetables, are rich in nutraceuticals. The use of nutraceuticals
has been proposed for the enhancement of cognitive performances and reduction of neu-
rodegenerative impairments, considering inflammation and oxidative stress as substantial
factors that could induce neurological alterations [12–14]. Upon this view, nutraceuticals
can find applications in neurodegenerative diseases such as MS.

Similarly, the application of the Ketogenic Diet (KD) protocol on mice with autoim-
mune encephalomyelitis (EAE) showed beneficial effects on disease progression, disabil-
ity, cognitive status, and inflammatory markers by reducing the expression of enzymes
involved in the biosynthesis of pro-inflammatory molecules [6]. A recent study has ob-
served that the eight-week intervention with the very-low-calorie KD produced significant
weight loss in obese patients, decreasing pro-inflammatory cytokine production, increasing
adiponectin serum levels, and improving metabolic profile [15].

Hence, this evidence supports the interest in the development of a KD protocol modi-
fied and strengthened by the use of typical foods of the MeDi with lower concentrations
of carbohydrates, in order to appreciate the beneficial properties of these two integrated
dietary regimens on MS.

The aim of this review is to provide a comprehensive overview of the key points
related to MS in order to pave the way to the application of a new dietary protocol that
would be beneficial for the management of this neurological disorder. To this purpose, we
have firstly investigate the main potential targets of MS-related impairments, in particular
the cognitive deficits, focusing on the alteration of biomarkers such as BDNF and the
Tryptophan/Kynurenine ratio whose neuroprotective metabolites can be modulated by
nutritional approaches. Indeed, these biomarkers, that could play a role in neuroprotection
and thus on MS progression, could be influenced by ketogenic and Mediterranean dietary
protocols. Then, we focus on the consequences of malnutrition and its comorbidities on
MS severity and progression. Finally, the potential anti-inflammatory properties of MeDi
and KD on MS will be investigated, highlighting the effect of both protocols on BDNF
production, and on inflammatory markers. In the light of all this evidence, nutritional
suggestions based on the modified MeDi, and the KD will be proposed, comprising macro-
and micro-nutrients that would be beneficial for the enhancement of MS patient compliance.
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2. Multiple Sclerosis: Cognitive and Nutritional Factors

MS is a central nervous system (CNS) disease comprising macro and microscopic
alterations: a focal inflammation resulting in macroscopic plaques and injury to the blood-
brain barrier; and neurodegeneration with the microscopic impairment of axons, neurons,
and synapses [1]. Macroscopically, myelin loss, edema, and axonal injury are encountered
in MS plaques; whilst microscopical MS lesions strongly activate auto-immunity response
recruiting macrophages, T and B cells, and initiating cytotoxic activities of microglia [16].
The MS disease course has been classified into seven categories, as in Lublin et al., 2014.
The main four are the following: (1) relapsing-remitting (RR) is a very common disease
course in which neurological symptoms develop over days to weeks and last 24 to 48 h;
(2) primary progressive regards patients whose symptoms gradually deteriorate from the
onset, without relapses; (3) secondary progressive shows an initial RR course followed
by a slower neurologic deterioration; (4) progressive-relapsing typically shows a gradual
deterioration with superimposed relapses. Furthermore, MS patients could present (5) a
clinically isolated syndrome with a single episode of inflammatory CNS demyelination; (6) a
fulminant syndrome with severe MS symptoms, multiple relapses and rapid progression;
lastly (7) a benign clinical course with an overall mild disability.

2.1. The Role of BDNF in MS and the Influence of Dietary Factors on Its Regulation

Once it was established that the impaired myelination process plays a crucial role
in MS-induced neurodegeneration, the importance of neurotrophic growth factors in the
myelin repair were given attention [17]. Among them, BDNF represents a gold standard
in this context. Indeed, it is critical for neurodevelopment, for neuronal function and
survival in the adult brain [18,19], but also for synaptic plasticity, especially in discrete
brain regions such as the hippocampus, which is particularly important for behavioral and
physiological processes [20,21]. It has been shown that BDNF contributes to neuroprotection
via several effects, among which we encounter the impact on myelin integrity [22,23].
Several authors revealed that it can influence the distribution pattern of myelin structural
proteins implicated in the integrity of the intact myelin sheath [24–26]. This myelin-
protective effect helps guarantee mechanisms of myelin repair and eventually the degree
of remyelination by downstream BDNF-induced endogenous pathways [27]. What has
been unveiled is that it induces oligodendrocytes precursor proliferation, migration, and
differentiation in the myelin damage foci [22,28], but also constitutes a survival factor for
neurons by promoting remyelination of damaged axons [29].

Not surprisingly, recent research has explored its promising impact in the neuropro-
tection of MS in experimental models and clinical studies [24,25]. Indeed, some authors
supported BDNF contribution to the remyelination of MS-induced lesions [26,30]. In par-
ticular, its levels resulted in decreased MS patients during RR phases, thus limiting the
opportunity of individuals to repair myelin damage before a subsequent MS attack [31].
Whereas, BDNF serum levels are higher during the MS attack, though not sufficient to
promote complete remyelination [26,32]. Collectively, these data could demonstrate its pro-
tective up-regulated activity to promote neuronal recovery in MS compared with healthy
subjects and this could represent a reliable biomarker especially for MS diagnosis [33].
Even though some authors blame the putative discrepancy between serum and brain levels
of BDNF [34], others indicate that plasma concentration reflects the brain altered levels
in neurological disorders [35,36]. However, it is undeniable that the results obtained so
far prompted novel pharmacological strategies in order to attempt the amelioration of MS
disease by increasing endogenous or exogenous BDNF levels [37,38]. Intriguingly, its levels
also seem to be implicated in cognitive deficits typical of neurodegenerative disorders such
as AD, psychiatric disorders and MS [36]. Indeed, Hori et al., 2017 revealed that BDNF
levels are strictly linked to the cognitive domains of memory and verbal learning, verbal
fluency, and executive function. Moreover, its polymorphisms in MS have been correlated
with cognitive performance and measures of brain atrophy [39,40].
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In this context, the evaluation of BDNF biomarker in MS patients could be powerfully
influenced by specific dietary protocols. Indeed, BDNF is implicated in glucidic homeostasis
and energy balance [41], since an inverse correlation between blood glucose levels and
BDNF release was found. Particularly, in rodent models, BDNF expression was correlated
with glucose actions in the ventromedial hypothalamic nucleus. More intriguingly, KD
was specifically implicated in the modification of plasma BDNF levels [42]. Indeed, beta-
hydroxybutyrate (BHB) produced by this dietary protocol is able to cross the blood brain
barrier (BBB) inducing the increase in the mitochondrial respiration and in turn NF-KB,
that ultimately activates histone acetyltransferase p300/EP300 and consequently BDNF
synthesis [42]. In addition to KD effects on BDNF levels, polyphenols present in the MeDi
have been correlated to BDNF levels. It was outlined that the assumption of polyphenol-
rich foods in MeDi activates nuclear factor CREB and thus BDNF levels, with positive
outcomes on spatial memory performance in murine models. In addition, clinical trials
pointed out that the consumption of high levels of polyphenols boosts cognitive function
influencing neurogenesis via the specific activation of ERK/CREB/BDNF axis [11].

In the light of this evidence, KD and MeDi effects on BDNF levels could constitute
a crucial turning point for supporting the cognitive relapse of MS through the control of
specific dietary protocols.

2.2. Tryptophan-Kynurenine Metabolism in MS and the Influence of KD

Tryptophan (Trp) is an essential amino acid whose metabolites play key roles in several
physiological processes; due to its very low reserves in the body, its deficiency rapidly man-
ifests under various catabolic conditions. In a recent review its roles as a source of serotonin
and melatonin, as a regulator of neurotransmission and its capability to influence circadian
rhythm and cognitive functions have been highlighted and discussed [43]. It also influences
the regulation of skeletal muscle mass and primarily influences immune responses. Trp
has a stimulatory effect on proteosynthesis and its supplementation increases muscle mass
and reduces adipose tissue. Trp blood levels decrease with age and inflammation: such
decrease of Trp and the accumulation of its catabolite Kynurenine (Kyn) contribute to the
development of sarcopenia. Kyn functions via numerous metabolic intermediates modulat-
ing inflammatory responses, oxidative stress and nicotinic and glutamatergic receptors [44].
In addition, Kyn serves important signaling functions in inter-organ communication and
modulates endogenous inflammation. Several metabolites target the N-methyl-d-aspartate
receptor as antagonists such as kynurenic acid (K-+A) or as agonists such as quinolinic
acid (QA) and 3-hydroxykynurenine (3-HK), thus putatively exerting neuroprotective and
neurotoxic effects on neuronal excitability [44,45].

It is possible to assume that in MS disease the indoleamine 2,3 dioxygenase (IDO) could
influence TRP effects on immune functions since IDO can be activated during inflammation
(stimulated by tumor necrosis factor-alpha (TNF-α), interferon (INF-α), etc.) to form Kyn,
thus diminishing the amount of Trp available for the synthesis of serotonin, melatonin
(increase in the Kyn/Trp ratio) and other important azoles. This leads to Trp depletion
and consequently attenuation of proteosynthesis; such an effect could result in the rapid
progression of muscle atrophy, sarcopenia, and polyneuromyopathy. Noteworthy, IDO
was evidenced as a regulator of T cells’ response in MS’ clinical course via modulation
of Th1/Th2 ratio. For instance, in RRMS patients’ IDO expression, that is augmented in
relapsing phases, can be decreased by glucocorticoids administration together with its
catalytic activity [46].

The effect of the Kyn/Trp ratio was evaluated on inflammatory states and neuronal
excitability, highlighting that reductions in the Kyn/Trp ratio in favor of Trp through
the consumption of tryptophan-rich foods improve skeletal muscle mass and ameliorate
endogenous inflammation in MS patients [43]. The modulation of Trp–Kyn metabolism
through lifestyle (diets, Branched-Chain Amino Acid (BCAA), aerobic exercise) could mod-
ify the balance in favor of Trp and its neuroprotective metabolites, ultimately supporting
the treatment of MS disease with low grade chronic inflammation. Indeed, the KD protocol
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was found to downregulate the Kyn pathway in the hippocampus and at plasma level in
rat models, revealing beneficial effects on neurodegenerative processes [47]. Lastly, BHB
produced in the KD protocol determines a reduction of Kyn levels, an increase in KA
and also in the KA/KyN ratio which sustains the neuroprotective of KD by inhibiting the
kynurenina 3-monoxygenase enzyme that ultimately synthesizes KA [48].

2.3. Malnutrition in MS

Malnutrition is defined as an acute, subacute, or chronic state of overnutrition or
undernutrition with or without inflammatory activity that leads to a change in body
composition and functional variation. In patients with MS, malnutrition has been associated
with impairment of the immune system. It affects mental function, respiratory muscle
strength, and it contributes to exacerbate already existing symptoms, such as muscle
wasting and weakness, fatigue and muscle spasm [49,50].

Many MS patients suffer from various forms of malnutrition, including weight loss,
obesity or vitamin deficiency [6]. Malnutrition in MS is independent of the disease course
and duration, number of attacks, disability status, and functional system involvement [49].
However, its incidence has not been well determined and there is a paucity of information
regarding its functional consequences to MS patients. Epidemiological data show that
the prevalence of chronic malnutrition was 11.8% in MS patients and only 2% in patients
with other chronic disorders [49]. Our recent study of patients with RR-MS found that
70% of patients had a nutritional risk, of these 20% were undernourished and 50% were
overnourished (unpublished data). Weight loss and cachexia are often present in patients
with MS [51]. Evidence shows that there is a correlation between significant weight
loss, cachexia, and a demyelinating lesion in the lateral hypothalamus [52]. Accordingly,
a state of undernutrition can worsen the disease. When considering the condition of
undernutrition in MS patients it is important to evaluate the impact of certain vitamin
deficiencies: vitamin D deficiency has been widely reported, whereas folic acid and vitamin
B12 deficiency has not. A recent review showed that vitamin D deficiency may be relevant
to the development of the disease and to its severity [8,53]. In addition, the same authors
also observed that low vitamin D levels also affect therapeutic response to medications.
The above highlights the importance of vitamin D supplementation in MS patients in order
to achieve plasma levels appropriate to the demands of the disease. Recently, it has been
shown that vitamin D levels below 40 ng/mL are too low to keep the clinical condition
under control and not to observe new lesions on MRI [8]. According to the literature [8],
extensive controlled clinical studies would be necessary to establish standard levels of
vitamin D supplements which are useful for patients with MS.

Overnutrition (defined as BMI > 24.9) includes overweight or obesity, that in infancy
and adolescence can predispose to the onset of MS [54]. The Nurses’ Health Study I and
II found that women with a BMI ≥ 30 kg/m2 at age 18 had a 2.25-fold increased risk of
developing MS compared to those with a BMI in the normal range after adjusting for
age, latitude, race/ethnicity, and smoking [55]. An epidemiological study on MS has
estimated that eliminating childhood obesity could prevent approximately 15% of MS
cases [56]. The condition of obesity and overweight in patients with MS increases the
risk of comorbidities such as diabetes and cardiovascular diseases (CVDs) [57–59]. Both
induce a chronic inflammatory state that worsens the disease, increasing the frequency of
relapse with negative impact on cognitive function [7]. Obesity, overweight, and insulin
resistance are interrelated components of the Metabolic Syndrome (MetS). Indeed, in a
recent study on MS the onset of MetS was observed in 22% of patients and insulin resistance
in 46% with a higher incidence in comparison with healthy controls [60,61]. Although
the association between MetS or insulin resistance and degree of disability has not been
unequivocally demonstrated, it has been observed that insulin resistance can exacerbate MS-
related conditions as well as neurocognitive dysfunction and inflammatory and immune
responses [62].
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2.4. Role of Adipokines in the Pathogenesis of MS Associated with Obesity

Adipokines released from adipose tissue directly and indirectly control appetite, en-
ergy balance, immunity, angiogenesis, insulin sensitivity and lipid metabolism [63].The bal-
ance between proinflammatory (such as leptin) and anti-inflammatory (such as adiponectin-
APN) mediators seems to play an important role in the pathogenesis of MS. Some studies
have reported increased levels of leptin, resistin, and visfatin as well as decreased levels of
APN in patients with RR-MS in comparison with healthy controls. Leptin and APN show
an opposite role in the immune response. Leptin is a potent proinflammatory molecule.
Its serum concentration increases in the active phase of RR-MS in untreated patients as
compared to controls [64]. In the past, this adipokine has been considered a marker of
disease activity and response to therapy but this was disproved in a 2018 randomized
control trial [65,66]. The calorie restriction (CR) reduces leptin serum levels, by repairing
the production of pro-inflammatory cytokines, demyelination, and axonal injury [59].

Otherwise, APN exhibits anti-inflammatory activity in immune system cells [67]; in
fact, it inhibits the activation and proliferation of T and B lymphocytes and the phagocytic
activity of macrophages, as well as the synthesis of both pro- and anti-inflammatory
cytokines [68,69]. Reduced APN concentration was observed in patients with MS compared
with healthy controls; interestingly, APN levels were higher in female patients than in male
patients [70,71].

3. Mediterranean Diet

MeDi is associated with numerous health effects; it is one of the most varied and
balanced diets and has been proven to be effective in terms of health protection, reducing
the risk of CVD, diabetes mellitus and some types of diabetes mellitus and some types
of cancer [72]. A recent cohort of Southern Italian patients have shown that the MeDi
can have beneficial effects on MS long-term disability outcomes by positively modulating
gut-microbiota and the low-grade chronic systemic inflammation, including CVD [10].
HELENA study has investigated the effects of MeDi on inflammatory state highlighting a
counteracting effect of stress on inflammatory biomarkers with high MeDi adherence [73].
Finally, recent research has shown that a higher adherence to the MeDi is associated with a
lower risk of mental disorders, including cognitive decline and depression [74]. Thus, the
MeDi has a strong rationale for use in progressive MS [75].

3.1. Anti-Inflammatory Effect of MeDi

The Mediterranean dietary pattern is composed of fruit, vegetables, whole grains,
nuts, seeds, legumes, and extra virgin olive oil (EVOO). Moreover, the traditional one
is low in calorie intake as well as in animal proteins, especially in red and cured meat,
with low amounts of saturated fatty acids and sugars and a high content of fibers [76].
It is a nutritional pattern and includes a lifestyle leading to successful aging and to a
reduction in the onset of diseases and disabilities typical of the aging process [77,78].
The explanation could be found in the great variety of phytochemical compounds of its
foods with proven nutraceutical properties [78]. These molecules showed antioxidant
and anti-inflammatory effects, highlighted by reduction in serum levels of inflammatory
mediators such as Creactive protein, Interleukin-(IL-)6, as well as many inflammatory
biomarkers found in many chronic diseases, including MS [10,79,80]. Diet may influence
the gut microbial composition and its metabolites that induce changes in progression and
severity of MS disease. Additionally, many studies have demonstrated that MS patients
exhibit intestinal dysbiosis with decreased abundance of Clostridium, Bacteroidetes and
Adlercreutzia microbes [81]. Studies have shown that low-calorie diets comprising of high
levels of fruits, vegetables and fish, which are typical in MeDi, promote beneficial gut
microbiota and reduce inflammation in the body [82]. Gut commensal bacteria exert both
pro- and anti-inflammatory responses by regulating T cell differentiation and immune
responses in the gut [83].
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The MeDi is rich in nutraceuticals, such as phenolic acids, flavonoids, stilbenes and
lignans, terpenoids such as carotenoids and tocopherols, and unsaturated fatty acids. All
foods containing these compounds can be considered as “functional foods”. Although a
universal definition does not exist, the Functional Food Center defined them as “Natural or
processed foods that contain known or unknown biologically active compounds; which, in
defined, effective non-toxic amounts provide a clinically proven and documented health
benefit for the prevention, management, or treatment of chronic diseases” [84]. Many
studies have investigated how health status is directly affected by nutraceuticals, pro-
viding evidence that the increased intake of some nutraceuticals, above the habitual and
recommended dose levels, can decrease both inflammatory status and reactive oxidative
species [79]. In addition, it has been proposed that the use of nutraceuticals can improve
cognitive performance and reduce neurological impairments considering inflammation
and oxidative stress as substantial factors that could induce neurological alterations [85].
Upon this view, nutraceuticals can find applications in neurodegenerative diseases such
as MS.

3.2. MeDi Foods Suggested for the Protocol to Be Developed

Foods of the MeDi that we will take into consideration for our proposed suggestions
will be the ones with lower-carbohydrate concentrations that are richer in lipids, in order
to enhance the anti-inflammatory properties of the MeDi with a modified approach. In
particular, EVOO, the connecting food between Mediterranean countries, is the main source
of fat in that diet and is a particularly rich source of phytochemical compounds, especially
polyphenols. The main lipid constituents of olive oil are triglycerides. There are three
main fatty acids in the triglyceride fraction: a monounsaturated fatty acid (MUFA), oleic
acid (73.6%); a saturated fatty acid, palmitic acid (13.7%); and a polyunsaturated fatty acid
(PUFA), linoleic acid (7.85%). The percentage ratio of fatty acids is 16.2%, 74.4% and 9.4%
for SFA, MUFA and PUFA, respectively [86].

The remaining fraction contains about 230 bioactive molecules. These include lipophilic
phenols (whose levels fall as olives grow up), sterols, color pigments (mainly chlorophylls
and carotenoids), alcohols, waxes, aldehydes, esters, ketones, and phenolic compounds
such as hydrophilic phenols [87,88]. EVOO might exert beneficial effects reducing the
levels of markers of inflammation and conferring neuroprotection [88,89]. Hydroxytyrosol,
oleuropein, and oleocanthal, polyphenols widely studied in vivo, in vitro and directly
in human, inhibit Nuclear Factor-κB (NF-κB) pathway, showing ibuprofen-like activity
and inhibiting cyclooxygenases 1 and 2, that are responsible for prostaglandin produc-
tion [78,90,91]. Moreover, the phenolic, oleuropein aglycone inhibits TNF-α-induced matrix
metalloproteinase 9 in a monocyte cell line with an interesting role in the development
of inflammatory diseases [92]. In particular, a claim on the scavenging effect of EVOO
compounds in radical species exists. A daily intake of 20 g of olive oil, which contains at
least 5 mg of hydroxytyrosol and its derivatives (e.g., oleuropein and tyrosol) provides
the expected beneficial effects. It relates to the impact of olive phenolic compounds on the
protection of blood lipids from oxidative stress [93]. Nonetheless, it is to be considered that
EVOO comes from olives. Although few studies exist on this food, it seems to exert anti-
inflammatory and antioxidant effects, decreasing IL-6 and the levels of malondialdehyde,
the main product of the PUFA peroxidation, and important index of oxidative stress [94].
Fish is another traditional MeDi food, although only in seaside countries and not in the
countryside. The main components with anti-inflammatory properties are the omega-3
fatty acids, in particular eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA),
especially in blue fish. Its meat seems less prone to induce pro-inflammatory cytokine
production during digestion compared to red meat, due to the difference in lipid composi-
tion. Moreover, fish seems to modulate inflammatory cytokine production as well, with a
possible positive effect on autoimmune disorders. In addition, stearidonic acid found in
fish is a better precursor of α-linoleic acid for the synthesis of EPA whose effects on human
health have been recognised for several years [95].
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Of note, the benefits of fish consumption exceed the potential risks of heavy metal
exposure [96,97]. Nuts and seeds are recognized as healthy food in MeDi, as well. They
are rich in MUFA, PUFA, fibers, and omega-3. Almonds, pumpkin seeds, pistachio, and
walnuts are frequently consumed by people of the Mediterranean basin, as a snack or in
many recipes [98,99]. Herbs and spices, for example, parsley, oregano, rosemary, thyme,
cinnamon, chili, and sage, are used daily in the Mediterranean area, both in the seaside and
countryside villages. Their abundance in phytochemicals such as flavonoids, anthocyanins,
isoflavones, terpenes, and isothiocyanates, confer the antioxidant and anti-inflammatory
properties to these foods [100]. It is also noteworthy the caper. It is a plant that grows
wildly in the Mediterranean basin that offers two edible options: the bud, the caper,
and the fruit, the so-called “cucuncio”. In addition, in this case, anti-inflammatory and
antioxidant properties were investigated, especially due to polyphenols [101]. In mice,
caper fruit inhibits cytokine gene expression, including (IFN-γ, IL-17 and IL-4, probably
due to saponins, flavonoids and alkaloids [102].

4. Ketogenic Diet

KD is a high-fat, low-carbohydrate diet that results in ketosis, elevations of fatty
acids, serum levels, modulation of glycemia, and relative CR. In clinical practice, KD is an
established treatment for drug-resistant epilepsy and the treatment of choice for Febrile
Infection-Related Epilepsy Syndrome, a presumed inflammatory condition. KD may work
by targeting “out of control” immune activation. There is a growing list of potential
inflammatory pathway targets of KD including adenosine, ketone bodies, mechanistic target
of rapamycin pathways, peroxisome proliferator-activated receptor-gamma (PPAR-γ), NLR
Family Pyrin Domain Containing 3 (NLRP3) inflammasome, and gut microbiota [103]. KD is
based on a drastic reduction in carbohydrates, associated with an increase in the proportion
of proteins and fats. This condition pushes the body into ketosis, that is, into a metabolic state
characterised by increased concentration of ketone bodies in the blood. Studies on mice with
experimental EAE showed the beneficial effects of KDs on disease progression, disability,
cognition and inflammatory markers, KDs could reduce the expression of enzymes involved
in the biosynthesis of pro-inflammatory molecules [104,105].

4.1. Anti-Inflammatory Factors in the KD

Some features typical of KD could be responsible for its anti-inflammatory effects.
CR is a dietary restriction that drastically reduces energy intake without malnutri-

tion [106]. It can modulate some inflammatory regulators such as NF-κ B inhibitor alpha
(Nfkbia), tissue inhibitor of metalloproteinases-3 TNF-α, IL-6, COX-2, iNOS, VCAM-1,
and ICAM-1 [107,108]. Thus, CR can regulate inflammation reducing the level of many
pro-inflammatory mediators and pathways.

Omega-3 (n-3) and the omega-6 (n-6) are the two main groups of PUFAs. In nutrition,
we recognize three types of omega-3 fatty acids in foods, which are alpha-linolenic acid
(ALA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA). ALA consists of 18
carbon atoms while EPA and DHA are considered long carbon chains. These are essential
fatty acids that we can only introduce through diet. ALA is a precursor of EPA and DHA
but is capable of producing quantities of less than 15%. To increase the share of EPA and
DHA, we can introduce them through diet. ALA is present in vegetable oils while EPA and
DHA are represented in fish coming from the microalgae on which fish feed. DHA plays
an important role as a component of cell membranes and is present in high concentrations
in the retina and brain. EPA, on the other hand, plays an important role in the synthesis of
eicosanoids and competes with arachidonic acid to produce prostaglandins (PG), throm-
boxanes (TX), and leukotrienes (LT). Higher concentrations of EPA than arachidonic acid
drive the synthesis of eicosanoids with less inflammatory activity. Moreover, n-3 PUFA in-
directly regulates transcription factors involved in the expression of inflammatory genes. In
addition, n-3 PUFA might influence the composition of gut microbiota, enhancing the pro-
duction of anti-inflammatory compounds [109]. n-6 PUFAs are found in a variety of animal
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products and in vegetable oils, such as canola and corn oil. They produce pro-inflammatory
effects and due to their sources, the Western diet provides an excess of n-6 PUFAs, com-
pared to n-3. Thus, it can be considered pro-inflammatory. Not enough data are available
to establish the recommended dose of omega 3, the IOM (National Academy of Medicine)
has been able, however, to establish the adequate intake in a healthy population based on
age (Institute of Medicine, Food and Nutrition Board). Dietary reference intakes for energy,
carbohydrate, fiber, fat, fatty acids, cholesterol, protein, and amino acids (macronutrients).
Washington, DC: National Academy Press; 2005). According to the European Food and
Drug Authority, the total daily intake of DHA and EPA should not exceed 5 g per day [110].
Dietary reference intakes for energy, carbohydrate, fibre, fat, fatty acids, cholesterol, protein,
and amino acids (macronutrients). Washington, DC: National Academy Press; 2005). The
adequate values are 1.6 g of ALA per day for males (age >14 years) and 1.1 g of ALA per
day for females (age >14 years)[110]. The KD increases the levels of specific PUFAs that
can bind and activate the considered potential anticonvulsant drug targets [111].

The KD’s anti-inflammatory properties could also be due to the variation of adenosine
levels, as this molecule has anti-inflammatory activity [112]. It was demonstrated that
adenosine can reduce systemic inflammation by modulating LPS-induced transmigration
of polymorphonuclear cells and lowering pro-inflammatory mediators, such as TNF-α,
IL-6, and CXCL2/3 [113]. Astrocytic adenosine kinase (ADK) can phosphorilate adenosine
and lead it to clearance from the extracellular space. KD is able to lower the expression of
ADK, consequently raising extracellular levels of adenosine and triggering the activation
of inhibitory adenosine A1 receptor (A1AR). Most important, the effect of the KD on
adenosine was associated with a decrease in electrographic seizure activity [114]. Both
A1ARs and the adenosine A2 receptor are involved in inflammation, thus providing an
opportunity for pharmacological intervention [115].

Ketone bodies, BHB and Acetoacetic Acid (AcAc), exert their neuroprotective role
through the reduction of oxidative stress and ROS production by enhancing NADH ox-
idation and by inhibiting mitochondrial permeability transition. Ketone bodies seem to
target inflammatory signaling cascade both by direct action on the inflammasome and ROS
reduction [116]. Recently, the relevant role of microbiome in KD bioactive effects was also
demonstrated. It can act in the antiseizure effect of the KD, using both an acute seizure
model and an epilepsy mouse model. The gut microbiota transplantation after KD confers
seizure protection in mice fed with a standard diet, with an increase of the GABA in the
hippocampus [117].

4.2. KD and Neuroinflammation: The Role of NLRP3 Inflammasome

BHB, represents another anti-inflammatory mediator produced following the KD. It
reduces nucleotide-binding oligomerization domain leucine-rich repetition and NLRP3
inflammasome-mediated activation of IL-1β [118]. This could be one of the reasons to
explain the anti-inflammatory effects of the KD.

It exerts antidepressant-like effects, possibly by inhibiting NLRP3-induced neuro-
inflammation in the hippocampus [119].

NLRP3 is a pattern recognition receptor of the innate immunity, belonging to the
NOD-like receptor (NLR) subfamily. Together with the adaptor ASC protein PYCARD,
it forms a protein complex able to activate caspase-1 and, consequently IL-1β, initially
translated as pro-IL-1β. The inflammasome dysregulation has been implicated in different
autoimmune diseases [120]. Recent studies show that the NLRP3 acts as a bridge between
the innate and adaptive immune responses in the initial stages of MS and EAE by promot-
ing the migration of macrophages, dendritic cells and myelin-specific autoreactive CD4+

T cells to the CNS [121,122]. Therefore, it can be considered a critical factor in the devel-
opment of neuro-inflammation and an interesting therapeutic target in immune-related
disorders [123].
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5. Nutritional Suggestions to Develop a Dietary Protocol for MS Patients

Studies on mice with EAE showed beneficial effects of KD on disease progression,
disability, cognition and inflammatory markers. The ketone bodies produced by KD are an
alternative energy source for the brain and they are useful to reduce neuroinflammation
possibly by inhibiting NLRP3. In addition, it seems ketone bodies are able to stimulate
mitochondrial biogenesis and to reduce NLRP3 permeability by improving redox balance.

This section provides nutritional suggestions for developing a diet plan based on the
KD that includes many foods from the MeDi, which are rich in polyphenolic compounds,
to be applied to patients with MS type RR during the remission phases.

The nutritional plan, that could be developed, could have anti-inflammatory, im-
munomodulatory, and neuroprotective properties that could bring improvements on neu-
roinflammation and the redox state of the MS patient with benefits on the progression
and course of the disease. Assuming that dietary intervention can (i) modulate the in-
flammatory state; (ii) protect against neurodegeneration; or (iii) promote nervous system
repair [124], the choice of nutrients and their proportions is critical. This section pays
particular attention to the importance for the MS patient to introduce macronutrients in
the diet in the appropriate ratios. The effects of diet on MS may be the consequence of the
direct action of metabolites produced by food or the effect of metabolites synthesized by
the gut microflora or even diet-mediated changes in gut microbial composition.

The nutrition plan should include a classical KD protocol which is modified in some
aspects. It could involve two steps: (1) an adaption phase and (2) a maintenance phase.
The adaptation phase is divided into two periods: the first will last four weeks during
which patients will be instructed to limit the intake of carbohydrate to 20 g/day, in order to
establish the ketosis condition. In the second period of the maintenance phase, lasting one
month, the patient will be asked to increase carbohydrate intake by 5 g each week until the
maximum level of 40 g per day is reached. The carbohydrates used will be with glycemic
index and glycemic load below 50 and six respectively to maintain an adequate state of
ketosis and constant levels of blood sugar and insulin.

The maintenance phase lasts one month and is characterized by a constant state of
nutritional ketosis (Figure 1). The ketone body levels will be maintained between 0.5 and
3 mM.
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safe and inexpensive complementary treatment option for MS. The implementation of the
protocol is based on the international guidelines of ketogenic protocols [125], providing a
caloric deficit that can vary from 300 to 500 Kcal depending on the BMI. It is also expected
to have a daily intake of water equal to 0.4 mL per kg of body weight.

5.1. Macronutrients

Macronutrients will be divided into approximately 5–10% carbohydrates; 15–20%
proteins; 70–80% fats (compared to a traditional KD characterized by 90% fat, 6% protein,
and 4% carbohydrates).

Considering the effects of KD on the state of ketosis, on the lipid profile, and on the
glycemic profile, taking into account the protective effect of BHB on neuroinflammation
previously mentioned, it becomes important to pay attention to the fatty acid composition.

The percentage of SFA and PUFA in the KD influences ketosis status, lipid and
glycemic profile. Short-term administration of a KD richer in PUFAs (15% SFA, 25%
MUFA, 60% PUFA) induces a greater level of ketosis and improves insulin sensitivity
without negatively affecting total or LDL cholesterol levels compared with a traditional
KD high in saturated fats (60% SFA, 25% MUFA, 15% PUFA) [125]. A prospective study
in pediatric MS has suggested that the increase in energy intake from saturated fat tripled
the risk of relapse rate [126]. On the contrary, animal studies have found that PUFAs,
especially alpha linolenic acid (ALA) and EPA and DHA have a beneficial effects on EAE by
reducing the production of inflammatory cytokines and inducing PPAR in CNS infiltrating
T cells [125,127]. In addition to immunomodulatory effects, PUFA’s prevent demyelination
and promote neuroprotection and remyelination [124]. For the reasons outlined above, the
protocol suggested will provide high concentrations of PUFAs with a qualitative distribu-
tion of fatty acids as follows: 15% SFA, 25% MUFA, 60% PUFA, the ratio between omega-3
and omega-6 will be 1:4 [128].

In a diet, the intake of proteins must be strictly controlled and animal proteins must
be limited because of their proven pro-inflammatory effects, precisely for this reason
Hernández et al. proposed a ratio between vegetable and animal proteins of 70 to 30. Data
in the literature show that increased consumption of plant protein may be associated with
a reduced risk of CVDs [129], type 2 diabetes, and inflammation [130,131]. Recently in
the eighth edition of the Dietary Guidelines for American it was suggested to shift the
ratio towards proteins of vegetable origin [132]. Regarding the amount of protein to be
administered, it was demonstrated that a slightly higher-protein diet was able to both
positively influence body weight regulation and reduce insulin resistance. This aspect
becomes important if we consider that insulin resistance as well as other parameters of the
MetS, which affects 30% of MS patients, have negative effects on the progression of the
disease [130].

In addition, a recent meta-analysis of 32 randomized controlled trials showed a long-
term positive effect of higher-protein diets on body weight management, which in turn
could lead to lower glycated hemoglobin (HbA1c) [133]. Another recent study showed
that a protein score with a higher protein energy percentage (E%) within the acceptable
macronutrient distribution range for protein in combination with a higher plant to animal
protein ratio, would be associated with a lower HbA1c level [134].

The daily protein intake provided should be between 0.9 and 1.2 g/Kg of body weight
and will be characterized by a high ratio of plant to animal protein.

In brief, Figure 2 shows the qualitative and quantitative nutritional distribution sug-
gested for the protocol to be developed.
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proposed to be applied to patients with MS.

When selecting foods for inclusion into the future protocol, particular attention will be
paid to those rich in tryptophan in order to increase the Trp/Kyn ratio.

Therefore, taking into consideration that the recommended daily intake for an adult
is estimated to be around 250–425 mg, corresponding to 3.5–6.0 mg/Kg/day, foods in-
cluded in the modified MeDi and that we suggest to include in the protocol are: eggs
which have an average content of (197 mg/100 g) and in particular the yolk which has a
content of 237 mg/100 g; fish, with particular reference to sea bass (249 mg/100 g), tuna
(237 mg/100 g), sea bream (259 mg/100 g), sardine (250 mg/100 g), sole (220 mg/100 g).
Among meats, chicken (240 mg/100 g) and turkey rump (333 mg/100 g). Other rec-
ommended foods include almonds (394 mg/100 g), pine nuts (300 mg/100 g), cashews
(240 mg/100 g), flaxseed (298 mg/100 g), sesame seeds, pumpkin seeds (Tabella di com-
posizione degli alimenti, aggiornamento 2000, CEd EDRA). In our modified MeDi food
suggestions, dark chocolate can also be added, despite not being part of the typical MeDi
protocol, because it is particularly rich in Trp. The aforementioned foods will supplement
those in Table 1 so that you could have a synergistic effect with the ketogenic diet on the
antioxidant and anti-inflammatory properties.

Table 1. Foods to be included in the nutritional suggestions and their nutraceutical compounds with
anti-inflammatory and antioxidant properties.

Food Main Anti-Inflammatory/Antioxidant
Components Reference

Pistachio nut Proanthocyanidins [99]

EVOO/olive Polyphenols (e.g., oleocanthal,
hydroxytyrosol, tyrosol, oleuropein). [88]

Almonds Vitamin E, MUFA, PUFA [88,98]

Capers
Phenolic compounds (e.g., rutin), tocopherols
(e.g., gamma-tocopherol), carotenoids (e.g.,

lutein and beta-carotene), vitamin C.
[101]

Cinnamon E-cinnamaldehyde,
o-methoxycinnamaldehyde [135]

Turmeric Curcumin [136,137]
Green tea Epigallocatechin 3-gallate (EGCC) [138]

Legend: EVOO: extra virgin olive oil. MUFA: monounsaturated fatty acid. PUFA: polyunsaturated fatty acid.

5.2. Bowel Dysfunction in MS and Fiber Nutritional Suggestions

The protocol will need to pay special attention to the contribution of fiber. A patient
with MS has a high prevalence of intestinal dysfunction whose origin is multifactorial,
in fact it may depend on neurological alterations, polypharmacy, behavioral problems or
motor skills. Constipation and fecal incontinence can coexist and alternate, impacting the
patient’s quality of life and social interactions [139,140]. The percentage of patients with
neurological bowel dysfunction varies from 39 to 73% and the bowel symptoms seem to
be correlated to the Expanded Disability Status Scale (EDSS) and disease duration, but
not with the type of MS [141]. However, it is not said that patients with a mild degree of
malignancy do not present intestinal disorders; on the contrary, it seems that constipation
may be a symptom which MS manifests itself with [142]. The regulation of stool consistency
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is important and can be modulated by the intake of both water and fiber. The management
of the fiber amount (and laxative as well) is essential because on the one hand they need the
formation of soft stools, preventing incontinence and constipation. On the other hand, the
excess of both can cause bloating, in the presence of pan-gut dysmotility. Scant evidence
exists on the use of laxatives, mostly from studies of neurological conditions or idiopathic
bowel symptoms.

KDs are typically low in fiber which is needed not only for healthful intestinal function
but also for the microbial production of beneficial colonic short-chain fatty acids [143],
which enhance nutrient absorption, stimulate the release of satiety hormones, improve
immune function, and have anti-inflammatory and anti-carcinogenic effects [144]. It has
been suggested that the supplementation of KD with fiber and non-digestible carbohydrates
might be advisable although data to confirm that supplementation could counteract the
effects of very-low-carbohydrate diets on the gut microbiota are lacking [145].

Given the difficulty of achieving the appropriate amount of fiber through a KD protocol
and the intestinal dysfunction that can be seen in the MS patient, it is planned to supplement
our suggestions with natural substances with a laxative function to help intestinal function.

Laxative agents that can be considered include: (i) psyllium that is a bulking agent
which might work for slow-transit constipation as shown in patients with Parkinson’s
disease (PD) [146]; (ii) polyethylene glycol equally acts as an osmotic agent but does not rely
on bacterial fermentation for its activation. The advantage is that it can be quite effective,
and the dose can be adjusted within a wide range according to the patient’s need. In
patients with PD, it has been proven to relieve constipation [147]; (iii) a stimulant laxative
such as bisacodyl has been shown to be very effective in patients with chronic idiopathic
constipation [148].

According to recent work, these laxatives may be effective in MS patients [139].

5.3. Micronutrients

A critical aspect of KD that must be kept under control regards micronutrients, vita-
mins and minerals which can easily become defective. Extreme carbohydrate restriction
can profoundly affect diet quality, typically curtailing or eliminating fruits, vegetables,
whole grains, and legumes and increasing the consumption of animal products. Very-
low-carbohydrate diets may lack vitamins, minerals, fiber, and phytochemicals found in
fruits, vegetables, and whole grains [149]. Low-carbohydrate diets are often low in thiamin,
folate, vitamin A, vitamin E, vitamin B6, calcium, magnesium, iron, and potassium [150].
Physiologically, it has been shown that the deficiency of certain vitamins and minerals
affects energy production and results in physical and mental fatigue and impaired cognitive
functions, consequences that aggravate the clinical symptoms of MS [151].

Other suggestions include strict control of the intake of vitamins and minerals playing
a key role in controlling inflammation and whose deficiency is related to a worse prognosis
of the disease [151]. Given the deficiency of some micronutrients associated with KDs, in
Table 2 are listed the micronutrients that will be added in the form of supplements in the
recommended daily amounts.

Table 2. Suggestions of micronutrients to include in the protocol, amounts that have shown effects on
fatigue and cognitive function and recommended intake and tolerance levels for a healthy population.

Micronutrients
Effect of Supplementation with Vitamins and

Minerals on Mental Fatigue and Cognitive
Functions

RDA, AI, or UL in Healthy Subjects According
to LARN

Vitamin D

Dose > 100 µg/die
Effect = toxicity [152,153]
Serum concentrations >150 ng/mL Effect =
clinical condition of vitamin D toxicity
characterized by hypercalcemia and
hypercalciuria) [154]

RDA = 15 µg/die (adult 18–74 yo)
RDA = 20 µg/die (>74 yo)

UL = 100 µg/die [155]
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Table 2. Cont.

Micronutrients
Effect of Supplementation with Vitamins and

Minerals on Mental Fatigue and Cognitive
Functions

RDA, AI, or UL in Healthy Subjects According
to LARN

Thiamine (B1)

Dose = 50 mg/die for 2 months (120 young
women)
Effect = improvement of attention threshold and
mood [156]

RDA = 1.2 mg/die (men > 18 yo)
RDA = 1.1 mg/die (women > 18 years)

UL not defined [155]

Niacin (B3)

Dose = 250 mg/die
Effect = modulation of NIACR1 expression on
peripheral immune cells by improving sleep
spectrum disorders in Parkinson’s disease [157]

RDA = 18 mg/die
UL (Nicotinamide) = 10 mg/die

UL (Nicotinic acid) = 900 mg/die [155]

Vitamin C Dose > 2000 mg/die
Effect = diarrhea or kidney damage [152,153]

RDA = 105 mg/die (men > 18 yo)
RDA = 85 mg/die (women > 18 yo)

UL not defined [155]

Pyridoxine (B6)

Dose > 1000 mg/die
Effect = might mimic MS symptoms
Dose < 50 mg/die
Effect = nervous symptoms [152,153]

RDA = 1.3 mg/die (18–29 years)
RDA = 1.7 mg/die (men)

RDA = 1.5 mg/die (women, 60–74 yo)
UL = 25 mg/die [155]

Vitamin E Dose > 1500 IU/die
Effect = possible toxicity

AI = 13 mg α-TE (men > 18 yo)
AI = 12 mg α-TE (women > 18 yo)

UL = 300 mg α-TE [155]

Folic acid (B9)

Dose= 1000IU of of alpha-tocopherol twice daily
for three years
Effect= No significant effect cognitive function,
speed of processing, clinical global impression,
functional performance, adverse events, or
mortality [158]
Dose = 800 µg/day for 3 years
Effect = improvements of global cognitive
functions, information-processing speed and
memory storage [159]
Dose = 400 µg/day for 2 years (+100 µg/day of
B12)
Effect = improvement of cognitive functions
particularly long- and short-term memory [160]

RDA = 400 µg/die
UL = 1000 µg/die [155]

Vitamin B12

Dose = 400 µg/day for 2 years (180 subjects with
mild cognitive impairment)
Effect = improved cognitive performance (full
scale and verbal intelligence, memory) [160]

RDA = 2,4 µg/die (men and women)
UL not defined [155]

Calcium
RDA = 1000 mg/die (18–59 yo)
RDA = 1200 mg/die(≥60 yo)

UL = 2500 mg/die [155]

Zinc
Dose = 15.30 mg/die (387 healthy adults
55–87 yo)
Effects = better on spatial working memory [161]

RDA = 12 mg/die (men)
RDA = 9 mg/die (women)

UL = 25 mg/die [155]

Iron

Dose = 60 mg/die for 4 months (149
iron-deficient American women)
Effect = 5-fold improvement in cognitive
performance [162]

RDA = 10 mg/die (men ≥ 18 yo)
RDA = 18 mg/die (women 18–49 yo)

RDA = 10 mg/die (women > 50 yo) [155]

Magnesium Dose = 20 mg/day
Effect = reduced risk of depression [163]

AI = 2.7 mg/die (men > 18 yo)
AI = 2.3 mg/die (adult women > 18 yo)

UL not defined [155]

Legend. RDA, Recommended Daily Allowance; UL, Tolerable Upper intake Level; AI, Adequate Intake; LARN,
Nutrients and Energy for Italian population; yo, years old; NIACR1, Niacin receptor 1; α-TE, Tocopherol
Equivalent.

6. Conclusions

The present review explored putative biomarkers implicated in MS-related alterations
such as the role of BDNF and the Tryptophan/Kynurein ratio on cognitive deficits and
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eventual neuroprotection. Furthermore, we described the effects on the immune system,
neuroinflammation and redox balance of both the modified MeDi and the KD regimen in
order to develop a potential dietary protocol that could be applied to MS patients. We think
that this nutritional approach may exert an enhanced effect compared to the individual
dietary regimens on which it is based. The encouraging preclinical data on KD in MS
disease and the result of the recent clinical trial on KD conducted in MS patients confirm
and support our idea.

The application of the protocol and the possible confirmation of its effectiveness could
be useful to formulate guidelines on proper nutrition for MS patients.
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