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Abstract

Population structure can be a source of both false-positive and false-negative findings in a genome-wide association study.
This article proposes an approach that helps to reduce the false-positives. It consists of homogenizing the diseased/healthy
phenotype ratio across the cohort, by decreasing the statistical weight of selected individuals. After homogenization, the
cohort is statistically handled as if originating from a single well-mixed population. The method was applied to homogenize
a Parkinson’s disease genome-wide association study cohort.
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Introduction

The genome-wide association study (GWAS) is nowadays

routinely used to discover genetic susceptibilities to disease

[1,2,3]. In these studies, a critical step is the handling of

population structure in the analyzed cohort [4,5]. If not correctly

accounted for, population structure can result in both false-

positive and false-negative phenotype-genotype associations. We

briefly review some of the main approaches currently utilized to

identify and correct for the presence of population structure in a

cohort [6,7,8]. Genomic control is a computationally fast and

easy to implement method [9,10,11]. It prescribes a reduction by

a factor l in the cohort size utilized in test statistical calculations.

This compensates for statistical significance inflation due to the

presence of population structure. The method assumes that only

the few strongest statistical associations reflect genuine pheno-

type-genotype associations and thus it estimates the l factor

based on the remaining bulk of the test statistics distribution.

Dadd et al. [12] discuss refinements and variations on the

genomic control approach. An example is the use of multiple

rather than a single adjustment factor [13]. A different approach

is to first capture ancestry by changing the cohort data to the

principal component coordinates of a space defined by a set of

markers assumed to be independent of the trait under analysis

[14,15]. The first few principal components can then be utilized

as regression covariates in the subsequent association analysis

[16,17]. Other population structure correction approaches based

on the calculated principal components have also been proposed

[18,19,20,21]. As an alternative to principal component analysis,

population structure can also be captured by the multidimen-

sional-scaling (MDS) statistical technique [20,22,23]. Li et al.

[24], report a method that combines MDS with a phylogeny

constructed from SNP genotypes. Spectral graph theory provides

yet a different way to capture genetic ancestry. Two implemen-

tations of this approach are Spectral-GEM [25] and LAP-

STRUCT [26]. Structured association methods first assign to

individuals probabilities of membership in given subpopulations

[27,28]. Association testing is then conditional on these

subpopulation membership probabilities [29]. STRUCTURE/

STRAT [30] and ADMIXMAP [31] are standard software

packages that implement this method. Structured association

approaches tend to be computationally intensive, but the GWAS

analysis package Plink [32] includes a simplified, efficient version

of structured association. Finally, linear mixed models [33,34]

have been also successfully applied to address population

structure. Wu reports a performance comparison of some of

the above approaches [35].

To assist in reducing the specific case of false-positives, this

article suggests the additional avenue of homogenizing the ratio

between the two GWAS phenotypes (e.g., diseased and healthy)

throughout the cohort. The homogenization is performed

within a principal component coordinates space and is

accomplished by knocking-down the statistical weight of selected

individuals. After homogenization, the cohort is statistically

handled as if originating from a single well-mixed population.

First, under the idealization of exactly two distinct populations,

we recall the biases introduced by population structure in a

GWAS. We then present our homogenization approach for the

practical case where the cohort population structure has a

continuous character. The method is described alongside its

application to the homogenization of a Parkinson’s disease

GWAS cohort [36]. Finally, the method is tested using

simulated, synthetic data.
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Analysis

Two populations case
Consider a population of individuals classified into two

genotypes (A and ,A) and likewise classified into two phenotypes

(diseased and healthy). The genotype-phenotype population odds

ratio (OR) [37] quantifies the degree of correlation between

genotype and phenotype intrinsic to the population. A cohort

sampled from the population provides an estimate of the OR. One

of the four degrees of freedom (DOFs) of the sampled cohort’s 262

contingency table (Figure 1-a) can thus be assigned to the OR

estimate. Call it the OR DOF. The remaining three DOFs then

reflect how the cohort was sampled from the population. These

three sampling DOFs may be expressed as:

p1 - number of patients sampled,

p2 - number of healthy subjects sampled and

p3 - sampling partiality towards A subjects versus towards ,A

subjects.

Any selection for the three sampling DOFs is valid, as they are

independent of the OR DOF. Still, correctness of the OR estimate

requires every patient and healthy subject to be sampled under the

same partiality value p3. However, population differences in the

relative prevalence of A and ,A subjects are conducive to

different p3 sampling partialities. Therefore casually combining

samples from different populations is problematic, as illustrated by

the following two examples. Consider two populations X and Y,

where in both the OR is unity (Figure 1-b). Let population X have

a preponderance of genotype A and population Y have a

preponderance of genotype ,A, thus inducing different sampling

partialities p3. Additionally, regarding DOFs p1 and p2, suppose in

population X mostly patients were sampled (i.e., p1 .. p2) while

in population Y mostly healthy controls were sampled (i.e., p1 ,,

p2). Then, combining the samples from X and Y in a single cohort

results in a non-unity OR estimate, a false-positive genotype-

phenotype correlation due population structure. As a second

example, consider two populations X and Y, where in both the

OR<2 (Figure 1-c). As in the previous example, suppose p3 is

much larger in X than in Y. Let the exact same number of

diseased and healthy subjects be sampled in X and in Y. Then,

combining the samples from X and Y in a single cohort results in

an OR estimate that is approximately unity, in spite of the OR in

both the X and Y populations being approximately 2. This second

example illustrates population structure concealing a genuine

genotype-phenotype correlation. For both examples, we empha-

size how the OR, and thus the genotype-phenotype correlation, is

identical in the X and Y populations. Population structure led to

the false-positive and false-negative calls solely by affecting

sampling.

Transformations can be applied to the contingency table.

Discarding diseased samples is akin to scaling by a less than unity

common factor the contingency table entries a and b (Figure 1-a).

Similarly, discarding healthy samples is akin to scaling by a less

than unity common factor the entries c and d. Equivalently, we

may always plausibly assume a cohort resulted from sampling a

selected number of A subjects and a selected number of ,A

subjects, all under a given sampling partiality between diseased

and healthy subjects. From this perspective, the three sampling

DOFs could be expressed as:

Figure 1. Odds ratio estimation biases introduced by popula-
tion structure. a) The 262 contingency table associated with a cohort
sampled from the population. Merging cohorts from distinct popula-
tions can produce both false-positive and false-negative assessments of
the odds ratio (OR). Differences in the sampling process invalidate a
straightforward combination of cohorts from distinct populations. b)
False-positive example: In both population X and population Y, the
OR = 1. c) False-negative example: In both population X and population
Y, the OR<2.
doi:10.1371/journal.pone.0048653.g001

Figure 2. Distribution of patients and controls in the original
cohort. The Hamza et al. [36] cohort healthy and Parkinson’s
individuals projected on the first 2 principal components of the SNP
space. The cohort contains a total of 2000 Parkinson’s patients and 1986
healthy controls.
doi:10.1371/journal.pone.0048653.g002
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g1 - number of A subjects sampled,

g2 - number of ,A subjects sampled and

g3 - sampling partiality towards diseased subjects versus towards

healthy subjects.

Now, discarding A samples is akin to scaling by a less than unity

common factor the entries a and c. Similarly, discarding healthy

samples is akin to scaling by a less than unity common factor the

entries b and d.

Let us call p3 matched cohorts to those cohorts that could plausibly

originate from a sampling of diseased and healthy subjects under

the same partiality p3. Similarly, let us call g3 matched cohorts to those

cohorts that could plausibly originate from a sampling of A and

,A subjects under the same partiality g3. Only p3 or g3 matched

cohorts are suitable to being merged. Fortunately, the above-

mentioned transformations can be utilized to produce matched

cohorts. For instance, the transformations can always be used to

equalize the corresponding marginal ratios in the two contingency

tables (i.e., making the net A/,A ratio equal on the two tables and

making the net diseased/healthy ratio equal on the two tables).

Doing so produces cohorts that are both p3 and g3 matched.

In a GWAS, there is typically a vast number of genotype based

population splits to consider and each requires its own cohort-

matching transformation. Furthermore, population structure

generally has a more complex continuous character than the

two distinct populations assumed so far. Thus, computational-time

wise cohort-matching for every genetic trait may not be feasible.

Instead, we suggest equalizing the net diseased/healthy subject

marginal ratio on the two cohorts. This can be achieved by

appropriately discarding diseased or healthy samples (without

regards to their genotype). Note that this equalization is

independent of the genotype split under consideration. Now, if

the OR is unity in the two populations, then the matching of the

diseased/healthy subject ratio guarantees that the cohorts are g3

matched. This follows from an unity OR indicating that the

diseased/healthy ratio in the population is identical for both

genotypes under consideration. Note that the method is robust: in

the limit where the individual population ORs approach unity and

the cohort marginal diseased/healthy ratios approach each other,

the cohorts approach being g3 matched. The limitation of the

approach is that, for non-unity ORs, matching the diseased/

healthy ratio no longer guarantees that the cohorts are g3 matched.

This is clear in the Figure 1-c example, where the diseased/healthy

ratio is unity in both cohorts and yet, the merged cohort produces

a false-negative outcome. A careful examination of the example

will show that the sampling is partial towards healthy subjects in

population X relative to the sampling in population Y. Let us call

phenotype marginal matching to this procedure of matching the

diseased/healthy ratios in the cohorts. In summary, phenotype

marginal matching reduces the false-positives (Figure 1-b case) but

not the false-negatives (Figure 1-c case). However, the computa-

tional faster time, due to a single homogenization serving for all

genotype pairs, makes it a practical choice. Finally, note that

throughout we have assumed that the OR is the same in both

populations. However, the OR could also be population depen-

dent. As an example, consider a SNP that is a risk factor only

under the net genetic background or dietary habits characteristic

of a particular population. Such cases always benefit from an

individualized analysis of the population cohorts, as their merging

unavoidably produces some form of averaged OR estimate.

A commonly applied test to the cohort contingency table is the

Fisher exact test [38]. Importantly, note that the test is valid on a

contingency table from merged cohorts that were phenotype

marginal matched, since the unity OR assumption of the test also

guarantees that the cohorts are g3 matched.

Continuous population structure case
So far we have assumed two well-defined, distinct populations.

We now describe our phenotype marginal matching approach for

the practical case where the population structure has a continuous

character. The method is presented alongside its application to

homogenization of the Hamza et al. Parkinson’s GWAS cohort

[36,39]. This cohort of 2000 Parkinson’s disease patients and 1986

controls was genotyped at on the order of 106 SNPs. Subjects were

recruited in North America and reported European ancestry. We

first identified the population structure as Hamza et al. [36], via

principal component analysis [16,36]. The relative overall location

of individuals in SNP space (Euclidean distance wise) reflects the

cohort population structure. However, there are regions of the

genome with a particular high density of genotyped, highly

correlated SNPs. This results in a few such groups of SNPs

overwhelmingly determining the clustering of subjects in SNP

space. Following standard procedure [36], this was avoided by

utilizing only a reduced set of 75 000 SNPs, selected for their

comparatively lower correlation. The SNPs were selected using the

program Plink [32], with a 50-SNP sliding window, shifting 5

SNPs with each move and recursively removing SNPs with

Figure 3. The population homogenization algorithm. a)
Euclidean-distance spheres on the space defined by the first three
principal component projections of the 75000 SNP space (3PC-space).
The spheres are characterized by the total subject statistical weight in
their interior, rather than by their spatial radius. The sphere OR is
defined as the OR for an idealized genotype present in every subject in
the interior of that sphere and in no subject outside of it. ORs are
estimated for all spheres centered on a cohort subject and of a
predefined sphere weight. b) Overview of the homogenization
algorithm. c) Within the sphere with the most extreme OR estimate,
one subject is selected to have its statistical weight knocked-down to a
predefined knocked-down weight.
doi:10.1371/journal.pone.0048653.g003
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r2.0.1. As discusssed in Hamza et al., the population structure is

well captured by the first three principal components of this 75 000

SNP space. In here, our objective is therefore to homogenize the

diseased/healthy subject ratio (phenotype marginal match)

throughout the subspace defined by these first three principal

components (henceforth 3PC-space). The uneven distribution of

healthy and Parkinson’s subjects in this space is visually perceptible

in Figure 2 (third principal component not shown).

The homogenization is performed by lowering the statistical

weight (‘statistical’ subsumed henceforth) of select subjects from

their original unity weight, to a smaller, but nonzero, predefined

knocked-down weight. Henceforth, let all spatial references be with

respect to 3PC-space and based on Euclidean distances. We define

the sphere OR as the OR for an idealized genotype present nowhere

other than on every subject within that spatial sphere (Figure 3-a).

Such a genotype thus marks exactly the population present within

the sphere. The homogenization algorithm will employ spheres

centered on cohort subjects. In lieu of sphere spatial radius, a more

relevant parameter is sphere cohort weight, the total weight of the

cohort subjects inside the sphere. This is due to the pertinent

statistical comparison, as described below, being between spheres

with the same cohort weight, not between spheres with the same

spatial size per se.

We now describe the iterative homogenization algorithm

(Figure 3-b,c). The sphere OR for every sphere with a

predetermined cohort weight and centered around a cohort

subject is estimated (note on weight discreteness: in practice, utilize

the smallest sphere centered on the subject that equals or surpasses

the desired weight). The sphere with the most extreme OR

estimate is selected (given the symmetry in the OR definition, by

extreme it is meant furthest from unity, in the sense whereby

OR = 3 and OR = 1/3 are equally distanced from unity). Next, the

weight of one cohort subject within this selected sphere is knocked-

down in order to bring the sphere estimated OR closer to unity.

The subject closest to the sphere center, still with unity weight and

of the appropriate phenotype (diseased if the OR imbalance is due

to too many diseased subjects within the sphere, healthy in the

reverse case) is selected to have its weight knocked-down to the

Figure 5. Statistically knocked-down individuals in the cohort
homogenization process. The local homogenization of the Parkin-
son’s/healthy marginal ratio (phenotype marginal matching) is per-
formed by knocking-down the statistical weight of selected subjects.
Overall, 120 of the 2000 Parkinson’s patients and 230 of the 1986
healthy controls had their statistical weight knocked-down from 1 to
0.2. This represented a 7% net weight decrease in the cohort.
doi:10.1371/journal.pone.0048653.g005

Figure 4. Algorithm parameter optimization. The algorithm was
applied to homogenize the Hamza et al. cohort. The algorithm
parameters were selected based on the value of the potential p-value
bias test (see Table 1 and main text). Graph a) shows potential p-value
bias versus % of cohort weight decrease. A 7% cohort weight decrease
was selected, as weight decreases beyond this value produced only a
marginal further decline in the potential p-value bias. b) The sphere
weight parameter was set to 30. c) A 0.2 knocked-down weight was

selected. In each of these graphs, the two parameters not represented
are held at their selected values.
doi:10.1371/journal.pone.0048653.g004
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predefined knocked-down weight. The cycle is then repeated, with

every sphere OR being re-calculated, a new sphere with the most

extreme OR being highlighted and, within it, a new subject being

selected for knock-down. This cycle is performed a determined

number of times (set by the desired final cohort weight) upon

which the procedure is concluded.

The algorithm requires selecting values for three parameters:

total cycles (or final decrease in cohort weight), sphere weight and

knocked-down weight (Figure 3). To select these, we introduce the

potential p-value bias test. This is a measure of the OR estimate Fisher

p-value bias potential due to population structure in the cohort.

Consider again a hypothetical genotype present on every

individual within a given spatial sphere and on none outside that

sphere. This constitutes an extreme case of a genotype associated

with a specific population (in this case, the population within the

sphere). This genotype produces a false-positive OR estimate if the

diseased/healthy ratio is not identical inside and outside the

sphere. The smallest p-value that can be generated by such

hypothetical genotypes thus provide a measure of the potential for

p-value bias introduced by population structure. We numerically

implement this test by considering all spheres centered on cohort

subjects, hence effectively covering every relevant sphere location

in 3PC-space. Similarly, a spectrum of sphere weights is

considered. The value of the potential p-value bias test is then

the smallest of the p-values thus generated.

The algorithm was applied to the Hamza et al. cohort. Based on

the potential p-value bias test, the parameters were set to cohort

weight decrease = 7%, sphere weight = 30 and knocked-down

weight = 0.2 (Figure 4). We underline the limited sensitivity of the

potential p-value bias test results to the selected parameter values,

indicating the algorithm is robust in this regard (Figure 4). Table 1

breaks down the potential p-value bias test over the range of

sphere weights tested. From the original Hamza et al. cohort to

the homogenized cohort under the above selected parameters, the

extreme p-value found over the spectrum of tested locations and

weights decreased by four orders of magnitude, from 4*1026 in the

original cohort, to 1*1022 in the homogenized cohort. Figure 5

shows the knocked-down individuals in the homogenization

process. Figure 6 compares estimated sphere ORs on the original

and homogenized cohorts. The comparison is performed across a

range of sphere weights.

Simulation study
Utilizing synthetic data, we compared the effect that homog-

enizing a cohort has on the GWAS typical true-positive, false-

positive and false-negative association. We still relied on the real

data Hamza et al cohort. However, the following synthetic

disease/healthy distribution was now utilized (Figure 7-a):

Diseased/healthy labels were assigned to individuals with a 0.5/

0.5 chance in the population at large, except for individuals in the

rectangular box region of Figure 7-a, where a 0.6 vs. 0.4 diseased

vs. healthy chance was used when assigning the labels. In reality,

this boxed region delimits approximately cohort individuals of

Irish or English ancestry (based on self-reported ancestry, see

Figure 2 in Valente et al. [39]). The created imbalance in the

diseased/healthy distribution is apparent in Figure 7-b. The

homogenizing algorithm was applied to this dataset (algorithm

parameters: cohort weight decrease = 9%, sphere weight = 30 and

knocked-down weight = 0.2). Figure 7-c shows the individuals

knocked-down in the homogenization process. Comparison of

Figure 7-d with Figure 7-b shows the effect of the homogenization

procedure. Next, we created a number of synthetic genotypes to

observe the effect of the homogenization procedure on the typical

false-positive and false-negative association induced by population

structure, as well as on the standard true-positive association

(Figure 7-e).

To generate typically true-positive associations (under no

population structure correction), genotype labels were assigned

to all cohort individuals as follows:

– For a diseased-phenotype individual there was a 0.57

probability of a ,A genotype assignment, while for a

healthy-phenotype individual this probability was 0.50

(yielding an OR = 1.32). The process was repeated five

hundred times, thus generating five hundred such genotypes.

The red circles in Figure 7-e correspond to three such

genotypes.

– For a diseased-phenotype individual there was a 0.15

probability of a ,A genotype assignment, while for a

healthy-phenotype individual this probability was 0.10

(yielding an OR = 1.59). The process was repeated five

hundred times, thus generating five hundred such genotypes.

The cyan circles in Figure 7-e correspond to three such

genotypes.

Figure 6. Estimated sphere ORs in the original and homogenized cohorts. Each subject is colored based on the estimated OR of a sphere
centered on that subject and with the sphere weight stated on the top of the respective color map (see Figure 3-a for sphere OR definition). Sphere
OR color scale reflects the symmetry of the OR definition. Note sphere OR color scale amplitude is smaller on color maps for larger sphere weights.
doi:10.1371/journal.pone.0048653.g006

Table 1. The potential p-value bias test.

Cohort
weight Sphere weight 25 50 100 200 400 800 1600

Potential p-
value bias test

3986 Original cohort 2*1024 3*1024 4*1026 4*1026 3*1024 9*1025 7*1025 4*1026

3706 Homogenized cohort 2*1022 1*1022 2*1022 2*1022 3*1022 3*1022 3*1022 1*1022

Consider the Fisher exact test p-value associated with an OR estimate for a hypothetical genotype present nowhere other than on every subject within a given spatial
sphere. Each table entry reports the smallest such p-value, over all the subject-centered spatial spheres with the stated weight. These p-values provide a comparative
measure of the potential for p-value bias due to population structure, before and after cohort homogenization. The value of the potential p-value bias test is the
smallest of these p-values across all the tested sphere weights (rightmost column). Values shown pertain to application of the test to the original and homogenized
(under the Figure 4 selected parameter values) Hamza et al. cohort. Note: for the homogenized cohort, the Fisher test is performed on the contingency table entries
rounded to the nearest integer.
doi:10.1371/journal.pone.0048653.t001
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Figure 7. Simulation study. a) Synthetic diseased-healthy phenotype labels were assigned to the Hamza et al. cohort subjects. b) Visualization of
the sphere ORs (at sphere weight = 500) in this synthetic dataset shows the imbalance in the diseased-healthy distribution. c) Individuals with their
statistical weight knocked-down in the cohort homogenization process (final homogenized cohort weight reduction = 9%). d) Visualization of the
sphere ORs (at sphere weight = 500), after the homogenization process. e) Synthetic genotype labels were assigned to individuals to produce the
typical true-positive, false-positive and false-negative association (under no population structure correction). The -log(p-value) for these synthetic
genotype-phenotype associations were calculated, based on four different approaches: Fisher exact test using the original cohort; Fisher exact test
using the homogenized cohort; logistic regression with the 3 PCs as covariates; and logistic regression using the homogenized cohort weights and
with the 3 PCs as covariates. f) Receiver Operating Characteristic (ROC) curves for the four different approaches. See Simulation Study Section for
details.
doi:10.1371/journal.pone.0048653.g007
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– For a diseased-phenotype individual there was a 0.06

probability of a ,A genotype assignment, while for a

healthy-phenotype individual this probability was 0.03

(yielding an OR = 2.06). The process was repeated five

hunderd times, thus generating five hundred such genotypes.

The green circles in Figure 7-e correspond to three such

genotypes.

The above genotypes, spanning a range of minor allele

frequencies, are homogeneously distributed across the population.

Therefore, evaluation of their association with phenotype status is

not distorted by population structure effects.

To generate typically false-positive associations (under no

population structure correction), genotypes labels were assigned

to all cohort individuals as follows:

– For an individual inside the rectangular box (Figure 7-a), there

was a 0.90 probability of a ,A genotype assignment,

regardless of phenotype status. For an individual outside the

rectangular box, there was a 0.10 probability of a ,A

genotype assignment, regardless of phenotype status. The

process was repeated five hunderd times, thus generating five

hundred such genotypes. The black crosses in Figure 7-e

correspond to four such genotypes.

– For an individual inside the rectangular box, there was a 0.80

probability of a ,A genotype assignment, regardless of

phenotype status. For an individual outside the rectangular

box, there was a 0.20 probability of a ,A genotype

assignment, regardless of phenotype status. The process was

repeated five hunderd times, thus generating five hundred

such genotypes. The blue crosses in Figure 7-e correspond to

four such genotypes.

The above genotypes have no effect on the phenotype status

(OR = 1). However, the ,A genotype is highly common in the

rectangular box population, by comparison with its presence in the

population at large. In accordance with the Figure 1-b example,

the concurrent higher prevalence of both the ,A genotype and

the diseased phenotype in the rectangular box population region

generates a false apparent genotype-phenotype association.

To generate typically false-negative associations (under no

population structure correction), genotypes labels were assigned to

all cohort individuals as follows:

– For an individual below the dashed line on Figure 7-a

(PC2,22.68) and a disease phenotype, there was a 0.08

probability of a ,A genotype assignment. For an individual

below the dashed line on Figure 7-a and a healthy phenotype,

there was a 0.05 probability of a ,A genotype assignment.

For an individual above the dashed line on Figure 7-a and a

disease phenotype, there was a 0.95 probability of a ,A

genotype assignment. For an individual above the dashed line

on Figure 7-a and a healthy phenotype, there was a 0.92

probability of a ,A genotype assignment. The process was

repeated five hunderd times, thus generating five hundred

such genotypes. The magenta stars in Figure 7-e correspond

to three such genotypes. In reality, the dashed line roughly

delimits from above individuals of Irish or Italian ancestry

(based on self-reported ancestry, see Figure 2 in Valente et al.

[39]).

For the above genotypes, OR = 1.65 in both the above and the

below the dashed line populations. However, the ,A genotype is

highly prevalent in the population above the dashed line, while the

A genotype is highly prevalent in the population below the dashed

line. This is enough to conceal the genotype-phenotype associa-

tion. Note that the diseased/healthy ratio is roughly identical in

the above and below the dashed line populations. As previously

illustrated by the Figure 1-c example, an homogeneous diseased/

healthy phenotype ratio across the population does not prevent

these false-negatives cases.

Figure 7-e shows -log(p-value) for some of these synthetic

genotypes, based on four different approaches:

– Original cohort: using the original cohort and the Fisher exact

test.

– Regression w/PCs: using the original cohort and logistic

regression with the first 3 PCs as covariates to account for

population structure effects.

– Homogenized: using the homogenized cohort and the Fisher

exact test.

– Homogenized + regression w/PCs: using the homogenized

cohort and logistic regression with the first 3 PCs as covariates

(the knocked-down homogenized cohort weights are em-

ployed in the logistic regression).

The true-positives, false-positives and false-negatives behave as

expected when not accounting for population structure. Both

logistic regression and the cohort homogenization method are able

to decrease -log(p-value) of the false-positives. However, the

reduction is significantly more pronounced using the cohort

homogenization method. The average -log(p-value) of true-

positives is not significantly decreased by the 9% smaller size of

the homogenized cohort. The decrease is comparable to the one

observed under logistic regression, being in this latter case

attributable to the addition of the 3 PCs as covariates. As

expected, false-negatives are not rescued by the homogenization

Figure 8. Interpreting the DZIP1 allele distribution in the
context of population structure. Based on an analysis of the
homogenized Hamza et al. cohort, a rare SNP mutation in the gene
DZIP1 that increases the susceptibility to Parkinson’s disease was found
[39]. In this cohort, individuals carrying a copy of this rare DZIP1 allele
are predominantly in a region where, as per the color maps of Figure 5,
there is still a slight relative overabundance of healthy subjects
(indicated by the blue hue in Figure 5). Thus, we conclude that the
remaining population heterogeneity in the homogenized cohort has a
propensity to diminish, rather than to inflate, the estimated OR of the
DZIP1 SNP. Above, smaller dot sizes indicate subjects with knocked-
down weight. Figure reproduced from Valente et al. [39].
doi:10.1371/journal.pone.0048653.g008
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method. Their -log(p-value) does significantly increased under

logistic regression. Finally, the overall best results were obtained by

combining the homogenization and logistic regression methods:

The -log(p-value) of false-positives was reduced the most, true-

positives were again only marginally affected, and false-negatives

were still rescued by the logistic regression.

Using the entire set of simulated genotypes, we built Receiver

Operating Characteristic (ROC) curves for each of the above four

approaches, showing the attainable combination of true positive

and false positive rates, depending on the selected p-value

significance level. The ROC curves confirm the observations

based on the few genotypes individually analyzed in Figure 7-e,

namely with the ROC curves being ordered from best to worst as

1) Homogenized + regression with PCs, 2) Homogenized, 3)

Regression with PCs and 4) Original cohort.

Results and Discussion

In this article we i) propose cohort homogenization as a strategy

for minimizing false-positives in a GWAS, ii) present an algorithm

for homogenizing a cohort and iii) introduce a measure for

assessing p-value bias potential due to population structure. Note

that although the homogenization method reduces false-positives,

it is not able to guarantee a given false-positive rate. When applied

to the Hamza et al. Parkinson’s cohort, the method significantly

reduced its p-value bias potential (Table 1). The intuitive character

of the approach is also advantageous. For instance, in a separate

work, this homogenized Parkinson’s cohort was analyzed under

the hypothesis-rich framework [39,40]. The main finding was a

rare SNP mutation in the gene DZIP1 that increases the

susceptibility to Parkinson’s disease. As shown in Figure 8, this

rare DZIP1 mutant occurs predominantly in a region where, as

per the color maps of Figure 6, there is still a slight relative

overabundance of healthy subjects (marked by the blue end of the

spectrum). Therefore it follows that the remaining population

heterogeneity in the homogenized cohort has a propensity to

diminish, rather than to inflate, the estimated OR of the DZIP1

SNP.

The homogenization approach introduced in this article opens a

diversity of interesting research directions for future exploration.

Firstly, the simulation work we performed highlights that the

homogenization approach could potentially be profitably used in

conjunction with other methods, namely logistic regression with

the principal components as covariates. We are currently working

on a thorough examination of such combined approaches.

Secondly, our focus on homogenizing only the diseased/healthy

marginal phenotype meant that false negatives induced by

population structure are not addressed by the approach. However,

they would be, if both phenotype and genotype marginals were

homogenized. This is computationally demanding, due to

requiring a new homogenization for every additional genotype

pair being tested. However, perhaps variations on the approach or

on the algorithm can make this full marginal matching compu-

tationally tractable and practical to apply to at least a considerable

selection of genotype pairs. Thirdly, we have not shown optimality

of the homogenization algorithm regarding the trade-off between

achieved homogenization and imposed cohort weight reduction.

Thus, the development of alternative more efficient homogeniza-

tion algorithms is another open research problem.
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6. Sillanpää MJ (2011) Overview of techniques to account for confounding due to

population stratification and cryptic relatedness in genomic data association

analyses. Heredity 106: 511–519.

7. Astle W, Balding DJ (2009) Population structure and cryptic relatedness in

genetic association studies. Stat Sci 24 (4): 451–471.

8. Edwards TL, Gao X (2012) Methods for Detecting and Correcting for

Population Stratification. Curr Protoc Hum Genet 73: 1.22.1–1.22.14.

9. Devlin B, Roeder K (1999) Genomic control for association studies. Biometrics

55 (4): 997–1004.

10. Bacanu SA, Devlin B, Roeder K (2000) The Power of Genomic Control.

Am J Hum Genet 66 (6): 1933–1944.

11. Zheng G, Freidlin B, Gastwirth JL (2006) Robust genomic control for

association studies. Am J Hum Genet 78: 350–356.

12. Dadd T, Weale ME, Lewis CM (2009) A critical evaluation of genomic control

methods for genetic association studies. Genet Epidemiol 33: 290–298.

13. Wang K (2009) Testing for genetic association in the presence of population

stratification in genome-wide association studies. Genet Epidemiol 33: 637–645.

14. Patterson N, Price A, Reich D (2006) Population structure and eigenanalysis.

PLoS Genet 2: e190.

15. Zhu X, Li S, Cooper RS, Elston RC (2008) A unified association analysis

approach for family and unrelated samples correcting for stratification.

Am J Hum Genet 82: 352–365.

16. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, et al. (2006)

Principal component analysis corrects for stratification in genome-wide

association studies. Nat Genet 38 (8): 904–909.

17. Setakis E, Stirnadel H, Balding DJ (2006) Logistic regression protects against

population structure in genetic association studies. Genome Res 16: 290–296.

18. Kimmel G, Jordan MI, Halperin E, Shamir R, Karp RM (2007) A

randomization test for controlling population stratification in whole-genome

association studies. Am J Hum Gent 81: 895–905.

19. Li Q, Wacholder S, Hunter DJ, Hoover EN, Chanock S, et al (2009) Genetic

background comparison using distance-based regression, with applications in
population stratification evaluation and adjustment. Genet Epidemiol 33 (5):

432–441.

20. Li Q, Yu K (2008) Improved correction for population stratification in genome-
wide association studies by identifying hidden population structures. Genet

Epidemiol 32 (3): 215–226.

21. Novembre J, Stephens M (2008) Interpreting principal component analyses of
spatial population genetic variation. Nat Genet 40 (5): 646–649.

22. Zhu C, Yu J (2009) Nonmetric Multidimensional Scaling Corrects for

Population Structure in Association Mapping With Different Sample Types.
Genetics 182 (3): 875–888.

23. Miclaus K, Wolfinger R, Czika W (2009). SNP selection and multidimensional

scaling to quantify population structure. Genet Epidemiol 33 (6): 488–496.

24. Li M, Reilly MP, Rader DJ, Wang LS (2010) Correcting population
stratification in genetic association studies using a phylogenetic approach.

Bioinformatics 26 (6): 798–806.

25. Lee AB, Luca D, Klei L, Devlin B, Roeder K (2009) Discovering genetic
ancestry using spectral graph theory. Genet Epidemiol 34 (1): 51–59.

26. Zhang J, Niyogi P, McPeek MS (2009) Laplacian eigenfunctions learn
population structure. PLoS ONE 4: e7928.

27. Pritchard JK, Stephens M, Rosenberg NA, Donnelly P (2000) Association

mapping in structured populations. Am J Hum Genet 67: 170–181.

28. Alexander DH, Novembre J, Lange K (2009) Fast model-based estimation of
ancestry in unrelated individuals. Genome Res 19: 1655–1664.

29. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure

using multilocus genotype data. Genetics 155 (2): 945–959.

30. Falush D, Stephens M, Pritchard JK (2003) Inference of population structure

using multilocus genotype data: Linked loci and correlated allele frequencies.

Genetics 164: 1567–1587.

31. Hoggart CJ, Parra EJ, Shriver MD, Bonilla C, Kittles RA, et al (2003) Control of

confounding of genetic associations in stratified populations. Am J Hum Genet

72: 1492–1504.

GWAS Cohort Homogenization

PLOS ONE | www.plosone.org 9 October 2012 | Volume 7 | Issue 10 | e48653



32. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, et al (2007)

PLINK: a toolset for whole-genome association and population-based linkage

analysis. American Journal of Human Genetics 81 (3): 559–575.

33. Yu J, Pressoir G, Briggs WH, Bi IV, Yamasaki M, et al (2005) A unified mixed-

model method for association mapping that accounts for multiple levels of

relatedness. Nat Genet 38: 203–208.

34. Kang HM, Zaitlen NA, Wade CM, Kirby A, Heckerman D, et al (2008)

Efficient control of population structure in model organism association mapping.

Genetics 178: p. 1709–1723.

35. Wu C (2011) A comparison of association methods correcting for population

stratification in case–control studies. Ann Hum Genet 75 (3): 418–427.

36. Hamza TH, Zabetian CP, Tenesa A, Laederach A, Montimurro J, et al (2010)

Common genetic variation in the HLA region is associated with late-onset
sporadic Parkinson’s disease. Nat Genet 42: 781–785.

37. Edwards AWF (1963) The measure of association in a 262 table. J Roy Statist

Soc Ser A 126 (1): 109–114.
38. Fisher RA (1954) Statistical Methods for Research Workers. Oliver and Boyd.

39. Valente AXCN, Shin JH, Sarkar A, Gao Y (2012) Rare coding SNP in DZIP1
gene associated with late-onset sporadic Parkinson’s disease. Sci Rep 2: art. no.

256.

40. Valente AXCN (2011) Prediction in the hypothesis-rich regime. In: Valente
AXCN, editor. Science and engineering in high-throughput biology including a

theory on Parkinson’s disease. Lulu Books. 23–38.

GWAS Cohort Homogenization

PLOS ONE | www.plosone.org 10 October 2012 | Volume 7 | Issue 10 | e48653


