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eLife Assessment
This valuable study investigates how biologically plausible learning mechanisms can support 
assembly formation that encodes statistics of the environment, by enabling neural sampling that is 
based on within-assembly connectivity strength. It convincingly shows that assembly formation can 
emerge from predictive plasticity in excitatory synapses, while two types of plasticity in inhibitory 
synapses are required: inhibitory homeostatic (predictive) plasticity and inhibitory competitive (anti-
predictive) plasticity.

Abstract The brain is thought to construct an optimal internal model representing the proba-
bilistic structure of the environment accurately. Evidence suggests that spontaneous brain activity 
gives such a model by cycling through activity patterns evoked by previous sensory experiences with 
the experienced probabilities. The brain’s spontaneous activity emerges from internally driven neural 
population dynamics. However, how cortical neural networks encode internal models into sponta-
neous activity is poorly understood. Recent computational and experimental studies suggest that 
a cortical neuron can implement complex computations, including predictive responses, through 
soma–dendrite interactions. Here, we show that a recurrent network of spiking neurons subject 
to the same predictive learning principle provides a novel mechanism to learn the spontaneous 
replay of probabilistic sensory experiences. In this network, the learning rules minimize probability 
mismatches between stimulus-evoked and internally driven activities in all excitatory and inhibitory 
neurons. This learning paradigm generates stimulus-specific cell assemblies that internally remember 
their activation probabilities using within-assembly recurrent connections. Our model contrasts 
previous models that encode the statistical structure of sensory experiences into Markovian transi-
tion patterns among cell assemblies. We demonstrate that the spontaneous activity of our model 
well replicates the behavioral biases of monkeys performing perceptual decision making. Our results 
suggest that interactions between intracellular processes and recurrent network dynamics are more 
crucial for learning cognitive behaviors than previously thought.

Introduction
The brain is believed to construct an internal statistical model of an uncertain environment from 
sensory information streams for predicting the external events that are likely to occur. Evidence 
suggests that spontaneous brain activity learns the representation of such a model through repeated 
experiences of sensory events. In the cat visual cortex, spontaneously emerging activity patterns cycle 
through cortical states that include neural response patterns to oriented bars (Kenet et al., 2003). In 
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the ferret visual cortex, spontaneous activity gradually resembles a superposition of activity patterns 
evoked by natural scenes, eventually giving an optimal model of the visual experience (Berkes et al., 
2011). As replay activities can provide prior information for hierarchical Bayesian computation by the 
brain (Ernst and Banks, 2002; Körding and Wolpert, 2004; Friston, 2010; Fiser et al., 2010; Bastos 
et al., 2012; Orbán et al., 2016; Legaspi and Toyoizumi, 2019), clarifying how the brain learns the 
spontaneous replay of optimal internal models is crucial for understanding whole-brain computing. 
However, the neural mechanisms underlying this modeling process are only poorly understood.

Several mechanisms of the brain’s probabilistic computation have been explored (Jimenez 
Rezende and Gerstner, 2014; Li et al., 2022). Models with reverberating activity are particularly 
interesting owing to their potential ability to generate spontaneous activity. For instance, spiking 
neuron networks with symmetric recurrent connections were proposed for Markov Chain Monte Carlo 
sampling of stochastic events (Buesing et al., 2011; Bill et al., 2015). Spike-timing-dependent plas-
ticity (STDP) was used to organize spontaneous sequential activity patterns, providing a predictive 
model of sequence input (Hartmann et  al., 2015). However, previous models did not clarify how 
recurrent neural networks learn the spontaneous replay of the probabilistic structure of sensory expe-
riences, for which these networks should learn the accurate probabilities of sensory stimuli and an 
appropriate excitation–inhibition balance simultaneously. Moreover, previous models assumed that 
each statistically salient stimulus in temporal input is already segregated and is delivered to a pre-
assigned assembly of coding neurons, implying that the recurrent network, at least partly, knows the 
stochastic events to be modeled before learning. How the brain extracts salient events for statistical 
modeling has not been addressed.

Here, we present a learning principle to encode the experiences’ probability structure into spon-
taneous network activity. To this end, we extensively use the synaptic plasticity rule proposed previ-
ously based on the hypothesis that the dendrites of a cortical neuron learn to predict its somatic 
responses (Urbanczik and Senn, 2014; Asabuki and Fukai, 2020). We generalize the hypothetical 
predictive learning to a learning principle at the entire network level. Namely, in a recurrent network 
driven by external input, we ask all synapses on the dendrites of each excitatory or inhibitory neuron 
to learn to predict its somatic responses (although the dendrites will not be explicitly modeled). This 
enables the network model to simultaneously learn the events’ probabilistic structure and the exci-
tation–inhibition balance required to replay this structure. Further, our network model requires no 
pre-assigned cell assemblies since the model neuron can automatically segment statistically salient 
events in temporal input (Asabuki and Fukai, 2020) – a cognitive process known as ‘chunking’ (Fujii 
and Graybiel, 2003; Jin and Costa, 2010; Jin et al., 2014; Schapiro et al., 2013; Zacks et al., 2001). 
Intriguingly, the cell assemblies generated by our model store their replay probabilities primarily in 
the within-assembly network structure, and intrinsic dynamical properties of membership neurons also 
contribute to this coding. This is in striking contrast to other network models that encode probabilities 
into the Markovian transition dynamics among cell assemblies (Buesing et al., 2011; Hartmann et al., 
2015; Asabuki and Clopath, 2024).

Our model trained on a perceptual decision-making task can replicate both unbiased and biased 
decision behaviors of monkeys without fine-tuning of parameters (Hanks et al., 2011). In addition, in 
a network model consisting of distinct excitatory and inhibitory neural populations, our learning rule 
predicts the emergence of two types of inhibitory connections with different computational roles. We 
show that the emergence of the two inhibitory connection types is crucial for robust learning of an 
optimal internal model.

Results
Replay of probabilistic sensory experiences – a toy example
We first explain the task our model solves with a toy example. Consider a task in which the animal 
should decide whether a given stimulus coincides with or resembles any of two previously learned 
stimuli. Whether the animal learned these stimuli with a 50–50 chance or a 30–70 chance should affect 
the animal’s anticipation of their occurrence and hence affect its decision.

It has been suggested that spontaneous activity expresses an optimal internal model of the sensory 
environment (Berkes et al., 2011). In our toy example, the evoked activity patterns of the two stimuli 

https://doi.org/10.7554/eLife.92712
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should be spontaneously replayed with the same probabilities as these stimuli were experienced 
during learning:

	﻿‍
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where features = {stimulus 1, stimulus 2} and the right-hand side expresses the probabilities of 
replayed activities. The angular brackets indicate averaging over the stimuli. According to Hebb’s 
hypothesis, two cell assemblies should be formed to memorize the two stimuli in the toy example. 
Moreover, the spontaneous replay of these cell assemblies should represent the probabilities given in 
the right-hand side of the above equation. Below, we propose a mathematical principle of learning to 
achieve these requirements.

Prediction-driven synaptic plasticity for encoding an internal model
We previously proposed a learning rule for a single two-compartment neuron (Asabuki and Fukai, 
2020). Briefly, our previous model learns statistically salient features repeated in input sequences by 
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Figure 1. Unsupervised prior learning in a recurrent neural network. (a) A schematic of a network model is shown. 
The interconnected circles denote the model neurons, of which the activities are controlled by two types of 
inputs: feedforward (FF) and recurrent (REC) inputs. Colored circles indicate active neurons. Here, vW denote FF, 
and vM denote REC connections. We considered two modes of activity (i.e., evoked and spontaneous activity). 
In the evoked mode, the membrane potential u of a network neuron was calculated as a linear combination of 
inputs across all different connections (vW, vM, and vG). This evoked mode is considered during the learning phase, 
when all synapses attempt to predict the network activity, as we will explain in the main text. Once all synapses 
are sufficiently learned, all FF inputs are removed, and the network is driven spontaneously (spontaneous mode). 
Our interest lies in the statistical similarity of the network activity in these two modes. (b) The gain and threshold 
of output response function was controlled by a dynamic variable, h, which tracks the history of the membrane 
potential. (c) A schematic of the learning rule for a network neuron is shown (top). During learning, for each type 
of connection on a postsynaptic neuron, synaptic plasticity minimizes the error between output (gray diamond) 
and synaptic prediction (colored diamonds). Note that all types of synapses share the common plasticity rule, 
where weight updates are calculated as the multiplication of the error term and the presynaptic activities (bottom). 
Our hypothesis is that such plasticity rule allows a recurrent neural network to spontaneously replay the learned 
stochastic activity patterns without external input.

https://doi.org/10.7554/eLife.92712
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minimizing the error between somatic and dendritic response probabilities without external supervi-
sion to identify the temporal locations of these features. In this study, we extend this plasticity rule to 
recurrent networks by asking all neurons in a network to minimize the error in response probabilities 
between the internally generated and stimulus-evoked activities (Figure 1). Our central interest is 
whether this learning principle generates spontaneous activity representing the statistical model of 
previous experiences.

We first introduce our learning principle using a recurrent network model (nDL model) that does not 
obey Dale’s law for distinguishing between excitatory and inhibitory neurons (Materials and methods). 
A more realistic model with distinct excitatory and inhibitory neuron pools will be shown later. The nDL 
model consists of Poisson spiking neurons, each receiving Poisson spike trains from all input neurons 
via a modifiable all-to-all afferent feedforward connection matrix ‍W ‍ (Figure 1a). These input neurons 
may be grouped into multiple input neuron groups responding to different sensory features. Due to 
the all-to-all connectivity, the afferent input has no specific predefined structure. Two types of all-to-all 
modifiable recurrent connections, ‍M‍ and ‍G‍, exist among the neurons. Matrix ‍M‍ is a mixture of excit-
atory and inhibitory connections, and matrix ‍G‍ represents inhibitory-only connections. Due to a minus 
sign for ‍vG‍, all components of ‍G‍ are positive. The firing rate of neurons is defined as a modifiable 
sigmoidal function of the membrane potential (Figure 1b), which we will explain later in detail. All 
types of connections, both afferent and recurrent ones, are modifiable by unsupervised learning rules 
derived from a common principle: on each neuron, all synapses learn to predict the neuron’s response 
optimally (Figure 1c: see Materials and methods). In reality, all synaptic inputs may be terminated on 
the dendrites, although they are not modeled explicitly.

Without a teaching signal, predictive learning may suffer a trivial solution problem in which all 
synapses vanish, and hence all neurons become silent (Asabuki and Fukai, 2020). To avoid it, we 
homeostatically regulate the dynamic range of each neuron (i.e., the slope and threshold of the 
response function) according to the history ‍h‍ of its subthreshold activity (see Equations 6–8). When 
the value of ‍h‍ is increased, the neuron’s excitability is lowered (Figure 1b). The input–output curves 
of neurons are known to undergo homeostatic regulations through various mechanisms (Chance 
et al., 2002; Mitchell and Silver, 2003; Torres-Torrelo et al., 2014). Though no direct experimental 
evidence is available for our homeostatic process via ‍h‍, it mathematically avoids saturating neuronal 
activity.

Note that the present homeostatic regulation of intrinsic excitability differs from the homeostatic 
synaptic scaling mechanism. The role of homeostatic synaptic scaling in generating irregular cell-
assembly activity patterns was previously studied computationally (Hiratani and Fukai, 2014; Litwin-
Kumar and Doiron, 2014; Zenke et  al., 2015). However, unlike the present model, the previous 
models did not address whether and how synaptic scaling contributes to statistical modeling by recur-
rent neural networks. Furthermore, unlike our model, in which neurons in the recurrent layer and input 
neurons are initially connected in an all-to-all manner, most previous models assumed preconfigured 
receptive fields for recurrent-layer neurons, implying that these models had predefined stimulus-
specific cell assemblies.

Cell-assembly formation for learning statistically salient stimuli
We first explain how our network segments salient stimuli and forms stimulus-specific cell assemblies 
via network-wide predictive learning rules. To this end, we tested a simple case in which two non-
overlapping input groups are intermittently and repeatedly activated with equal probabilities. The two 
input patterns were separated by irregular, low-frequency, unrepeated spike trains of all input neurons 
(Materials and methods). We will consider input patterns with unequal occurrence probabilities later. 
After several presentations of individual input patterns, each network neuron responded selectively to 
one of the repeated patterns (Figure 2a). This result is consistent with our previous results (Asabuki 
and Fukai, 2020) that the plasticity of feedforward connections segments input patterns. Indeed, 
feedforward synapses W on each neuron were strengthened or weakened when they mediated its 
preferred or non-preferred stimulus, respectively (Figure 2b, left; Figure 2c). Inhibitory connections 
G grew between neurons within the same assembly but not between assemblies (Figure 2b, right; 
Figure 2c, bottom), enhancing the decorrelation of within-assembly neural activities (Asabuki and 
Fukai, 2020). Recurrent connections M were modified to form stimulus-specific cell assemblies, as 
evidenced by the self-organization of excitatory (Figure 2c, top) and inhibitory (Figure 2c, bottom) 

https://doi.org/10.7554/eLife.92712
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recurrent connections within and between cell assemblies, respectively. The inhibitory components 
are necessary for suppressing the simultaneous replay of different cell assemblies, as shown later.

We then investigated whether and how spontaneous activity preserves and replays these cell 
assemblies in the absence of afferent input. To demonstrate this in a more complex task, we trained 
the network with afferent input involving five repeated patterns and then removed the input and 
observed post-training spontaneous network activity (Figure 2d). The termination of afferent input 
initially lowered the activities of neurons, but their dynamic ranges gradually recovered with the excit-
ability of the neural population (indicated by the population-averaged ‍h‍ value), and the network 
eventually started spontaneously replaying the learned cell assemblies. All plasticity rules were turned 
off during the recovery period (about 20  s from the input termination), after which the network 
settled in a stable spontaneous firing state (plasticity off), with firing rates lower than those of the 

Figure 2. Formation of stimulus-selective assemblies in a recurrent network. (a) Example dynamics of neuronal output and synaptic predictions are 
shown before (left) and after (right) learning. Colored bars at the top of the figures represent periods of stimulus presentations. (b) Example dynamics 
of feedforward connection W and inhibitory connection G are shown. W-connections onto neurons organizing to encode the same or different input 
patterns are shown in red and blue, respectively. Similarly, the same colors are used to represent G connections within and between assemblies. (c) 
Dynamics of the mean connection strengths are shown on neuron in cell assembly 1. Shaded areas represent SDs over 10 samples. In the schematic, 
triangles indicate input neurons and circles indicate network neurons. The color of each neuron indicates the stimulus preference of each neuron. 
(d) Example dynamics of the averaged dynamical variable ‍̄h‍ (top) and the learned network activity (bottom) are shown. The dynamical variables 
are averaged over the entire network. Neurons are sorted according to their preferred stimuli. During the spontaneous activity, afferent inputs to 
the network were removed. The inset shows the firing rate distribution of the evoked and the spontaneous activity. (e) Correlation coefficients of 
spontaneous activities of every pair of neurons are shown.

https://doi.org/10.7554/eLife.92712
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evoked activity (inset). Then, the plasticity rules could be turned on (plasticity on) without drastically 
destroying the structure of spontaneous replay. Intriguingly, spontaneous neuronal activities were 
highly correlated within each cell assembly but were uncorrelated between different cell assemblies 
(Figure 2e). This was because self-organized recurrent connections ‍M‍ were excitatory within each 
cell assembly, whereas the between-assembly recurrent connections were inhibitory, as in Figure 2c.

Thus, the network model successfully segregates, remembers, and replays stimulus-evoked activity 
patterns in temporal input. The loss of between-assembly excitatory connections is interesting as 
it indicates that the present spontaneous reactivation is not due to the sequential activation of cell 
assemblies. This can also be seen from the relatively long intervals between consecutive cell-assembly 
activations: spontaneous neural activity does not propagate directly from one cell assembly to another 
(Figure 2d). Indeed, within-assembly excitation is the major cause of spontaneous replay in this model, 
which we will study later in detail.

In summary, we have proposed the predictive learning rules as a novel plasticity mechanism for 
all types of synapses (i.e., feedforward and recurrent connections). We have shown that the plasticity 
rules in our model learn the segmentation of salient patterns in input sequences and form pattern-
specific cell assemblies without preconfigured structures. We also showed that our model replays the 
learned assemblies even when external inputs were removed.

Replays of cell assemblies reflect a learned statistical model
We now turn to the central question of this study. We asked whether internally generated network 
dynamics through recurrent synapses (i.e., spontaneous replay of cell assemblies) can represent an 
optimal model of previous sensory experiences. Specifically, we examined whether the network spon-
taneously reactivates learned cell assemblies with relative frequencies proportional to the probabili-
ties with which external stimuli activated these cell assemblies during learning. We addressed these 
questions in slightly more complex cases with increased numbers of external stimuli.

We first examined a case with five stimuli in which stimulus 1 was presented twice as often as the 
other four stimuli (Figure 3a). Hereafter, the probability ratio refers to the relative number of times 
stimulus 1 is presented during learning. For instance, the case shown in Figure 2d represents the 
probability ratio one. As in Figure  2d, the network self-organized five cell assemblies to encode 
stimuli 1–5 and replayed all of them in subsequent spontaneous activity (Figure 3b). We found that 
output neurons were activated more frequently and strongly in cell assembly 1 than in other cell 
assemblies. Therefore, we assessed quantitative differences in neuronal activity between different cell 
assemblies by varying the probability ratio. The neuronal firing rate of cell assembly 1 relative to other 
cell assemblies increased approximately linearly with an increase in the probability ratio (Figure 3c). 
Similarly, the size of cell assembly 1 relative to other cell assemblies also increased with the proba-
bility ratio (Figure 3d). However, neither the relative firing rate nor the relative assembly size faithfully 
reflects changes in the probability ratio: scaling the probability ratio with a multiplicative factor does 
not scale these quantities with this factor. Therefore, we further investigated whether the assembly 
activity ratio, the ratio in the total firing rate of cell assembly 1 to other cell assemblies (Materials and 
methods), scales faithfully with the probability ratio of cell assembly 1. This was the case: the scaling 
was surprisingly accurate (Figure 3e).

To examine the ability of the nDL network further, we trained it with five stimuli occurring with 
various probabilities (Figure 3f and Figure 3—figure supplement 1a). After learning, the sponta-
neous activity of the model replayed the learned cell assemblies at the desired ratios of population 
firing rates (Figure 3g and Figure 3—figure supplement 1b).

We then asked whether our model would learn a prior distribution for more stimuli. To this end, we 
presented seven stimulus patterns to the same network with graded probabilities (Figure 3—figure 
supplement 1c). The self-organized spontaneous activity exhibited cell assemblies that well learned 
the graded probability distribution of these stimuli (Figure 3—figure supplement 1d). These results 
demonstrate that the trained network remembers the probabilities of repetitively experienced stimuli 
by the spontaneous firing rates of the encoding cell assemblies and that this dynamical coding scheme 
has a certain degree of scalability.

So far, we have represented external stimuli with non-overlapping subgroups of input neurons. 
However, in biologically realistic situations, input neuron groups may share part of their membership 
neurons. We tested whether the proposed model could learn the probability structure of overlapping 

https://doi.org/10.7554/eLife.92712
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input patterns in a case where two input neuron groups shared half of their members. The two 
patterns were presented with probabilities of 30% and 70%, respectively (Figure 3—figure supple-
ment 2a). After sufficient learning, the network model generated two assemblies that encoded the 
two stimuli without sharing the coding neurons (Figure 3—figure supplement 2b) and replayed these 

Figure 3. Priors coded in spontaneous activity. An nDL network was trained with five probabilistic inputs. (a) Stimulus 1 appeared twice as often as 
the other four stimuli during learning. The example empirical probabilities of the stimuli used for learning are shown. (b) The spontaneous activity of 
the trained network shows distinct assembly structures. (c) The mean ratio of the population-averaged firing rate of assembly 1 to those of the other 
assemblies is shown for different values of the occurrence probability of stimulus 1. Vertical bars show SDs over five trials. A diagonal dashed line is a 
ground truth. (d) Similarly, the mean ratios of the size of assembly 1 to those of the other assemblies are shown. (e) The mean ratios of the total activities 
of neurons in assembly 1 to those of the other assemblies are shown. (f) Five stimuli occurring with different probabilities were used for training the nDL 
model. (g) The population firing rates are shown for five self-organized cell assemblies encoding the stimulus probabilities shown in (f).

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Prior encoding by the nDL model.

Figure supplement 2. Learning occurrence probabilities of overlapped input patterns.

https://doi.org/10.7554/eLife.92712
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assemblies with frequencies proportional to the stimulus presentation probabilities (Figure 3—figure 
supplement 2c). The results look reasonable because each neuron in the network segments one of 
the stimulus patterns, and recurrent connections within each non-overlapping assembly can encode 
the probability of its replay.

Altogether, these results suggest that our model spontaneously replays learned cell assemblies 
with relative frequencies proportional to the probability that each cell assembly was activated during 
the learning phase. We have shown that the population activities of assemblies, rather than the firing 
rates of individual neurons, encode the occurrence probabilities of stimulus patterns.

Within-assembly recurrent connections encode probabilistic sensory 
experiences
To understand the mechanism underlying the statistical similarity between the evoked patterns and 
spontaneous activity, we then investigated whether and how biases in probabilistic sensory experi-
ences influence the strengths of recurrent connections. To this end, we compared two cases in which 
two input patterns (stim 1 and stim 2) occurred with equal (50% vs. 50%) and different (30% vs. 70%) 

Figure 4. Probability encoding by learned within-assembly synapses. (a) Two input stimuli were presented in two protocols: uniform (50% vs. 50%) or 
biased (30% vs. 70%). (b) The total incoming synaptic strength on each neuron was calculated within each cell assembly. (c) left, The distributions of 
incoming synaptic strength are shown for the learned assemblies in the 50-vs-50 case. right, Same as in the left figure, but in the 30-vs-70 case. (d) left, 
The empirical probabilities of stimuli 1 and 2 and the normalized excitatory incoming weights within assemblies are compared in the 50-vs-50 case. right, 
Same as in the left figure, but in the 30-vs-70 case.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Within-assembly connections encode the probability structures.

Figure supplement 2. Inhibitory plasticity during learning is necessary to stabilize spontaneous activity.

Figure supplement 3. Crucial roles of inhibitory plasticity in prior learning.

Figure supplement 4. Distinct assembly replay after sequence.

Figure supplement 5. Role of dynamical variable h in spontaneous replay of assemblies.

Figure supplement 6. Learning of multivariate priors with assemblies.

https://doi.org/10.7554/eLife.92712
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probabilities during learning (Figure 4a). From the results shown in Figure 3, we hypothesized that 
within-assembly learned connections should reflect the stimulus occurrence probabilities and hence 
the activation probabilities of the corresponding cell assemblies during spontaneous activity. There-
fore, we calculated the total strengths of incoming recurrent synapses on each neuron within the indi-
vidual cell assemblies (Figure 4b). While the distributions of incoming synaptic strengths are similar 
between cell assemblies coding stimulus 1 and stimulus 2 in the 50-vs-50 case, they look different in 
the 30-vs-70 case (Figure 4c).

Since incoming weights increased more significantly in the cell assembly activated by a more 
frequent stimulus (i.e., the assembly encoding stimulus 2 in the 30-vs-70 case), we expect that the 
degree of positive shifts in incoming weight distributions will reflect stimulus probabilities. To examine 
whether this is indeed the case, we computed the sum of total excitatory incoming weights (i.e., the 
sum of positive elements of M) over neurons belonging to each assembly after training. We then 
normalized these excitatory incoming weights over the two assemblies. Interestingly, we found that 
the normalized excitatory incoming weights for the two assemblies well approximate the empirical 
probabilities of the two stimuli in both the 50-vs-50 and 30-vs-70 cases (Figure 4d). These analyses 
revealed that recurrent connections learned within assemblies encode biases in probabilistic sensory 
experiences. Indeed, the elimination of between-assembly excitatory connections did not significantly 
affect the replay probabilities, as the sampling is driven by strong within-assembly recurrent inputs 
after learning (Figure 4—figure supplement 1).

Roles of inhibitory plasticity for stabilizing cell assemblies
Experimental and computational results suggest that inhibitory synapses are more robust to spon-
taneous activity than excitatory synapses and are crucial for maintaining cortical circuit function 
(Mongillo et al., 2018). To see the crucial role of the inhibitory plasticity of G for cell-assembly forma-
tion, we compared the spontaneously driven activities in the learned network between two cases, 
plastic inhibitory connection G versus fixed G, in the 30-vs-70 case. The results show that only a single, 
highly active assembly self-organizes for fixed inhibitory synapses (Figure 4—figure supplement 2a). 
In contrast, such unstable dynamics do not emerge from plastic inhibitory synapses (Figure 4—figure 
supplement 2b), suggesting the crucial role of inhibitory plasticity in stabilizing spontaneous activity.

To further clarify the functional role of inhibitory plasticity in regulating spontaneous activity, we 
compared how the self-organized assembly structure of recurrent connections ‍M‍ evolves in the two 
simulation settings shown in Figure 4—figure supplement 3a. In the control model, we turned off 
the plasticity of ‍G‍ for a while after the cessation of external stimuli but again switched it on, as was 
previously in Figure 2. The cell-assembly structure initially dissipated but eventually reached a well-
defined equilibrium structure (Figure 4—figure supplement 3b, magenta). Consistent with this, the 
postsynaptic potentials mediated by connections ‍M‍ and ‍G‍ predicted the normalized firing rate of a 
postsynaptic excitatory neuron in the control model (Figure 4—figure supplement 3c). In striking 
contrast, the cell-assembly structure rapidly dissipated in the truncated model in which the G-plas-
ticity was kept turned off after the cessation of external stimuli (Figure 4—figure supplement 3b, 
blue). Accordingly, the postsynaptic potentials induced by ‍M‍ and ‍G‍, so was the normalized firing rate, 
evolved into trivial solutions and almost vanished in the truncated model (Figure 4—figure supple-
ment 3d). Only the control model, but not the truncated model, could maintain prediction errors 
small and nearly constant after the termination of the stimuli (Figure  4—figure supplement 3e). 
These results indicate that maintaining the learned representations requires the continuous tuning of 
within-assembly inhibition.

The role of homeostatic regulation of neural activities
As indicated by the weak couplings between cell assemblies, the present mechanism of probability 
learning differs from the conventional sequence learning mechanisms. Consistent with this, the network 
trained repetitively by a fixed sequence of patterned inputs does not exhibit stereotyped sequential 
transitions among cell assemblies (due to the lack of strong inter-assembly excitatory connections; 
Figure  4—figure supplement 4). Indeed, the probability-encoding spontaneous activity emerges 
in the present model mainly from the within-assembly dynamics driven by strong within-assembly 
reverberating synaptic input. However, homeostatic variable ‍h‍ also plays a role in maintaining a stable 
spontaneous network activity after learning (see Figure 2d; activity pattern from 5 to 10 s). This is 

https://doi.org/10.7554/eLife.92712
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achieved by the time evolution of ‍h‍, which maintains the firing rate of each neuron in a suitable range 
by adjusting the threshold and gain of the somatic sigmoidal response function (Figure 1b).

Therefore, we explored the role of the homeostatic variable in learning an accurate internal model 
of the sensory environment. In each neuron, the variable ‍h‍ is updated whenever the membrane 
potential undergoes an abrupt increase (Equation 6). Therefore, the time evolution of ‍h‍ monitors the 
activity of each neuron over the timescale of seconds, which in turn regulates the neural activity by 
controlling the activation function (Figure 4—figure supplement 5a; Equations 4 and 5). When the 
instantaneous value of ‍h‍ is high, the neuron’s excitability is lowered (namely, the gain and threshold 
of the response function are decreased or increased, respectively: see Equations 6–8). This activity 
regulation is crucial to avoid the trivial solution of the plasticity rules (Asabuki and Fukai, 2020) but 
not critical for sampling with appropriate probabilities. Actually, a model with a fixed value of ‍h‍ still 
showed spontaneous replay, although the true probability distribution was estimated less accurately 
(Figure 4—figure supplement 5b: Figure 3f).

Learning conditioned prior distributions
The predictive coding hypothesizes that top–down input from higher cortical areas provides prior 
knowledge about computations in lower cortical areas. This implies in the brain’s hierarchical compu-
tation that the top–down input conditions the prior distributions in local cortical areas to those rele-
vant to the given context. The proposed learning rules can account for how a conditioned input from 
other cortical areas conditions the prior distribution in a local cortical circuit.

The neural network consists of two mutually interacting non-overlapping subnetworks of equal 
sizes, where the subnetworks may represent different cortical areas (Figure 4—figure supplement 
6a). Subnetwork A was randomly exposed to stimuli 1 and 2 (S1 and S2) with equal probabilities 1/2, 
whereas subnetwork B was to stimuli 3 and 4 (S3 and S4) with the conditional probabilities 1/3 and 2/3 
if S1 was presented to subnetwork A and the conditional probabilities 2/3 and 1/3 if S2 was presented 
to subnetwork A. After learning, the network model self-organized four cell assemblies, each of which 
responded preferentially to one of the four stimuli (Figure 4—figure supplement 6b). Consistent 
with this, the self-organized connection matrix represented strong within-assembly connections within 
each cell assembly and weak between-assembly connections (Figure 4—figure supplement 6c). Note 
that between-assembly connections were inhibitory between assemblies encoding mutually exclusive 
stimuli, i.e., S1 and S2 and S3 and S4, as they should be. Now, we turned off S3 and S4 to subnetwork 
B and only applied S1 or S2 to subnetwork A, each at one time. Applying the same stimulus (i.e., S1 or 
S2) to subnetwork A activated either S3- or S4-coding cell assembly in subnetwork B in a probabilistic 
manner (Figure 4—figure supplement 6d). The cell assemblies evoked in subnetwork B by S1 or S2 
to subnetwork A varied the total firing rates approximately in proportion to the conditional probabil-
ities (e.g., P(S3|S1) = 1/3 vs. P(S4|S1) = 2/3) used during learning (Figure 4—figure supplement 6e). 
Note that S3- and S4-coding cell assemblies could become simultaneously active to represent the 
desired activation probabilities (e.g., a vertical arrow in Figure 4—figure supplement 6d). Together, 
these results indicate that our network can learn prior distributions conditioned by additional inputs 
through different pathways.

Replication of biased perceptual decision making in monkeys
Prior knowledge about the environment often biases our percept of the external world. For instance, 
if we know that two possible stimuli exist and that stimulus A appears more often than stimulus B, we 
tend to feel that a given stimulus is more likely to be stimulus A than stimulus B. Previously, a similar 
bias was quantitatively studied in monkeys performing a perceptual decision-making task (Hanks 
et al., 2011). In the experiment, monkeys had to judge the direction (right or left) of the coherent 
motion of moving dots on a display. When both directions of coherent motion appeared randomly 
during learning, the monkey showed unbiased choice behaviors. However, if the frequencies of the 
two motion directions were different, the monkey’s choice was biased toward the direction of a more 
frequent motion stimulus.

We constructed a network model shown in Figure 5a to examine whether the present mecha-
nism of spontaneous replay could account for the behavioral bias. The model comprises a recurrent 
network similar to that used in Figure 2 and two input neuron groups, L and R, encoding leftward 
or rightward coherent dot movements, respectively. We modulated the firing rates of these input 

https://doi.org/10.7554/eLife.92712
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neurons in proportion to the coherence of moving dots (Materials and methods). During learning, we 
trained this model with external stimuli having input coherence Coh of either –0.5 or +0.5 (Materials 
and methods), where all dots move leftward in the former or rightward in the latter. In so doing, we 
mimicked the two protocols used in the behavioral experiment of monkeys: in the 50:50 protocol, two 
stimuli with Coh = ±0.5 were presented randomly with equal probabilities, while in the 80:20 protocol, 
stimuli with Coh = +0.5 and –0.5 were delivered with probabilities of 80% and 20%, respectively. In the 
80:20 protocol, stimuli were highly biased toward a coherent rightward motion.

The network model could explain the biased choices of monkeys surprisingly well. In either training 
protocol, the recurrent network self-organized two cell assemblies responding selectively to one of 
the R and L input neuron groups. Then, we examined whether the responses of the self-organized 
network are consistent with experimental observations by stimulating it with external inputs having 
various degrees of input coherence. The resultant psychometric curves almost perfectly coincide with 
those obtained in the experiment (Figure 5b). We note that the psychometric curves of the model 
do not significantly depend on the specific choices of parameter values as far as the network learned 

Figure 5. Simulations of biased perception of visual motion coherence. (a) The network model simulated perceptual decision-making of coherence 
in random dot motion patterns. In the network shown here, network neurons have already learned two assemblies encoding leftward or rightward 
movements from input neuron groups L and R. The firing rates of input neuron groups were modulated according to the coherence level Coh of 
random dot motion patterns (Materials and Methods). (b) The choice probabilities of monkeys (circles) and the network model (solid lines) are plotted 
against the motion coherence in two learning protocols with different prior probabilities. The experimental data were taken from Hanks et al., 2011. 
In the 50:50 protocol, moving dots in the “R” (Coh = 0.5) and “L” (Coh = -0.5) directions were presented randomly with equal probabilities, while in the 
80:20 protocol, the “R” and “L” directions were trained with 80% and 20% probabilities, respectively. Shaded areas represent SDs over 20 independent 
simulations. The computational and experimental results show surprising coincidence without curve fitting. (c) Spontaneous and evoked activities of the 
trained networks are shown for the 50:50 (left) and 80:20 (right) protocols. Evoked responses were calculated for three levels of coherence: Coh = -50%, 
0%, and 50%. In both protocols, the activity ratio in spontaneous activity matches the prior probability and gives the baseline for evoked responses. In 
the 80:20 protocol, the biased priors of “R” and “L” motion stimuli shift the activity ratio in spontaneous activity to an “R”-dominant regime.

https://doi.org/10.7554/eLife.92712
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stable spontaneous activity. We did not perform any curve fitting to experimental data, implying that 
the psychometric curves are free from parameter finetuning.

Biases in the psychometric curves emerged from biased firing rates of spontaneous activity of 
the self-organized cell assemblies. To show this, we investigated how the activities of the two self-
organized cell assemblies change before and after the onset of test stimuli in three relatively simple 
cases, i.e., Coh = –0.5, 0, and +0.5. Figure 5c shows the activity ratio AR between the R-encoding 
cell assembly and the entire network (Materials and methods) in pre-stimulus spontaneous and post-
stimulus-evoked activity. When the network was trained in a non-biased fashion (i.e., in the 50:50 
protocol), the activity ratio was close to 0.5 in spontaneous activity, implying that the two cell assem-
blies had similar activity levels. In contrast, when the network was trained in a biased fashion (i.e., in 
the 80:20 protocol), the activity ratio in spontaneous activity was close to 0.8, implying that the total 
spontaneous firing rate of R-encoding cell assembly was four times higher than that of L-encoding 
cell assembly. Our results show that the spontaneous activity generated by the proposed mechanism 
can account for the precise relationship between motion coherence and perceptual biases in decision 
making by monkeys.

Crucial roles of distinct inhibitory pathways
The model presented so far lacked biological plausibility in several key aspects. Specifically, we 
assumed that the recurrent connections ‍M ‍ could change its sign through plasticity and be either 
excitatory or inhibitory, while the inhibitory connection ‍G‍ was restricted to being inhibitory only. This 
setting does not reflect the biological constraint that synapses maintain a consistent excitatory or 
inhibitory type. Furthermore, due to this unconstrained recurrent connectivity ‍M ‍, the original model 
had two types of inhibitory connections (i.e., the negative part of ‍M ‍ and the inhibitory connection ‍G‍) 
without providing a clear computational role for each type of inhibition.

To address these limitations and to understand the role of the two types of inhibition, we 
considered a novel architecture in which all recurrent connections are constrained to be either 
exclusively excitatory or inhibitory, maintaining their sign throughout the learning process. The 
refined model includes two different types of inhibitory connections (i.e., ‍Minh‍ and ‍G‍), each serving 
a specific computational purpose: minimizing prediction error and maintaining the excitatory–
inhibitory balance. In combination with the excitatory connection ‍Mexc‍, the ‍Minh‍ connections are 
trained to minimize the prediction error between somatic and dendritic activity, as considered 
in the original M connection in Figure 1. We found that the trained ‍Minh‍ connections introduce 
competition among cell-assembly activities by forming strong connections between assemblies 
(Figure  6b), allowing the network to effectively sample and replay the activities of individual 
assemblies. In contrast, inhibitory connections ‍G‍ were trained to balance network dynamics, as in 

Figure 6. A network model with distinct excitatory and inhibitory connections. (a) Strong excitatory connections were formed within assemblies. (b) 
The first type of recurrent inhibitory connections, Minh, became stronger between assemblies, enhancing assembly competition. (c) The second type of 
inhibitory connections G were strengthened within assemblies to balance the strong excitatory inputs.

https://doi.org/10.7554/eLife.92712
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the original setting. We found that the inhibitory ‍G‍ connections form strong intra-assembly inhibi-
tion (Figure 6c), which balances the strong excitatory connections that arise within cell assemblies 
through plasticity (Figure 6a).

In summary, the dual inhibitory mechanism allows the network to perform the reactivation of 
different cell assemblies while regulating their internal dynamics. The prediction-error-minimizing 
inhibitory connections ‍Minh‍ facilitate selecting and activating specific assemblies through competition 
such that the learned probabilities are replayed. In contrast, the network-balancing inhibitory connec-
tions ‍G‍ prevent runaway excitation within active assemblies.

An elaborate network model with distinct excitatory and inhibitory 
neuron pools
The predictive learning rule performed well in training the nDL model to learn the probabilistic 
structure of the stimulus-evoked activity patterns. However, whether the same learning rule works 
in a more realistic neural network is yet to be investigated. To examine this, we constructed an 
elaborate network model (DL model) consisting of distinct excitatory and inhibitory neuron pools, 
obeying Dale’s law (Figure 7a). The nDL model suggested the essential roles of inhibitory plas-
ticity in maintaining excitation–inhibition balance and generating an appropriate number of cell 
assemblies. To achieve these functions, inhibitory neurons in the DL model project to excitatory 
and other inhibitory neurons via two synaptic paths (Figure 7b), motivated by the results shown in 
Figure 6. In path 1, inhibitory connections alone predict the postsynaptic activity, whereas inhib-
itory and excitatory connections jointly predict the activity of the postsynaptic neuron in path 2 
(Materials and methods). All synapses in the DL model are subject to the predictive learning rule. 
We trained the DL model with three input neuron groups while varying their activation probabili-
ties. As in the nDL model, the DL model self-organized three cell assemblies activated selectively 
by the three input neuron groups (Figure 7—figure supplement 1a). Furthermore, in the absence 
of external stimuli, the DL model spontaneously replayed these assemblies with the assembly 
activity ratios in proportion to the occurrence probabilities of the corresponding stimuli during 
learning (Figure 7c).

The two inhibitory paths divided their labors consistent with the results shown in Figure 6. To see 
this, we investigated the connectivity structures learned by these paths. In path 1, inhibitory connec-
tions were primarily found on excitatory neurons in the same assemblies (Figure 7d, top). In contrast, 
in path 2, inhibitory connections were stronger on excitatory neurons in different assemblies than 
those in the same assemblies (Figure 7d, bottom). On both excitatory and inhibitory neurons, the 
total inhibition (i.e., path 1 + path 2) was balanced with excitation (Figure 7e). Figure 7f summarizes 
the connectivity structure of the DL model. Excitatory neurons in a cell-assembly project to inhibitory 
neurons in the same assembly. Then, these inhibitory neurons project back to excitatory neurons in 
the same or different assemblies via paths 1 and 2. Interestingly, lateral inhibition through path 1 is 
more potent between excitatory neurons within each cell assembly than between different assemblies 
(Figure 7g). In contrast, path 2 mediates equally strong within- and between-assembly inhibition.

We can understand the necessity of the two inhibitory paths based on the dynamical properties of 
competitive neural networks. Figure 7h displays the effective competitive network of excitatory cell 
assemblies suggested by the above results. Both paths 1 and 2 contribute to within-assembly inhibi-
tion among excitatory neurons, whereas between-assembly inhibition (i.e., lateral inhibition) mainly 
comes from path 2. In a competitive network, the lateral inhibition to self-inhibition strength ratio 
determines the number of winners having non-vanishing activities: the higher the ratio is, the smaller 
the number of winners is (Fukai and Tanaka, 1997). Therefore, self-organizing the same number of 
excitatory cell assemblies as that of external stimuli requires tuning the balance between the within- 
and between-assembly inhibitions. This tuning during learning is likely easier when the network has 
two independently learnable inhibitory circuits. Indeed, a network model with only one inhibitory path 
rarely succeeded in encoding and replaying all stimuli used in learning (Figure 7—figure supplement 
1b, c).

In summary, we have shown the roles of distinct recurrent inhibitory connections. Using a network 
consisting of excitatory and inhibitory populations, we have shown that distinct inhibitory circuits are 
necessary to generate within- and between-assembly competition crucial to maintain the stability of 
learned multiple assemblies.

https://doi.org/10.7554/eLife.92712
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Discussion
Having proper generative models is crucial for accurately predicting statistical events. The brain is 
thought to improve the prediction accuracy of inference by learning internal generative models of the 
environment. These models are presumably generated through multiple mechanisms. For instance, 

Figure 7. The DL model of excitatory and inhibitory cell assemblies. (a) This model consists of distinct excitatory and inhibitory neuron pools, obeying 
Dale’s law. (b) Each inhibitory neuron projects to another neuron X through two inhibitory paths, path 1 and path 2, where the index X refers to an 
excitatory or an inhibitory postsynaptic neuron. Hexagons represent minimal units for prediction and learning in the neuron model and may correspond 
to dendrites, which were not modeled explicitly. (c) The probability ratios estimated by numerical simulations are plotted for the assembly activity ratios 
(purple), firing rate ratios (cyan), and assembly size ratios (green) as functions of the true probability ratio of external stimuli. Error bars indicate SEs 
calculated over five simulation trials with different initial states of neurons and synaptic weights in each parameter setting. (d) Inhibitory connection 
matrices are shown for path 1 and path 2. (e) The mean weights of self-organized synapses on excitatory and inhibitory postsynaptic neurons are shown. 
(f) Within-assembly and between-assembly connectivity patterns of excitatory and inhibitory neurons are shown. Colors indicate three cell assemblies 
self-organized. (g) The strengths of lateral inhibitions within-(W/N) and between-assemblies (B/N) are shown for paths 1 and 2. Horizontal bars show the 
medians and quartiles. (h) The resultant connectivity pattern suggests an effective competitive network between excitatory assemblies with self-(within-
assembly) and lateral (between-assembly) inhibition.

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. The coexistence of the two inhibitory paths is crucial for learning.

https://doi.org/10.7554/eLife.92712
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the predictive coding hypothesizes that top–down cortical inputs provide lower sensory areas with 
prior information about sensory experiences (Friston, 2010; Bastos et al., 2012; Keller and Mrsic-
Flogel, 2018). However, experimental evidence also suggests that spontaneous activity represents 
an optimal model of the environment in sensory cortices. This study proposed a biologically plausible 
mechanism to learn such a model, or priors for experiences, with the brain’s internal dynamics.

Our model adopted a single predictive learning principle for the plasticity of excitatory and 
inhibitory synapses to learn the replay of probabilistic experiences. On each neuron, excitatory and 
inhibitory synaptic weights undergo plastic changes to improve their independent predictions on 
the cell’s firing. This was done by minimizing the mismatch between the output firing rate and the 
network predictions (Equations 9 and 17). This simple learning rule showed excellent performance 
in a simplified network model and in a more realistic model obeying Dale’s law. The latter model 
predicts a division of labor between two inhibitory paths. Intriguingly, the inhibitory path 2 of this 
model resembles interpyramidal inhibitory connections driven directly by nearby pyramidal cells (Ren 
et al., 2007). In both models, inhibitory synaptic plasticity plays a crucial role in learning an accurate 
internal model by maintaining excitation–inhibition balance and decorrelating cell-assembly activities 
(Vogels et al., 2013; Sprekeler, 2017). It should be noted that while several network models that 
perform error-based computations like ours exploit only inhibitory recurrent plasticity (Mikulasch 
et  al., 2021; Mackwood et  al., 2021; Hertäg and Clopath, 2022; Mikulasch et  al., 2023), our 
model learns to reproduce appropriate statistics by modifying both excitatory and inhibitory recur-
rent connections.

Various models have been proposed to account for neural mechanisms of Bayesian computation 
by the brain (Tully et al., 2014; Kappel et al., 2015; Hiratani and Fukai, 2018; Hiratani and Latham, 
2020; Aitchison et al., 2021; Ma et al., 2006; Deneve, 2008; Nessler et al., 2013; Hiratani and 
Fukai, 2016; Huang and Rao, 2016; Isomura et  al., 2022; Friston, 2010; Bastos et  al., 2012; 
Keller and Mrsic-Flogel, 2018). Typically, these models embed prior knowledge on sensory expe-
riences into the wiring patterns of afferent (and sometimes also recurrent) synaptic inputs such that 
these inputs can evoke the learned activity patterns associated with the prior knowledge. The present 
model differs from the previous models in several aspects: (1) The model segments repeated stimuli 
to be remembered in an unsupervised fashion; (2) Then it generates cell assemblies encoding the 
segmented stimuli; (3) Finally, it replays these cell assemblies spontaneously with learned probabili-
ties. Note that the same learning rules enable the network to perform all necessary computations for 
(1)–(3). To our knowledge, our model is the first to perform all these steps for encoding an optimal 
model of the environment into spontaneous network activity.

The present mechanism of memory formation differs from the previous ones that self-organize 
cell assemblies through Hebbian learning rules (Vogels et  al., 2011; Hiratani and Fukai, 2014; 
Litwin-Kumar and Doiron, 2014; Zenke et al., 2015; Triplett et al., 2018; Montangie et al., 2020). 
First, these mechanisms did not aim for explicit statistical modeling of the environment. Second, 
the previous studies suggested that the orchestration of multiple plasticity rules, including inhibitory 
plasticity and homeostatic synaptic scaling, enables the maintenance of cell assemblies (however, 
see Manz and Memmesheimer, 2023). For instance, in STDP, slight changes in the relative times of 
pre- and postsynaptic spikes can change the polarity of synaptic modifications, implying that STDP 
requires a mechanism to keep synaptic weights finite (Kempter et  al., 1999; Song et  al., 2000; 
Masquelier et al., 2008). In contrast, our learning rule, which induces either long-term potentiation 
or depression according to the sign of the prediction error calculated independently within each post-
synaptic neuron, does not suffer such instability.

Our model predicts a novel intracellular process that regulates the neuron’s dynamic range 
according to the history of its subthreshold dynamics. This process plays two important roles in the 
statistical modeling of our model. First, it avoids the trivial solution (i.e., the zero-weight solution) of our 
unsupervised predictive learning by homeostatically regulating neurons' intrinsic excitability. Second, 
the intracellular process cooperates with reverberating synaptic inputs within each cell assembly to 
generate spontaneous replay activity. We have shown that intracellular homeostasis enhances the 
sampling from learned distribution without relying on the recurrences among assemblies. This mecha-
nism contrasts with the previous sampling-based models that rely on the transition dynamics between 
cell assemblies (Buesing et al., 2011; Bill et al., 2015). How neural systems implement the proposed 
homeostasis is an open question.

https://doi.org/10.7554/eLife.92712
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Previous computational models have demonstrated that recurrent networks with Hebbian-like plas-
ticity can learn appropriate Markovian statistics (Kappel et al., 2015; Asabuki and Clopath, 2024). 
However, our model differs conceptually from these previous models. Kappel et al. showed that STDP 
in winner-take-all circuits can approximate online learning of hidden Markov models. A key differ-
ence with our model is that their neural representations acquire sequences using Markovian sampling 
dynamics, whereas our model does not depend on such ordered sampling. Specifically, in their model, 
sequential sampling arises from the off-diagonal elements learned in the recurrent connections (i.e., 
between-assembly connections). In contrast, our network learns to generate a stochastic reactiva-
tion of cell assemblies solely by within-assembly connections. A similar argument can be made for 
the Asabuki and Clopath paper as well. Further, while our model introduced plasticity at all types of 
synaptic connections, the previous model assumed plasticity only at recurrent synapses projecting 
onto the excitatory neurons. In addition, unlike our model, the cell-assembly memberships need to be 
preconfigured in the previous model.

The proposed mechanism can account for the behavioral biases observed in perceptual decision 
making (Hanks et al., 2011). This behavioral experiment quantitatively clarified how the difference in 
the probability between sensory experiences during learning biases the alternative choice behavior 
of monkeys. In our model, two cell assemblies encoding the different stimuli are replayed at the total 
firing rates proportional to the corresponding occurrence probabilities. Our results suggest that the 
difference in spontaneous firing rates of cell assemblies is sufficient to explain the behavioral biases of 
monkeys. However, other mechanisms, such as biased top–down input, cannot be excluded.

What could be the advantages of coding prior distributions into spontaneous activity over other 
ways of probability coding? First, spontaneous replay activities in lower cortical areas may provide 
training data for modeling by higher cortical areas, promoting hierarchical statistical modeling in 
predictive coding. This is analogous to the situation where hippocampal engram cells are replayed to 
reinforce the activity patterns of cortical engrams for memory consolidation during sleep (Tonegawa 
et  al., 2018; Ghandour et  al., 2019; Klinzing et  al., 2019; Takehara-Nishiuchi, 2021). Memory 
reinforcement by activity replay has also been studied in machine intelligence (Dayan et al., 1995; 
Goodfellow, 2014; Luczak et al., 2022). Second, spontaneous replay of internal models may support 
knowledge generalization during sleep. It was recently reported that a transitive inference task 
requires post-learning sleep (Abdou et al., 2021). In this task, mice had to infer a correct reward 
delivery rule in a novel behavioral situation from the outcomes of past experiences. The mice failed to 
generalize the learned rules if the activity of the anterior cingulate cortex was suppressed during post-
learning sleep, suggesting that dynamic interactions among rule-coding cortical neurons in sponta-
neous activity are crucial for rule generalization. Clarifying how spontaneous brain activity generalizes 
the learned internal models is an intriguing open question.

Methods
Neural network model
Below, we first describe the model architecture and learning rule for the nDL model (i.e., single popu-
lation violating Dale’s law). Details of the simulation of distinct excitatory and inhibitory populations 
will be explained later. Unless otherwise stated, recurrent neural networks used in this study consist 
of ‍N
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where ‍K ‍ is the number of input neurons. In some simulations, the network model had more than one 
input neuron group, although the number of input neuron groups is not explicitly shown in Equation 
1. Three matrices ‍W ∈ RN×K ‍, ‍M ∈ RN×N ‍, and ‍G ∈ RN×N ‍ represent the weights of afferent synaptic 
connections, recurrent synaptic connections, and inhibitory-only connections, respectively, on neurons 
in the recurrent network. These synaptic connections are all-to-all. In terms of the kernel function
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recurrent input and afferent input to neuron ‍i‍ are calculated as
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where ‍τ ‍ stands for the membrane time constant, ‍t
f
aff ‍ and ‍tfrec‍ for the time sets of afferent and recurrent 

presynaptic spikes, and ‍Θ
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‍ for the Heaviside function. Throughout this study, ‍τ ‍ = 15 ms.
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in terms of a dynamical sigmoidal response function ‍̂φ‍:
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with a constant value of ‍g = 3‍ and we have dropped the explicit time dependence in our notation for 
the sake of simplicity. Here, the dynamical variable ‍h‍ is determined by the history of the membrane 
potential:
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The maximum instantaneous firing rate ‍φ0‍ is 50 Hz and ‍τh = 10‍ s. Through Equation 6, ‍hi‍ tracks 
the maximum value of the membrane potential ‍ui‍ in a time window of approximately the length ‍τh‍ in 
the immediate past. The value of ‍h‍ is utilized to regulate the gain ‍β‍ and threshold ‍θ‍ of the sigmoidal 
response function as follows:
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where the values of constant parameters are ‍β0 = 5‍, and ‍θ0 = 1‍. Neuron ‍i‍ generates a Poisson spike 
train at the instantaneous firing rate of ‍fi

(
t
)
‍. While a small value of h leads to a steep slope of our 

activation function (Equation 7), we have shown numerically that this does not lead to a problem in 
neural dynamics. Further, the saturation part of the sigmoidal function is crucial for stable formation 
of assemblies.

Learning rules
We first explain the plasticity rule for feedforward connections. Synaptic connections were modified 
to minimize the Kullback–Leibler divergence (KL-divergence) between two Poisson distributions asso-
ciated with the neuron’s output and the feedforward activity over a sufficiently long period ‍T ‍:
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where ‍v
W
i ‍ is a feedforward prediction of a firing rate, defined as:

	﻿‍
vW

i =
K∑

j=1
Wij · xj,

‍�
(10)

and ‍fi‍ is the firing rate of ‍i‍th neuron. The function ‍φ‍ is a static sigmoidal function, defined as

	﻿‍ φ
(
vi
)

= φ0
[
1 + exp

[
gβ0

(
−vi + gθ0

)]]−1 .‍� (11)
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The above cost function evaluates to what extent the feedforward potential predicts the activity of 
postsynaptic neurons (Asabuki and Fukai, 2020). We have previously shown that taking the gradient 
of the cost function in Equation 9 derives the online plasticity rule for the feedforward connections as

	﻿‍

∆Wij = ηφ−1
0


1 −

φ
(

vW
i

)

φ0


[

fi − φ
(

vW
i

)]
,
‍�

(12)

where ‍ϵ‍ is a learning rate and was set to ‍ϵ = 10−4‍, unless otherwise specified. Here, we have dropped 
the explicit time dependence in our notation for the sake of simplicity.

Similarly, the recurrent connections were modified to minimize the following cost function:

	﻿‍
LM =

ˆ T

0
dt

N∑
i=1

DKL

[
fi
(
t
)
∥φ

(
vM

i
(
t
))]

,
‍�

(13)

where ‍v
M
i =

∑N
j=1 Mij · yj‍ is a recurrent prediction. Similar to the feedforward plasticity, the gradient 

descent of the above cost function leads to the following plasticity rule:

	﻿‍

∆Mij = ηφ−1
0


1 −

φ
(

vM
i

)

φ0


[

fi − φ
(

vM
i

)]
.
‍�

(14)

The derived recurrent plasticity rule suggests that the recurrent prediction learns the statistical 
model of the evoked activity, which in turn allows the network to replay the learned internal model.

In addition to the above plasticity rules, we defined the cost function for the inhibitory plasticity as

	﻿‍
LG =

N∑
i=1

[
fi
(
t
)
− φ

(
vG

i
(
t
))]2

,
‍�

(15)

where ‍v
G
i ‍ is the inhibitory input onto postsynaptic neuron via inhibitory connection ‍G‍:

	﻿‍
vG

i =
N∑

j=1
Gij · yj.

‍�
(16)

Again, by taking the gradient of ‍LG‍ with respect to ‍Gij‍ derive the following inhibitory plasticity rule 
to keep the network dynamics balanced:

	﻿‍

∆Gij ∝ −∂LG
∂Gij

∝
[
fi − φ

(
vG

i

)]
×

∂φ
(

vG
i

)

∂Gij

∝ φ
(

vG
i

)

1 −

φ
(

vG
i

)

φ0


 ·

[
fi − φ

(
vG

i

)]
· yj.

‍

 

�

(17)

While the resultant rule is not the same as feedforward and recurrent plasticity rules, all of these 
rules are similar in a sense that the weight updates are proportional to the prediction error and the 
presynaptic activity. We therefore assumed the following rule for the inhibitory plasticity, which has the 
same structure as the rest of the plasticity rules that we have already explained:

	﻿‍

∆Gij = ηφ−1
0


1 −

φ
(

vG
i

)

φ0


[

fi − φ
(

vG
i

)]
.
‍�

(18)

We have shown by numerical simulation that the rule keeps the network dynamics balanced.
Initial values of ‍W ‍ and ‍M‍ are sampled from Gaussian distributions with the mean 0 and variances 

‍0.1/
√

K ‍ and ‍0.1/
√

N ‍, respectively. During learning, the elements of ‍W ‍ and ‍M‍ can take both positive 
and negative values. After sufficient learning, the postsynaptic potentials ‍v

W
i ‍ and ‍v

M
i ‍ on neuron on 
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neuron ‍i‍ converge to a common value of ‍vi‍. Therefore, 
‍
φ
(

vW
i

)
≈ φ

(
vM

i

)
≈ φ

(
vi
)
≈ fi‍, implying that 

the postsynaptic potentials of afferent and recurrent synaptic inputs to neuron ‍i‍ can both predict 
its output ‍fi‍ after learning. The initial values of ‍G‍ are uniformly set to ‍1/

√
N ‍, and its elements are 

truncated to non-negative values during learning. This implies that ‍v
G
i ‍ does not become negative. 

After learning, 
‍
φ
(

vG
i

)
≈ fi‍ is satisfied. Although some elements of ‍M ‍ may give recurrent inhibitory 

connections, modifiable connections in ‍G‍ are necessary to encode all external inputs into specific cell 
assemblies.

Stimulation protocols
Feedforward input to the recurrent network consisted of ‍K ‍ Poisson spike trains with a background 
firing rate of 2 Hz. The input randomly presented ‍n‍ non-overlapping patterns of 100 spike trains (the 
duration 100 ms and the mean frequency 50 Hz), one at a time, with pattern-to-pattern intervals of 100 
ms. Therefore, the number of input neurons and patterns satisfies the relationship of ‍K = 100 × n‍. For 
simplicity, we simulated the constant-interval case, but using irregular intervals does not change the 
essential results. The value of ‍n‍ varies from task to task, and the values for each figure are as follows: 
‍n = 5‍ (Figure 2c-e, Figure 3, Figure 6); ‍n = 2‍ (Figure 2a-b, Figure 4-Figure 5); ‍n = 3‍ (Figure 7). The 
typical time length required for the convergence of learning is 1000 s.

Measures for cell-assembly activities
Here, we explain the measures used in Figure 3. We calculated the firing rate ratio of cell assembly 1 
in Figure 3c as follows:

	﻿‍

Firing rate ratio =
r
(

1
)

i(∑5
j=2

1
Nj

∑Nj
i=1 r

(
j
)

i

)
/4

,

‍�

(19)

using the average firing rate ‍r
(

j
)

i ‍ of the ‍i‍th neuron in cell assembly ‍j‍ and the number ‍Nj‍ of neurons 
belonging to the cell assembly. Similarly, we defined the assembly size ratio of cell assembly 1 as

	﻿‍

Assembly size ratio = N1(∑5
j=2 Nj

)
/4

‍
,
�

(20)

in Figure 3d and assembly activity ratio of cell assembly 1 as

	﻿‍

Assembly activity ratio =
r
(

1
)

pop(∑5
i=2 r

(
i
)

pop

)
/4

,

‍�

(21)

in Figure 3e. Here, ‍r
(

i
)

pop‍ represents the population neural activity of cell assembly ‍i‍:

	﻿‍
r
(

j
)

pop ≡
Nj∑

i=1
r
(

j
)

i
‍�

(22)

Simulations of perceptual decision making
In each learning trial, we trained the network with either leftward or rightward dot movement repre-
sented by the corresponding input neurons firing at ‍rmax = 50 Hz‍ In test trials, we defined input coher-
ence as ‍Coh = ρR − 0.5‍ according to Hanks et al., 2011, where ‍ρR‍ is the ratio of R input neurons to 
the sum of R and L input neurons in firing rate. The value of Coh ranges between –0.5 (all dots moving 
leftward) and +0.5 (all dots moving rightward). Then, in test trials for input coherence Coh, we gener-
ated Poisson spike trains of R and L input neurons at the rates ‍

(
Coh + 0.5

)
rmax‍ and ‍

(
−Coh + 0.5

)
rmax‍, 

respectively.
In Figure 5c, we calculated the activity ratio (AR) as

https://doi.org/10.7554/eLife.92712
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	﻿‍
AR =

rpop
R

rpop
R + rpop

L
,
‍�

(23)

where ‍r
pop
R ‍ and ‍r

pop
L ‍ represent the average population firing rates of R- and L-encoding cell assemblies, 

respectively. In Figure 5b, we defined ‘choices to right’ as

	﻿‍ Choices to right = AR × 100
(
%
)

.‍� (24)

A network model with distinct excitatory and inhibitory synapses
Here, we explain the network model and the plasticity rules used in Figure 6. The network consists of 
500 neurons, and the membrane potential of a neuron ‍i‍ at time ‍t‍ is given as follows:

	﻿‍

ui(t) =
K∑

k=1
Wikxk(t)

� �� �
=:vW

i

+

[ N∑
n=1

Mexc
in yn(t)

]

� �� �
=:vM

i (exc)

−

[ N∑
n=1

Minh
in yn(t)

]

� �� �
=:vM

i (inh)

−
N∑

n=1
Ginyn(t)

� �� �
=:vG

i

,

‍�

(25)

where ‍
{

Wik
}
‍ is afferent synaptic weights, which are a mixture of excitatory and inhibitory connections 

as in the nDL model. The weights of recurrent excitatory synapses are {‍M
exc
in ‍}. Here, we considered two 

types of recurrent inhibitory connections, denoted by ‍Minh‍ and ‍G‍, respectively. Here, we assumed that 
half of the recurrent connections were assumed to be excitatory and the remaining connections were 
all inhibitory, half of which were ‍Minh‍ and the other half were ‍G‍. We modified these weights according 
to the following equations:

	﻿‍ ∆Wij = ηE(fi, vW
i )xj,‍� (26a)

	﻿‍
∆Mexc

ij = ηE
(

fi, vM
(

exc
)

i − vM
(

inh
)

i

)
yj,

‍�
(26b)

	﻿‍
∆Mexc

ij = −ηE
(

fi, vM
(

exc
)

i − vM
(

inh
)

i

)
yj,

‍�
(26c)

	﻿‍
∆Gij = ηE

(
fi, vG

i

)
yj,‍� (26d)

where ‍E
(
fi, vi

)
‍ is the error term defined as

	﻿‍
E
(
fi, vi

)
φ−1

0

(
1 −

φ
(
vi
)

φ0

)[
fi − φ

(
vi
)]

.
‍�

(27)

At each time step during learning, we truncated all weights of recurrent connections to non-
negative values during learning.

A network model with distinct excitatory and inhibitory neuron 
populations
Here, we explain the architecture of the model used in Figure 7. The network consists of ‍NE

(
= 500

)
‍ 

excitatory and ‍NI
(
= 500

)
‍ inhibitory neurons. The membrane potential of a neuron ‍i‍ of a population ‍X‍ 

(=E or I) at time ‍t‍ is given as follows:

https://doi.org/10.7554/eLife.92712
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	﻿‍

uX
i (t) =

K∑
k=1

WX
ikxk(t)

� �� �
=:vW

i

+

[ NE∑
l=1

MXE
il yE

l (t) −
NI∑

m=1
GXI(path2)

im yI
m(t)

]

� �� �
=:vM(2)

i

−
NI∑

m=1
GXI(path1)

im yI
m(t)

� �� �
=:vM(1)

i

,

‍

, 

�

(28)

where 
‍

{
WX

ik

}
‍
 is afferent synaptic weights, which are a mixture of excitatory and inhibitory connections 

as in the nDL model. The weights of recurrent excitatory synapses are {‍M
XE
il ‍}. Here, we considered 

two types of recurrent inhibitory connections (i.e., path 1 and path 2), denoted by ‍G
XI

(
path1

)
Im ‍ and 

‍G
XI

(
path2

)
Im ‍, respectively. Using the same definitions of the error term as in Equation 27, we modified 

these weights according to the following equations:

	﻿‍
∆WX

ij = ηE
(

fi, vW
i

)
xj,‍� (29a)

	﻿‍
∆MXE

ij = ηE
(

fi, vM
(

2
)

i

)
yE

j ,
‍�

(29b)

	﻿‍
∆GXI

(
path2

)
ij = −ηE

(
fi, vM

(
2
)

i

)
yI

j ,
‍�

(29c)

	﻿‍
∆GXI

(
path1

)
ij = ηE

(
fi, vM

(
1
)

i

)
yI

j
‍
.
�

(29d)

To satisfy Dale’s law, we truncated all weights of recurrent connections to non-negative values 
during learning.

In Figure  7g, we measured the lateral inhibition between excitatory neurons via path 1 by 
calculating:

	﻿‍

[
WLI

i,j

]
=

NE∑
k=1

GEI
(

path1
)

ik MIE
kj .

‍�
(30)

Lateral inhibition via path 2 was calculated in a similar fashion.

Simulation details
All simulations were performed in customized Python3 code written by TA with numpy 1.17.3 and 
scipy 0.18. Differential equations were numerically integrated using an Euler method with integration 
time steps of 1 ms.

Data availability
Code is provided on the GitHub repository (Asabuki, 2024). https://github.com/TAsabuki/PriorNet_​
codes, (copy archived at Asabuki, 2025).
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