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Abstract
Artificial Intelligence is a multidisciplinary field with the aim of building 
platforms that can make machines act, perceive, reason intelligently and whose 
goal is to automate activities that presently require human intelligence. From the 
cornea to the retina, artificial intelligence (AI) is expected to help ophthalmo-
logists diagnose and treat ocular diseases. In ophthalmology, computerized 
analytics are being viewed as efficient and more objective ways to interpret the 
series of images and come to a conclusion. AI can be used to diagnose and grade 
diabetic retinopathy, glaucoma, age-related macular degeneration, cataracts, IOL 
power calculation, retinopathy of prematurity and keratoconus. This review 
article intends to discuss various aspects of artificial intelligence in ophthal-
mology.

Key Words: Artificial intelligence; Diabetic retinopathy; Deep learning; Machine learning; 
Ophthalmology

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.

https://www.f6publishing.com
https://dx.doi.org/10.4239/wjd.v13.i10.822
mailto:bulbul.morya@gmail.com


Morya AK et al. AI in DR

WJD https://www.wjgnet.com 823 October 15, 2022 Volume 13 Issue 10

Core Tip: It is said that necessity is the mother of all inventions and converging global trends make 
multiplying eye care efficiency an increasingly urgent necessity. Artificial intelligence refers to an 
artificial creation of human-like intelligence of computer machines that can learn, reason, plan, perceive or 
process natural language.

Citation: Morya AK, Janti SS, Sisodiya P, Tejaswini A, Prasad R, Mali KR, Gurnani B. Everything real about 
unreal artificial intelligence in diabetic retinopathy and in ocular pathologies. World J Diabetes 2022; 13(10): 822-
834
URL: https://www.wjgnet.com/1948-9358/full/v13/i10/822.htm
DOI: https://dx.doi.org/10.4239/wjd.v13.i10.822

INTRODUCTION
Artificial intelligence (AI) refers to a machine’s ability to mimic human cognitive functions, such as 
learning, reasoning, problem-solving, knowledge representation, social intelligence and general 
intelligence. It represents a significant advance in computer science and enables doing tasks using a 
computer with little human mind involvement following human training. AI was developed in the 
1940s, but major advances ensued during the 1990s with significant improvements in machine learning, 
multi-agent planning, case-based reasoning, scheduling, data mining, natural language understanding 
and translation, vision, virtual reality, games, etc. Researchers have created an algorithm that can guess 
whether patients with cardiovascular diseases have lived or died based on their condition within a year. 
The algorithm could predict patient survival in 85% of cases based on data obtained by measuring the 
heart’s electrical activity using electrocardiography. The rapid development in AI technology requires 
physicians and computer scientists to have a good mutual understanding of the technology and the 
medical practice to improve medical care. This review article presents the role of AI in various fields of 
ophthalmology.

METHODOLOGY
We searched highly cited articles in PubMed, Scopus database, Google Scholar, Web of Science, 
Cochrane library and Embase database on Artificial - Intelligence in Diabetic - Retinopathy, Age-related 
macular degeneration, Glaucoma, Keratoconus, Cataract, Dry Eye and other common ocular diseases 
published between the year 2000 to 2021. We also used Reference Citation Tool (RCA) for searching the 
keywords and articles were ranked based on the “Impact Index Per Article.” The latest highlighted 
articles were selected for review. Only articles published in English were considered and the rest were 
rejected.

ARTIFICIAL INTELLIGENCE BASICS
Machine learning
Machine learning (ML) is a core AI branch that aims to provide computers with the ability to learn 
without being explicitly programmed[1]. ML focuses on developing algorithms that can analyze data 
and make predictions[2] (Figure 1).

Deep learning
Deep learning (DL) differs from ML in that DL uses neural networks for making predictions and 
decisions. These neural networks were inspired by the biological neural networks of animal brains. 
They use the statistical probability principle derived from large data volumes to learn how to improve 
their accuracy, making DL a valuable tool for aiding physicians in clinical practice.

Generative adversarial network
Generative adversarial networks (GANs) are paired neural networks used for unsupervised ML. They 
can generate images or other data for the discriminative neural network to evaluate the data and 
provide feedback to aid the learning process[3].

https://www.wjgnet.com/1948-9358/full/v13/i10/822.htm
https://dx.doi.org/10.4239/wjd.v13.i10.822
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Figure 1 Steps of machine learning algorithms that forms to analyze data and make predictions.

ARTIFICIAL INTELLIGENCE PLATFORMS
Algorithms resemble the AI software, whereas platforms resemble the computer hardware in which 
algorithms are installed and work to predict and make decisions. AI platforms simulate cognitive 
functions of the human mind including learning, reasoning, problem-solving, social intelligence and 
general intelligence[4].

Top Artificial intelligence platforms
The top AI platforms include Google, Microsoft Azure, TensorFlow, Railbird, Infosys Nia, Wipro 
HOLMES, Premonition, Dialogflow, Ayasdi, MindMeld, Meya, KAI and Vital A.I. Following the initial 
learning steps, the system or machine is taught to advance its initial learning for more accuracy and 
efficiency. This learning is further compounded by using complex mathematical equations to 
understand nonlinear relationships between different variables through an information flow called 
“neural networks.” This “higher training” form enables AI to judge and weigh different outcome 
possibilities.

USE OF ARTIFICIAL INTELLIGENCE IN OPHTHALMOLOGY
From the back of the eye to the front, AI is expected to provide ophthalmologists with novel automated 
tools to diagnose and treat ocular diseases. Recently, the application of AI in medicine has garnered 
much attention from big players in the digital world, such as Google and IBM. This is expected to 
stimulate research and development for disease diagnosis and treatment. Researchers in the field of AI 
ophthalmology view computerized analytics as the path toward more efficient and objective ways of 
image interpretation compared with modern eye care practice.

Diabetic retinopathy
Patients with diabetes require regular and repetitive screening to detect and treat diabetic retinopathy 
(DR)[4,5]. Conventionally, this screening is performed by dilated fundus examination or color fundus 
photography using conventional fundus cameras (mydriatic or nonmydriatic). The primary issue in this 
screening is retinal image grading by retinal specialists or trained personnel, who are few compared 
with the patient load requiring screening. Another problem is that most patients reside in rural areas. 
Finally, constant follow-ups are needed for several years[4].

DR, a complication of chronic diabetes, is a vasculopathy affecting one-third of patients with diabetes 
and possibly leading to irreversible blindness[6,7]. Most AIs have been evaluated for their application in 
DR detection with the primary goal of assisting the development of a mass and rapid screening tool 
with high sensitivity and specificity. Considering the huge diversity in the clinical presentation of DR, it 
is essential for an AI neural network to be multilayered and extensively trained. This requires the use of 
multiple images evaluated against the ground truth.

Most studies have used the International Clinical Diabetic Retinopathy Disease severity scale, a 5-
point scale [no apparent retinopathy, mild non-proliferative DR (NPDR), moderate NPDR, severe 
NPDR and proliferative diabetic retinopathy (PDR)]. Referable DR is defined as moderate or severe DR 
as disease management often changes from yearly screening to closer follow-up for moderate disease 
severity. A recent study by Shah et al[8] used an AI algorithm with a deep convolutional neural network 
(DCNN). It assessed its sensitivity and specificity with double validation, i.e. external and internal 
validation. External validation was performed using the Methods to Evaluate Segmentation and 
Indexing Techniques in the Retinal Ophthalmology dataset, i.e. the MESSIDOR dataset. In contrast, 
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internal validation was performed by two retinal specialists. The main advantage of this study was that 
112489 images, acquired from various fundus cameras taking pictures of both mydriatic and 
nonmydriatic eyes, were fed into AI, thereby giving a multiethnicity advantage to the dataset. The 
agreement between AI and internal/external validation was high for ANY DR and REFERRAL DR, with 
a sensitivity of > 95%. The agreement for sight-threatening DR between AI and external validation was 
high but moderate between AI and internal validation. However, this did not affect the conclusion that 
AI proved to be a useful screening tool and detected referral DR cases with high specificity.

Valverde et al[9] reviewed the available algorithms and detailed the methods for segmenting 
exudates, red lesions and screening systems. These segmentation methods were used to develop a 
computer-aided diagnosis for automated DR detection, such as Retmarker DR, Retinalyze System, IDx-
DR (first FDA-approved system), iGradingM and Telemedical Retinal Image Analysis and Diagnosis 
Network. Overall, all these systems achieved high sensitivity and specificity, provided that the 
segmentation of exudates was used to screen for DR rather than the segmentation of red lesions. 
Medios, an offline AI, was developed and studied by Sosale et al[10]. This offline algorithm was created 
because of Internet access limitations and the high computational power required for all cloud-based 
AIs in a developing country. Fundus photographs were captured using Remidio Non-Mydriatic Fundus 
on Phone 10 (NM FOP 10) and image processing was directly performed on the smartphone graphics 
processing unit. The sensitivity and specificity of the AI algorithm for detecting referral DR were 98% 
and 86%, respectively. For any DR, its sensitivity and specificity were 86% and 95%, respectively. 
Compared with other online cloud-based software, such as EyeArt and IDx-DR, Medios had better 
sensitivity and equivalent specificity (Figure 2). The specific abnormalities that can be detected using 
continuous machine learning (CML) are macular edema[11,12], exudates[13], cotton-wool spots[14], 
microaneurysms and optic disc neovascularization[15]. Commercially available DR detection and 
analysis technologies include Retinalyze System, IDx-DR, iGradingM and RetmarkerDR. The difference 
is that only a few modalities use lesion-based grading, whereas the others use image-based grading. The 
sensitivity of this system has reached around 80%, but its specificity remains lower than 90%.

A DL GAN can be trained to map anatomical features from different image modalities, i.e. fundus 
photographs and fluorescein angiography (FA) images, onto a shared feature manifold to generate one 
image modality from another[16]. Using GAN, detailed retinal vascular structures can be produced 
without the requirement of FA to avoid its potential side effects. The inferred structural measurements 
of retinal vasculature may allow clinicians to identify the natural history of changes in the retinal 
vasculature and the clinical outcomes of retinal diseases, as previously reported by direct fundus image 
analysis, but with the accuracy of FA or even optical coherence tomography angiography image 
analysis[17].

Morya et al[18] evaluated the first smartphone-based online annotation in the world, a tool for rapid 
and accurate image labeling, using AI-based DL for DR. This DL model evaluated its accuracy based on 
a binary referral DR classification system, depending on whether a retinal image had referral DR or not. 
A total of 32 ophthalmologists used the tool for over 55000 images. The data analysis proved consid-
erable flexibility and portability with favorable grader variability in concurrence with image annotation. 
Table 1 demonstrates the collective data of various studies on DR-related AI. This table has been 
reproduced from the article by Padhy et al[19].

AGE-RELATED MACULAR DEGENERATION
Age-related macular degeneration (AMD) is the cause of approximately 9% of cases of blindness 
globally[20]. The worldwide number of people with AMD was projected to be 196 million in 2020, 
which is expected to substantially increase to 288 million in 2040[20]. The age-related eye disease study 
(AREDS) developed a simplified severity scale for AMD[22]. This scale combines the risk factors from 
both eyes to generate an overall score for the individual based on the presence of one or more large 
drusen (diameter of > 125 mm) or AMD pigmentary abnormalities in the macula of each eye. The 
simplified severity scale is also clinically useful because it allows ophthalmologists to predict an 
individual’s 5-year risk of developing late AMD[23]. AMD detection and prediction are essential for 
individualized treatment. Using AI in cases of AMD could increase the detection rate of lesions such as 
drusen, with the presence of fluid and reticular pseudo-drusen and geographic atrophy.

Several DL systems have been developed for classifying color fundus photographs based on AMD 
severity scales. These severity scales include referable and non-referable AMD[22] and multiclass AMD 
classification systems (e.g., 9-step AREDS severity scale and 4-class). Recent studies have shown the 
robust performance of automated AMD classification systems based on optical coherence tomography 
(OCT) scans[24].

DeepSeeNet is based on color fundus photography and uses three networks-Drusen-Net, Pigment-
Net and Late AMD-Net (Figure 3). These three networks were designed as DCNNs, each with an 
Inception-v3 architecture and a state-of-the-art convolutional neural network (CNN) model for image 
classification. Similar to the study by De Fauw et al[25], DeepSeeNet includes two stages by design for 
improved performance and increased transparency. Images were obtained from the AREDS dataset, 
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Table 1 Comparative analysis of various studies done on artificial intelligence in diabetic retinopathy[19]

Ref. Sensitivity, specificity or accuracy of the 
study

Total fundus 
images 
examined

Types of AI used Main objective

Wong et al[20] Area under the curve were 0.97 and 0.92 for 
microaneurysm and hemorrhages respectively

143 images A three-layer feed forward 
neural network

Deals with detecting the 
microaneurysm and 
hemorrhages. Frangi filter 
used 

Imani et al[57] Sensitivity of 75.02%-75.24%; Specificity of 
97.45%-97.53%

60 images MCA Detected the exudation and 
blood vessel

Yazid et al[58] 97.8% in sensitivity, 99% in specificity and 83.3% 
in predictivity for STARE database. 90.7% in 
sensitivity, 99.4% in specificity and 74% in 
predictivity for the custom database

30 images Inverse surface 
thresholding

Detected both hard and soft 
exudates

Akyol et al[59] Percentage accuracy of disc detection ranged 
from 90%-94.38% using different data set

239 images Key point detection, 
texture analysis, and visual 
dictionary techniques

Detected the optic disc of 
fundus images

Niemeijer et al[13] Accuracy in 99.9% cases in finding the disc 1000 images Combined k-nearest 
neighbor and cues

Fast detection of the optic 
disc

Rajalakshmi et al[60], 
Smart phone based 
study 

95.8% sensitivity and 80.2% specificity for 
detecting any DR. 99.1% sensitivity and 80.4% 
specificity in detecting STDR

Retinal images of 
296 patients

Eye Art AI Dr screening 
software used

Retinal photography with 
Remidio ‘Fundus on Phone’

Eye Nuk study Sensitivity was 91.7%; Specificity was 91.5% 40542 images Eye PAC Stelescreening 
system

Retinal images taken with 
traditional desktop fundus 
cameras

Ting et al[61] Sensitivity and specificity for RDR was 90.5% and 
91.6%; For STDR the sensitivity was 100% and the 
specificity was 91.1%

494661 retinal 
images

Deep learning system Multiple Retinal images 
taken with conventional 
fundus cameras

IRIS Sensitivity of the IRIS algorithm in detecting 
STDR was 66.4% with false-negative rate of 2% 
and the specificity was 72.8%. Positive Predictive 
value of 10.8% and negative predictive value 
97.8%

15015 patients Intelligent Retinal Imaging 
System (IRIS)

Retinal screening 
examination and 
nonmydriatic fundus 
photography

This table has been reproduced from the article by Padhy et al[19]. Citation: Padhy SK, Takkar B, Chawla R, Kumar A. Artificial intelligence in diabetic 
retinopathy: A natural step to the future. Indian J Ophthalmol 2019; 67: 1004-1009. Copyright© The Authors 2019. Published by Indian Journal of 
Ophthalmology. The authors have obtained the permission for table using from the Indian Journal of Ophthalmology Publishing Group (Supplementary 
material). AI: Artificial intelligence; MCA: Morphological component analysis.

comprising approximately 60000 retinal images. DeepSeeNet operates by first detecting individual risk 
factors (drusen and pigmentary abnormalities) in each eye and then combining values from both eyes to 
assign an AMD score for the patient. Therefore, DeepSeeNet closely matches the clinical decision-
making process (Figure 3). The accuracy of Fine-Tuned DeepSeeNet (FT-DSN) was superior to that of 
human retinal specialists (67% vs 60%). On further analysis, the overall accuracy of FT-DSN was 
superior. However, subgroup analysis showed that FT-DSN correctly classified participants with 
severity scale scores of 0-4 more often than the retinal specialists. In contrast, the retinal specialists 
correctly classified those with late AMD more often than FT-DSN. Lee et al[26] developed an AMD 
screening system to differentiate between normal and AMD OCT images. They trained their CML using 
48312 normal and 52690 AMD images. Their CML had a peak sensitivity and specificity of 92% and 
93%, respectively. Treder et al[27] used OCT images (1112 images) to develop a CML that could differ-
entiate a healthy macula from a macula showing exudative AMD, with a sensitivity of 100% and a 
specificity of 92%.

Bogunovic et al[28] developed a data-driven interpretable predictive model to predict the progression 
risk in those with intermediate AMD. Drusen regression, an anatomic intermediate AMD endpoint, and 
advanced AMD onset can be predicted using this specifically designed, fully automated, ML-based 
classifier. Treder et al[27] fed corresponding OCT images of patients with low or high anti-vascular 
endothelial growth factor (VEGF) injection requirements into a random forest (RF) classifier to develop 
a predictive model. The treatment requirement prediction showed an area under the curve (AUC) of 
70%-80%. Prahs et al[29] trained a DCNN on OCT images to facilitate decision-making regarding anti-
VEGF injection, and the outcomes were better than those using CML. These studies are an essential step 
toward image-guided prediction of treatment intervals in neovascular AMD or PDR management. In 
addition to screening, some studies have focused on grading AMD and predicting visual acuity from 
OCT images. This will aid clinicians in formulating a visual prognosis and support them in their 

https://f6publishing.blob.core.windows.net/d02442f7-b4ff-4efa-a418-812ea86a38b1/WJD-13-822-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/d02442f7-b4ff-4efa-a418-812ea86a38b1/WJD-13-822-supplementary-material.pdf
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Figure 2 AI software assess the diabetic retinopathy into referrable and non-referrable interventions.

Figure 3 Deep Sea net classify age-related macular degeneration (AMD) into dry AMD and wet AMD based on fundus photograph.

decision-making. Aslam et al[30] and Schmidt-Erfurth et al[31] developed CMLs that could estimate 
visual acuity. Aslam et al[30] trained their CML on data from 847 OCT scans, whereas Schmidt-Erfurth 
et al[31] trained their CML on data from 2456 OCT scans (from 614 eyes).

AI systems can be trained to perform segmentation, classification and prediction using retinal OCT 
images. Several AI systems were demonstrated to display high accuracy for segmentation which is 
essential to quantify intraretinal fluid, subretinal fluid and pigment epithelial detachment. Compared 
with noncomputerized segmentation techniques, the DL algorithm developed by Lee et al[26] accurately 
differentiated fluid accumulation from other abnormal retinal findings. Further, De Fauw et al[25] 
confirmed the ability of DL to detect > 50 retinal conditions and the robustness of the AI system in 
triaging the urgency of referrals for patients with retinal diseases. Table 2 is a summary of AI algorithms 
used for AMD.

Glaucoma
Glaucoma, also known as the silent sight killer, is the leading cause of preventable and irreversible 
blindness worldwide. The disease remains asymptomatic and an estimated 50%-90% of individuals with 
glaucoma remain undiagnosed. Thus, glaucoma screening is recommended for its early detection and 
treatment. Cup-disk ratio (CDR) can be calculated to assist early-stage glaucoma diagnosis using AI 
models[32]. After locating the coarse disk margin using a spatial correlation smoothness constraint, a 
support vector machine (SVM) model is trained to find the patches on OCT images to identify a 
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Table 2 Summary of artificial intelligence algorithm used in age-related macular degeneration

Ref. Sensitivity Specificity Diagnostic accuracy Output

Grassman et al[62] 84.20 94.30 63.3, Kappa of 92% Final probability value for referable vs not referable

Ting et al[61] 93.20 88.70 Area under curve-0.932 Identifying referable AMD and advanced AMD

Lee et al[26] 84.60 91.50 87.60 Prediction of binary segmentation map

Treder et al[27] 100 92 96 AMD testing score-score of 0.98 or greater adequate for diagnosis of AMD

AMD: Age-related macular degeneration.

reference plane that can calculate the CDR[33].
In 2013, Yousefi et al[16] published an AI study on the progression of primary open-angle glaucoma 

(POAG) in 180 patients using many different CMLs and independent features. They found that retinal 
nerve fiber layer features provided sufficient information for CMLs to differentiate between stable 
POAG and progressing POAG at an early-moderate disease stage. RF tree and lazy K star were the most 
sensitive CMLs. Chen et al[34] developed a CNN using two different datasets [ORIGA dataset: 650 
images (99 for training and 551 for validation) and SCES dataset: 1676 images (entirely used for 
validation as the images in the ORIGA set were used for training)] to detect POAG based on optic disk 
images. They reported the area under the receiver operating characteristic curve values of 0.831 and 
0.887 for ORIGA and SCES datasets, respectively. Kim et al[35] and Raghavendra focused on detecting 
glaucoma vs normal fundus images. They reported an accuracy of 87.9%, equivalent to the accuracy of 
human experts, demonstrating an efficient method for glaucoma screening. Raghavendra et al[36] tested 
their CML on 589 normal and 837 glaucoma images and obtained a score of 0.98 for sensitivity, 
specificity and accuracy.

DL performs better than CML in detecting pre-perimetric open-angle glaucoma[36]. Holistic and local 
features of the optic disc on fundus images have been used to mitigate the influence of optic disk 
misalignment for glaucoma diagnosis[37]. Li et al[38] demonstrated that DL could be used to identify 
referable glaucomatous optic neuropathy with high sensitivity and specificity. Table 3 is a summary of 
studies using AI to detect progression in eyes with glaucoma.

Retinopathy of prematurity
Retinopathy of prematurity (ROP) is a leading cause of treatable childhood blindness, provided it is 
diagnosed timely[39]. This disease necessitates strict follow-up and screening which are very tedious 
and demanding. Repeated ROP screening and follow-up consume substantial manpower and energy. 
Therefore, the application of AI in ROP screening may improve the efficiency of care for ROP.

Wang et al[40] developed an automated ROP detection system called DeepROP using deep neural 
networks (DNNs). ROP detection was divided into ROP identification and grading tasks. Two specific 
DNN models–Id-Net and Gr-Net–were designed for the identification and grading tasks, respectively. 
Id-Net achieved a sensitivity of 96.62% and a specificity of 99.32% for ROP identification, whereas Gr-
Net attained a sensitivity of 88.46% and a specificity of 92.31% for ROP grading. In another 552 cases, 
the developed DNNs outperformed some human experts[41].

A similar AI, developed by Tan Z, achieved similar accuracy for detecting plus ROP. They reported 
that this AI could distinguish the plus disease with 95% accuracy, comparable to the diagnoses of 
experts and much more precise than those of non-experts. Various studies have reported promising 
results, most of which were based on two-level sorting (plus or not plus disease).

Keratoconus
There are significant obstacles in distinguishing patients with very early keratoconus signs from the 
normal population. This is attributed to the limited availability of samples owing to low disease 
prevalence. For this purpose, the application of AI in corneal topography interpretation has been 
attempted. The methods used discriminative classifiers that, given a set of independent machine-
derived variables from corneal topography (e.g., simulated K readings and topographic asymmetries), 
can be trained to differentiate between two or more classes of topography (e.g., normal, astigmatic and 
keratoconus).

AI has been used to detect keratoconus and forme fruste keratoconus[42] based on data from Placido 
topography, Scheimpflug tomography[43], anterior segment spectral domain OCT and biomechanical 
metrics (CorvisST and corneal hysteresis). Further, data from Pentacam[44], Sirius[45], Orbscan II, 
Galilei and TMS-1 have been studied using ML algorithms to detect early keratoconus.

The Pentacam RF index (PRFI) is an RF model built using data from Pentacam HR (Oculus, Wetzlar, 
Germany). It was the only model trained using the preoperative examination data of patients that 
developed ectasia. The index already available on the device (BAD-D) presented a sensitivity of 55.3%, 
whereas PRFI identified 80% of the cases correctly. In the external validation set, the model showed an 
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Table 3 Summary of studies using artificial intelligence to detect progression in Glaucomatous eyes

Ref. No. of eyes Instrument Approach Comments

Lin et al[63] 80 SAP Supervised ML Sensitivity-86%; Specificity-88%

Goldbaum et 
al[64]

478 suspects; 150 glaucoma; 55 stable 
glaucoma

SAP Unsupervised 
ML

Specificity-98.4%, AROC not available; Use of variational 
Byesian. Independent component analysis mixture model in 
indentifying patterns of glaucomatous visual field defects and its 
validation

Wang et al
[65]

11817 (method developing cohort) and 
397 (clinical evaluation cohort)

SAP Unsupervised 
ML

AROC of the archetype method 0.77

Yousefi et al
[16]

939 Abnormal SAP and 1146 normal 
SAP in the cross section and 270 
glaucoma in the longitudinal database

SAP Unsupervised 
ML

Sensitivity 34.5%-63.4% at specificity 87% Comment: it took 3.5 
years for ML analysis to detect progression while it took over 3.5 
years for other methods to detect progression in 25% of eyes

Belghith et al 27- progressing; 26-stable glaucoma 
and 40 healthy controls

SD OCT 
Supervised ML

Sensitivity -78% Specificity in normal eyes-93%; 94% in non-
progressive eyes

ML: Machine learning; OCT: Optical coherence tomography.

accuracy of 85% for detecting the normal topographic eye of very asymmetric cases (VAE-NT), reaching 
a specificity of 96.6%[46].

A single decision tree method was proposed based on the data obtained from the Galilei Dual 
Scheimpflug Analyzer (Ziemer Ophthalmic Systems AG, Port, Switzerland). This index showed a 
sensitivity of 90% and a specificity of 86% for detecting early disease forms[47]. Discriminant linear 
models were also successfully used to analyze the data obtained from Orbscan II (Technolas, Munich, 
Germany) with a sensitivity of 92% and a specificity of 96% in the first validation set and a sensitivity of 
70.8%, and a specificity of 98.1% in a different ethnic background population[48].

Ambrósio et al[48] evaluated AI-based tomographic and biomechanical index (TBI), which combines 
Scheimpflug-based corneal tomography and biomechanics (Corvis ST) for improving ectasia detection. 
The Kerato Detect algorithm analyzes the corneal eye topography using a CNN that can extract and 
learn the features of a keratoconus eye. The results ensure high-level performance yielding an accuracy 
of 99.33% for the test dataset. Neural networks have been used to evaluate the waveform signals of the 
Ocular Response Analyzer (Reichert Ophthalmic Instruments, Buffalo, United States) yielding high 
accuracy for the study validation sample comprising early keratoconus forms (AUC, 0.978). The RF 
model called TBI achieved a sensitivity of 90.3% and a specificity of 96% for detecting VAE-NT. The 
combination of tomographic and biomechanical parameters was superior to either method used alone.

Sharif et al[49] showed that corneal images obtained via confocal microscopy could be assessed in 
detail using a committee machine developed from artificial neural networks and adaptive neuro-fuzzy 
inference systems that can detect abnormalities with high accuracy and enable 3D visualization. 
Nevertheless, considering that the research on these aspects is limited, there is a possibility that the 
characteristics learned in AI training may not be similar to those in another clinical population. When 
using tomographic data rather than Placido topographic data, researchers have found that combining 
biomechanical or additional imaging data is necessary to enhance the performance for detecting early 
keratoconus signs.

CORNEAL DYSTROPHIES AND DYSPLASIA
Eleiwa et al[50] used AI to differentiate Fuchs endothelial corneal dystrophy (FECD, without corneal 
edema) from late-stage FECD (with corneal edema) based on high-definition OCT images. The model 
they developed had a sensitivity of 99% and a specificity of 98% in differentiating normal cornea from 
FECD (early or late).

Gu et al[51] reported an AUC of 0.939 for detecting corneal dystrophy or degeneration using a slit-
lamp photograph-based DL model. They included ocular surface disorders such as limbal dermoid, 
papilloma, pterygium, conjunctival dermolipoma, conjunctival nevus and conjunctival melanocytic 
tumors to differentiate ocular surface neoplasms. However, considering the limited existing evidence, 
the use of AI for detecting ocular surface neoplasms warrants further exploration. Kessel et al[52] 
created trained DL algorithms to detect and analyze amyloid deposition in corneal sections in patients 
with familial amyloidosis undergoing full-thickness keratoplasty.

Dry eye
Dry eye disease is a common condition that affects 8% of the global population and is caused by the 
reduced quantity or quality of tears. Left untreated, dry eye can result in pain, ulcers and even corneal 
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scars. Therefore, rapid diagnosis is essential and clinically based on tear production measurement and a 
tear film stability evaluation.

In a recent study, researchers used infrared thermal images of the eye along with the ML algorithms 
Gabor transform and Discrete Wavelet Transform (DWT) to detect dry eyes[53]. These ML methodo-
logies were used to extract features from specific image frames, further segmented into eye regions, and 
the data were analyzed accordingly. Principal component analysis was ranked using a t-value and fed 
into the SVM classifier. Using the 1st, 5th, and 10th  after the first blink, they achieved classification 
accuracies of: (1) 82.3%, 89.2% and 88.2% for the left eye; and (2) 93.4%, 81.5% and 84.4% for the right 
eye, respectively. Similarly, using the 1st, 5th, and 10th frames of the lower half of the ocular region, they 
achieved accuracies of: (1) 95.0%, 95.0% and 89.2%; and (2) 91.2%, 97.0% and 92.2% for the left and right 
eyes, respectively. This study showed that the lower half of the ocular region is superior to the upper 
half of the ocular region.

This method offers several advantages, such as being semiautomatic and making it less susceptible to 
interobserver variability. It is more accurate than standard clinical tools, more convenient for the patient 
and does not require a special dye. Gabor transform and DWT are methodologies for automatic feature 
extraction from biomedical images.

Cataract
Cataract refers to the clouding of the eye lens. It is the leading cause of blindness worldwide. Therefore, 
automatic detection for the diagnosis of this disease will be cost-effective.

Srivastava et al[54] proposed a system that automatically grades the severity of nuclear cataracts 
based on slit-lamp images. First, the lens region of interest is identified, following which the CNN filters 
randomly selected image patches, generating local representations via an iteration process with random 
weights. They named it ACASIA-NC_v0.10 (i.e., Automatic Cataract Screening from Image Analysis-
Nuclear Cataract, version 0.10) and specifically used the “visibility cue” for nuclear cataract grading C. 
Their system used visible features of the nucleus, such as sutures and demarcation lines, in greyscale. 
With the help of the software, they could analyze the number of visible features. ACASIA-NC_v0.10 
achieved a similarity of > 70% against clinical grading and reduced the error by > 8.5%. Other studies 
similar to Liu et al[55] mainly focused on identifying pediatric cataracts. They reported exceptional 
accuracy and sensitivity for lens classification and density. In addition, cataract grading can also be 
achieved automatically based on lens OCT findings.

SMARTPHONE-BASED APPS USING AI IN OPHTHALMOLOGY
The advantages of using smartphones are many, including having built-in internal data storage and 
cloud storage capabilities[56]. Pegasus VISULYTIX, an inexpensive smartphone clip-on optic nerve 
scanner expected to aid the diagnosis and treatment of those with chronic blinding diseases, such as 
glaucoma, using AI, is being adapted. Pegasus could detect glaucomatous optic neuropathy with an 
accuracy of 83.4%, comparable to the average accuracies of ophthalmologists (80.5%) and optometrists 
(80%) using the same images.

CC-Cruiser was developed to study the application of AI in congenital cataracts (CC). CCs cause 
irreversible vision loss and breakthroughs in the research on CCs have substantially contributed to the 
field of medicine. Researchers have developed a three-fold AI system that includes identification 
networks for CC screening in populations, evaluation networks for risk stratification of patients with 
CC and strategist networks to assist ophthalmologists in making treatment decisions.

Shaw created a ComputeR Assisted Detector LEukocoia (CRADLE) app that uses AI to identify white 
eyes indicative of several serious eye diseases. The sensitivity of CRADLE for detecting white eyes in 
children aged ≤ 2 years surpassed 80%, which was substantially higher than the sensitivity of physical 
examination (8%). This new smartphone app takes advantage of parents’ fondness for snapping pictures 
of their children to identify signs of a severe eye disease that the child might be developing. On average, 
the app detected white eyes in pictures collected 1.3 years before diagnosis.

FUTURE OF ARTIFICIAL INTELLIGENCE APPLICATION
The AI-based platform provides an intelligent diagnosis of eye diseases at present. It focuses on binary 
classification problems, whereas visiting patients suffer multi-categorical retinal disorders in clinical 
settings. Multimodal clinical images, such as OCTA, visual field and fundus images should be 
integrated to build a generalized AI system for more reliable AI diagnosis. The challenge is coordinating 
multicenter collaborations to build good quality and extensive data collection to train and improve AI 
models. AI is an instrument to upturn clinical decision power with many possible applications for 
ophthalmologists.
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LIMITATIONS OF ARTIFICIAL INTELLIGENCE
Any software design is not perfect, and so artificial intelligence is also not bias-proof. Five distinct types 
of machine learning bias that we need to be aware of and guard against: (1) Sample bias: poor data 
collection for training. Example: Labeling other vascular retinopathies as DR; (2) Prejudice bias: 
Prejudice bias results from training data that is influenced by stereotypes. For example, a large cup is 
always glaucoma; (3) Measurement bias. For example, fundus photo color, different cameras give 
different color measurements; best avoided by having multiple or similar measuring devices and 
humans trained to compare the output of these devices when developing the algorithm; (4) Algorithm 
bias: Choosing the wrong software algorithm for a specific disease; and (5) The quality control of images 
for prediction.

CONCLUSION
With the substantial advances in AI in the field of ophthalmology, it can be assumed that now is the 
dawn of AI in ophthalmology. With the advent of technologies based on different AI modules, such as 
DL, ML and GAN, it can be assumed that AI has a promising role in the diagnosis of DR, ARMD, dry 
eye, glaucoma, keratoconus and cataracts. In particular, these AI-based applications are more relevant 
during the present coronavirus disease 2019 era and for serving the remotest of areas worldwide. 
Compared with conventional tests performed at tertiary ophthalmic centers, AI performs better in the 
screening and diagnosis of various eye diseases. After considering all the facts and overcoming 
challenges in its application, it can be said that AI in the field of ophthalmology is here to stay and 
revolutionize eye care in the 21st century. Nonetheless, researchers in the field of ophthalmology need to 
develop more robust AI modules with better verification and validation. Further, we must not rely only 
on near-real AI as no modality can possibly replace the level of affection, care and sensitivity as that 
provided by human caregivers.
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