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Garry Wong3,4 and Liisa Holm1,2,*

1Institute of Biotechnology and 2Department of Biological and Environmental Sciences, Genetics, University of
Helsinki, PO Box 56 (Viikinkaari 5), FIN-00014 Helsinki, Finland, 3Laboratory of Functional Genomics and
Bioinformatics, Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, 4Deparment of
Biochemistry and 5Department of Computer Science, University of Kuopio, PO Box 1627, FIN-70211 Kuopio, Finland

Received February 14, 2006; Revised March 8, 2006; Accepted April 7, 2006

ABSTRACT

We present POXO, a comprehensive tool series to
discover transcription factor binding sites from co-
expressed genes (www.bioinfo.biocenter.helsinki.fi/
poxo).POXOmanages taskssuchas functionalevalu-
ation and grouping of genes, sequence retrieval, pat-
tern discovery and pattern verification. It also allows
users to tailor analytical pipelines from these tools,
with single mouse clicks. One typical pipeline of
POXO begins by examining the biological functions
thatasetofco-expressedgenesare involved in. In this
examination, the functional coherence of the gene set
is evaluated and representative functions are associ-
ated with the gene set. This examination can also be
used togroupgenes into functionally similar subsets,
if several biological processes are affected in the
experiment. The next step in the pipeline is then to
discover over-represented nucleotide patterns from
the upstream sequences of the selected gene sets.
This enables to investigate the possibility that the
genes are co-regulated by common cis-elements. If
over-represented patterns are found, similar ones
can then be clustered together and be verified. The
performance of POXO is demonstrated by analysing
expression data from pathogen treated Arabidopsis
thaliana. In this example, POXO detected activated
gene sets and suggested transcription factors
responsible for their regulation.

INTRODUCTION

One of the central questions in biology is gene regulation:
how and when are genes regulated and by what factors? In

most cases, genes are regulated by transcription factors via
cis-elements (1). In this regulatory mechanism, a transcrip-
tion factor binds onto specific cis-elements that often are
located in the first few thousand nucleotides upstream of
the transcription start site (1). Thus, various genes that are
located apart in the genome but work in concert can be simul-
taneously regulated by common transcription factors.

The regulatory circuits and the regulatory transcription
factors of a gene or a set of genes can be investigated
using computational methods. These computational methods
are typically devised to discover over-represented nucleotide
patterns that are then associated with the corresponding tran-
scription factors. The use of these methods typically begins
by gathering a set of putatively co-regulated genes. Next,
gene functions can be examined, e.g. using gene ontology
(GO) (2). GO terms offer a controlled vocabulary to describe
the cellular component, molecular function and biological
process of a gene (2). The statistical significance of the GO
terms among the gathered gene set can be calculated and
can be used to assign representative functions for a set of
genes (3,4). If the gene set contains several distinct represen-
tative functions, it can be sensible to group the gene set into
functionally coherent subsets (3,4). This can improve the
signal-to-noise ratio of the binding site analysis, since
genes with common functions also tend to share similar regu-
latory mechanisms (5,6). In particular, improvement can be
expected, if the gene set contains genes involved in various
different processes, each of which is controlled by its own
cis-element.

Next, the upstream sequences of the selected genes are
retrieved and potential cis-elements are searched for. In this
binding site analysis, over-represented nucleotide patterns
are considered as an evidence of cis-elements and co-
regulation. Various tools exist for the task and they search
for over-represented patterns using either probabilistic
sequence models or pattern enumeration techniques (5–8).
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Probabilistic sequence models, like Gibbs samplers, discover
long and general patterns (5,7). However, these tools do not
always discover the most over-represented pattern, since they
can get trapped in locally optimal solutions (6). Pattern enu-
merators analyze every pattern in the input set and therefore
are always guaranteed to discover the most over-represented
pattern, i.e. the globally optimal solution (6,8). However, pat-
tern enumerators are restricted to relatively short pattern
lengths, report multiple variants from a single original pattern
and suffer from a limited pattern vocabulary.

After the discovery of over-represented nucleotide pat-
terns, they should be verified and annotated. One approach
to verify patterns is to visualize their positions within the
sequences, since cis-elements are thought to locate at simi-
lar distances from the transcription start site (8). Another
approach to verify patterns is to use evolutionary conserva-
tion among homologous sequences in different organisms
(9,10). In this ‘phylogenetic footprinting’ approach homo-
logous sequences are aligned. Since cis-elements are
thought to remain unchanged and conserved during evolu-
tion, they should be found in the aligned regions (9,10).
Patterns can also be annotated by screening collections of
known binding sites (11). If a similar cis-element is
found, it is possible that the query pattern acts as the
matching cis-element and is recognized by the same tran-
scription factor.

Here, we demonstrate POXO, a web-enabled tool series to
discover transcription factors binding sites. POXO contains
tools for various tasks that vary from functional evaluation
and clustering of genes through sequence retrieval and pattern
discovery to the evolutionary verification of patterns
(Figure 1). These tools can be used independently or in pipe-
lines, where the result of one tool is transferred to another
one. Unlike currently existing tool series (12,13), POXO
has also a tool to evaluate the coherence of the input gene
set and to group these genes into functionally coherent sub-
sets (4). The usability of POXO is demonstrated by analyzing
a fungal pathogen treated Arabidopsis thaliana microarray
experiment. In this example, POXO detected activated

genes and suggested the transcription factors responsible for
their regulation.

METHODS

The starting point is a long list of co-expressed genes from a
biological analysis, e.g. genes expressed differentially
between a treatment and its control. The individual tools inte-
grated in POXO are briefly described below (Figure 1).

Stratifying a long gene list into functionally related
subgroups

Functional sub-grouping enables the efficient analysis of
large gene sets and enables to focus on genes involved in a
specific function. Functional subsets can also improve the
signal-to-noise ratio and highlight cis-elements that would
have been otherwise missed, since genes involved in incoher-
ent functions can mask the others’ cis-elements. For example,
in A.thaliana the attack of a pathogen can induce numerous
genes (14). The number of genes varies from hundreds to
thousands and the genes influenced by pathogens can be
involved in notably different functions, such as response to
biotic and abiotic stresses, metabolism and transport (14).
Owing to the large amount of the induced genes and their
dissimilar functions, it is unlikely that genes would be
co-regulated by a single common transcription factor.

GENERATOR is a tool to evaluate the functional coher-
ence of genes and to group the genes into functionally coher-
ent subsets (4). In the tool, genes and their functional
annotations from GO are represented as a binary matrix,
which is factorized using non-negative matrix factorization
(NMF) (15). NMF calculates an approximation (V � WH)
from an original matrix V (i · u) and creates two positive
matrices H (a · u) and W (i · a), where a is the rank, i.e.
the number of functionally coherent subsets created, i is the
number of genes and u is the number of GO terms. NMF
begins by randomly initializing the W and H matrices and
it then iteratively updates the matrices using coupled

Figure 1. Different tools in POXO. The computational pipeline and the tools used here to analyze the experimental data are highlighted by light blue arrows
and boxes. Gray boxes and arrows indicate other available tools in POXO.
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divergence functions that minimize the least square error
(LSE) of V and (WH) (15). When the algorithm stops, the
resulting matrices (W and H) are used to resolve which subset
each gene and term should be assigned to. GENERATOR
assigns a gene to that subset which has the highest weight,
i.e. a gene g is assigned to the subset s with the highest
entry value wgs. Since NMF can terminate in locally optimal
solutions, GENERATOR improves the reliability of the
factorization by repeating the analysis several times and
by representing only the best result, with respect to the
calculated LSE.

Because it is difficult to predict the correct rank number
before performing the analysis, GENERATOR automatically
generates results using different ranks, i.e. it groups the genes
into varying numbers of functionally coherent gene sets.
The results of the different rank analyses are represented in
a non-nested hierarchical tree, where the results of the anal-
yses are visualized as bars. The bars are split into sections
corresponding to the functional subsets. The width of each
section corresponds to the number of genes belonging to
the subset (4). The significance of the binary correlations
between the subsets of different ranks is calculated. This
enables to highlight those subsets of genes that are retained
at different ranks (4). GENERATOR also represents the
most representative GO term or function of the subset.
These representative GO terms are selected according to
their significance among the subset when compared to the
transcriptome of the chosen organism using a hypergeometric
distribution.

Sequence retrieval

The upstream sequences of the selected genes can be
retrieved and further analyzed in POXO. POXO contains
the upstream sequences of the known genes of several organ-
isms: Anopheles gambiae, A.thaliana, Caenorhabditis
elegans, Drosophila melanogaster, Homo sapiens, Mus mus-
culus and Saccharomyces cerevisiae. The sequences are
downloaded from TAIR (www.arabidopsis.org) (A.thaliana)
or from Ensemble (www.ensembl.org) (16,17) and are recog-
nized by their gene identifiers and accession numbers. The
maximum sequence length is 3000 bp for all organisms
except S.cerevisiae for which the maximum sequence length
is 800 bp. The sequence collections are kept up-to-date and
will be updated approximately twice a year.

Pattern discovery

Pattern discovery programs search for nucleotide patterns that
are statistically significantly over-represented in a set of
sequences in order to find patterns that are likely to share a
regulatory function. POXO has a tool for pattern discovery
called POCO (18). This same tool can also be used to search
for patterns that maximize the discrimination between two
sequence sets, being over-represented in one and under-
represented in the other sequence set (18). The discriminative
search can be helpful in situations where there are two
oppositely behaving gene sets. For example, in A.thaliana
different pathogens stimulate different defense responses
and different signaling pathways, such as salicylic acid
(SA), jasmonic acid (JA) and ethylene (E) mediated signaling
pathways (14). While one pathogen activates genes involved

in one pathway and represses genes involved in the others, a
different pathogen activates and represses the gene sets con-
versely (14). This suggests that the gene sets could be regu-
lated by different transcription factors and that the regulating
cis-element of one gene set should not be the same as the
regulating cis-elements of the other gene set. Thus, instead
of searching over-represented nucleotide patterns from both
sequence sets, it is possible to directly search discriminative
patterns.

POCO is a pattern enumerator tool to discover statistically
significant nucleotide patterns from either one or two sequence
sets (18). In the tool, pattern distributions for each pattern in
the input sequence sets and in the background sequence set
are created using a bootstrap test. This enables the user to cal-
culate the deviations for pattern occurrences and to use the
deviation when assessing the statistical significance for pat-
terns (18). If one sequence set is analyzed, patterns are evalu-
ated using the t-test. If two sequence sets are analyzed,
patterns are evaluated using ANOVA and are grouped into dis-
tinct pattern sets using Tukey’s honestly significant post hoc
test. The pattern sets are patterns over-represented in one of
the sequence sets (pattern sets 1 and 2), patterns over-
represented in both of the sequence sets (pattern set 3), and
patterns over-represented in one and under-represented in
the other sequence set (pattern sets 4 and 5) (18).

Discovery of co-occurring patterns

The possibility to search for patterns, which are over-
represented in the vicinity of another pattern, enables to
search for pattern combinations. These combinations could
be, for example, cis-elements of two co-operating transcrip-
tion factors, a long cis-element that was not discovered due
to its length, or a cis-element that contains a variable length
unspecific linker in the middle. For example, in A.thaliana
some environmental stress inducible genes contain in their
upstream regions two cis-elements, the dehydration response
element (DRE) and the abscisic acid responsive element
(ABRE) (19). These cis-elements are interdependent and
both of them are needed for correct regulation (19).

‘POCO 2nd iteration’ is a tool to discover statistically
significant nucleotide patterns that are located in the vicinity
of a predetermined anchoring pattern, from either one or two
sequence sets. In the tool, regions that are not in the vicinity
of the anchoring pattern are masked and patterns are searched
from the unmasked regions. Reliable background pattern
distributions are created using only sequences that contain
the anchoring pattern. The tool performs the analysis simi-
larly to POCO and creates the same pattern sets (18). Since
the same parameters can be used in this tool that were used
in POCO, the obtained patterns and their test scores should
be comparable between each other.

Clustering of patterns

Pattern enumerator tools, such as POCO, can report over-
lapping patterns. For example, if pattern TTGACCG is
over-represented, it is possible that also patterns such as
TTGACC, TGACCG, TTNACC and the like are over-
represented and reported in the analysis, since they can
be derived from the same nucleotide pattern. To reduce the
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number of reported over-lapping patterns, similar patterns can
be clustered together.

In POXO, patterns are clustered using the phi coefficient of
correlation (f) as distance (20) and hierarchical clustering. In
clustering, the similarities of binary vectors describing the
known nucleotide positions of the patterns are calculated
(Equation 1) (20). The length of the binary vector corre-
sponds to the total number of nucleotides within the
sequences. Vector elements are coded as one if the nucleotide
belongs to the pattern and as zero otherwise. In Equation 1,
nTP indicates that the nucleotide belongs to both patterns,
nFN and nFP indicate that the nucleotide only belongs to
either one or the other of the patterns and nTN indicates
that the nucleotide is not a part of either pattern.

f ¼ nTP·nTN � nFN·nFP
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnTPþ nFNÞðnTN þ nFPÞðnTPþ nFPÞðnTN þ nFNÞ

p :

1

In hierarchical clustering, the two closest vectors are itera-
tively merged together until a single vector remains. In itera-
tions, two vectors are merged and distances are re-calculated.
The new vector is the union of the merged vectors, i.e. it will
contain all nucleotides of both patterns. The result of the phi
coefficient of correlation ranges between �1 and 1, where
�1 indicates mutually exclusive patterns, 1 indicates that
the patterns are in identical positions and 0 indicates that
the patterns are located randomly. In POXO, values that are
<0 are reset to 0 to indicate random overlap. After clustering,
a consensus pattern is created for the merged patterns by cre-
ating a pseudo-count corrected frequency weight matrix (21).
The created consensus patterns can contain all possible
IUPAC symbols. The statistical test scores for the clustered
patterns can be easily calculated using POBO (see below),
since the same parameters can be used in the evaluation
that were used to create the original patterns.

Pattern evaluation

Often, a biologist will have a preliminary hypothesis about
the regulatory factor and about its binding site. To quickly
test the correctness of the hypothesis, POXO has a tool that
can be used to screen and evaluate a predetermined pattern
from either one or two sequence sets (22). In the POBO
tool, pattern distributions are created similarly to POCO
using a bootstrap test, after which the significance of the pat-
tern is evaluated using the t-test or ANOVA. In POBO, the
predetermined pattern can be represented using IUPAC
codes, regular expressions or pattern weight matrices.
Patterns can also be screened allowing mismatches.

Pattern visualization

POXO has a tool to visualize the locations of the discovered
patterns. This can be used to verify patterns and to examine
their locations in the sequences. The visualization illustrates
if patterns are located approximately at the same distance
from the transcription start site, as is assumed for cis-
elements. The visualization can also illustrate if two patterns
frequently co-occur together.

Phylogenetic footprinting

Patterns can also be verified using phylogenetic footprinting,
in which the conservation of the patterns is examined in
homologous sequences across different organisms. In this
method functionally important cis-elements are assumed to
remain unchanged during evolution and to be located in the
conserved regions in different organisms. This method has
been shown to decrease false positive predictions (9,10).

Tracker is a tool to analyze the evolutionary conservation
of the discovered patterns in homologous sequences and it
can be used for the previously mentioned organisms except
A.thaliana. In the tool all homologous gene relationships
between the genes on different organisms are gathered from
Ensemble (www.ensembl.org) (17).

In Tracker, query genes and their corresponding upstream
sequences can be retrieved using either Ensemble ids (gene
identifiers) or Blast searches (23). If Blast searches are
used, then the query sequences, e.g. sequences used in the
binding site analysis, are first blasted against the stored
upstream sequences in POXO. If a plausible match is
found, the homologous gene relationships of the gene associ-
ated to the matching upstream sequence are used. After
exploring the query genes and the inferred homologous
genes on other organisms, their upstream sequences are
retrieved. Next, the pair-wise alignments between the query
sequence and all its homologous sequences are created
using PromoterWise (24). These pair-wise alignments are
then assembled together and, to provide an easy visual inter-
pretation of the results, gaps in the query sequence are closed
by removing insertions in the homologous sequences. After
the alignment is done, the discovered patterns are screened
to visualize their locations within the alignment. Evolutionary
conserved patterns should occur in the aligned regions and be
located at the same vertical positions relative to the query
sequence.

Database screening

Patterns can be annotated by screening for similar cis-
elements from collections of known cis-elements (11). If
matching cis-elements and associated transcription factors
are found, it can be speculated that also the discovered pat-
terns are binding the same transcription factors as their
matches. In POXO, discovered patterns can be annotated by
screening either a plant specific or more general cis-elements
collections, retrieved from PLACE, TRANSFAC (public) and
JASPAR (25–27). In the pattern screens, patterns of similar
length and patterns having at least a certain amount of similar
nucleotides are reported.

Availability and running the program

All tools in POXO are written using Perl, C or C++. A
MySQL (www.mysql.com) database is used to store the back-
ground sequences and gene relationships. In POCO and
POCO 2nd iteration, P-values are calculated using the
DCDFLIB-package (www.netlib.org/random). The server,
help-pages, background models for some tools (MySQL
dump-files) and the source codes of the tools are available
from the group’s web page (www.bioinfo.biocenter.helsinki.
fi/poxo). Some tools require Adobe SVG Viewer
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(www.adobe.com/svg/), which is a freeware browser plug-in
to view scalable vector graphics.

Experimental data acquisition and analysis

For data acquisition and for parameters used see Supplemen-
tary Data.

RESULTS AND DISCUSSION

To demonstrate how to use POXO, gene expression data from
a Botrytis cinerea treated A.thaliana microarray experiment
was re-analyzed using the pipeline depicted in Figure 1.
B.cinerea is a necrotrophic fungal pathogen of A.thaliana.
Resistance against the pathogen involves co-operation of
various defense pathways, but ethylene (E) and salicylic
acid (SA) pathways are though to orchestrate the defense
response (28). In the experiment, the gene expression of
B.cinerea infected A.thaliana was measured 18 and
48 h after the infection (28). Here, the gene expression data
were re-analyzed and clustered into gene sets that contained
genes activated during the infection (1222 genes) and genes
repressed during the infection (1626 genes).

Results on the experimental data using POXO

The first step in the pipeline is to group the genes into func-
tionally coherent and more specific subsets. The grouping
revealed that both clusters contained several functionally dis-
tinct subsets (Supplementary Tables 1 and 2). One of the top
subsets in both clusters was enriched in genes involved in
response to stimulus (GO:0050896). Among the activated
genes, the response to stimulus subset contained 139 genes
at rank 5. Other interesting and enriched functions among
this subset were defense response (GO:0006952), response

to pest, pathogen or parasite (GO:0009613), JA and
E-dependent systemic resistance (GO:0009861) and response
to chitin (GO:0010200). (Supplementary Table 3). Among
the repressed genes, the response to stimulus subset contained
144 genes at rank 1. Other enriched functions were response
to abiotic stimulus (GO:0009628) and response to auxin
stimulus (GO:0009733) (Supplementary Table 4).

The next step in the pipeline is to retrieve the upstream
sequences of the subsets and to discover over-represented
nucleotide patterns, which could explain the observed co-
expression. In binding site analysis, the top 10 patterns
over-represented in one and under-represented in the other
sequence set were searched (Supplementary Tables 5 and
6). Next, these 10 patterns were clustered together (Supple-
mentary Figures 1 and 2).

Pattern clustering produced seven distinct patterns for the
activated subset, i.e. patterns over-represented among the
activated and under-represented among the repressed subset
(Table 1). To annotate the patterns, similar cis-elements
were screened from the collections of known plant binding
sites (25). Screening yielded two cis-elements, which had a
biologically meaningful association to the observed func-
tions. CTGAGGAA resembled the cis-element of NPR1
(CTGAAGAAGAA, matching part bold and underlined)
(29), which is the key transcription factor in the SA pathway.
It is also believed that NPR1 is involved in resistance to
B.cinerea (28). GGAAAANG resembled a cis-element
(GAAAAA) that plays a role in pathogen and salt induced
gene expression in Glycine max (30). (The locations of the
patterns are shown in Supplementary Figure 3.) For the
other subset, i.e. patterns over-represented among the
repressed and under-represented among the activated subset,
six patterns were generated (Table 2). When these patterns

Table 1.The seven clustered patterns over-represented in the activated response to stimulus (GO:0050896) gene set and under-represented in the repressed response

to stimulus gene set

Pattern Activated genes Repressed genes P-value min P Ac
occ pro occ pro

TGGAAd/TTCCA 651 139 508 139 5E�05 5E�05 S000403
GGAAAANG/CNTTTTCC 62 50 23 23 2E�04 2E�04 S000453
CATNNCGG/CCGNNATG 36 34 9 9 3E�04 3E�04 S000250
TGCGANNC/GNNTCGCA 38 36 11 11 4E�04 4E�04
GTVATCCT/AGGATBAC 26 23 5 4 1E�03 1E�04 S000470
TNCNAGG/CCTNGNA 200 100 127 86 7E�04 7E�04
CTGAGGAA/TTCCTCAG 14 14 1 1 3E�03 3E�04 S000473

In the table occ is the pattern occurrence, pro is the number of promoters with the pattern, P-value is the significance of the clustered pattern, min P is the minimum
P-value of the original patterns used in clustering and Ac is the accession code of the best match found in PLACE (25).

Table 2. The six clustered patterns under-represented in the activated response to stimulus gene set and over-represented in the repressed response to stimulus

gene set

Pattern Activated genes Repressed genes P-value min P Ac
occ pro occ pro

TNGGTCC/GGACCNA 34 27 79 62 4E�04 4E�04 S000360
CTTTGCNT/ANGCAAAG 21 19 64 47 5E�04 5E�04 S000354
GNANTATA/TATANTNC 144 84 229 107 5E�04 5E�04
TGTGATTGG/CCAATCACA 3 3 14 13 1E�02 1E�04 S000143
CAWTKATTG/CAATMAWTG 18 18 26 23 5E�01 3E�04 S000371
TTTTGTCAC/GTGACAAAA 3 3 5 6 1E+00 7E�05 S000337

Notation as in Table 1.
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were screened against the cis-element collection, two known
auxin responsive elements in G.max were found (TTTTGT-
CAC resembling CCTTTTGTCTC and GGACCNA resem-
bling GGTCCCAT) (31,32). (The locations of the patterns
are in Supplementary Figure 4.)

CONCLUSION

We have developed a tool series called POXO, which is
accessible via a web interface. POXO can be used to discover
putative transcription factor binding sites from a set of genes.
We have also demonstrated, by example, how these different
tools can be used to discover biologically meaningful binding
sites from the vast amount of data.

In the example, a pathogen treated A.thaliana experiment
was analyzed using POXO. In this analysis, two functionally
interesting subsets were detected. The first functional subset
contained 139 genes, which were activated during the infec-
tion and which were involved in the response to stimulus
function. Some of the genes within this subset are involved
in pathogen defense. Interestingly, the binding site analysis
discovered over-represented nucleotide patterns that resemble
known cis-elements associated with SA-mediated defense
pathway and pathogen defense (29,30). The other function-
ally interesting gene set contained 144 genes, which were
repressed during the infection and which GO annotates with
the response to stimulus function. Some of these genes were
involved in the auxin stimulus and, interestingly, two over-
represented patterns among the upstream sequences of these
genes were discovered to resemble known auxin responsive
elements (31,32). Thus, for both functional subsets, POXO
was successfully used to find the regulated genes as well as
potential transcription factors regulating them.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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