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Abstract

Flexibility in neuronal circuits has its roots in the dynamical richness of their neurons. Depending on their membrane
properties single neurons can produce a plethora of activity regimes including silence, spiking and bursting. What is less
appreciated is that these regimes can coexist with each other so that a transient stimulus can cause persistent change in the
activity of a given neuron. Such multistability of the neuronal dynamics has been shown in a variety of neurons under
different modulatory conditions. It can play either a functional role or present a substrate for dynamical diseases. We
considered a database of an isolated leech heart interneuron model that can display silent, tonic spiking and bursting
regimes. We analyzed only the cases of endogenous bursters producing functional half-center oscillators (HCOs). Using a
one parameter (the leak conductance (gleak)) bifurcation analysis, we extended the database to include silent regimes
(stationary states) and systematically classified cases for the coexistence of silent and bursting regimes. We showed that
different cases could exhibit two stable depolarized stationary states and two hyperpolarized stationary states in addition to
various spiking and bursting regimes. We analyzed all cases of endogenous bursters and found that 18% of the cases were
multistable, exhibiting coexistences of stationary states and bursting. Moreover, 91% of the cases exhibited multistability in
some range of gleak . We also explored HCOs built of multistable neuron cases with coexisting stationary states and a
bursting regime. In 96% of cases analyzed, the HCOs resumed normal alternating bursting after one of the neurons was
reset to a stationary state, proving themselves robust against this perturbation.
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Introduction

Recent studies of neuronal networks of identifiable neurons

have shown that the same neuron type can significantly vary in

membrane properties from animal to animal. The biophysical

characteristics of the single neurons performing the same task can

be orders-of-magnitude different [1–4]. This fact testifies to the

great flexibility and robustness demonstrated by nervous systems.

It is also captured by mathematical models analyzed with brute-

force databases. With a database a population of models is

considered so that those parameter sets (cases) which satisfy

constraints derived from experimental data are identified as

functional. Thus, following this approach, we obtained a set of

cases producing functional activity although the underlying ionic

current compositions were different. The apparent simplicity of

the product of the brute-force database approach is moderated by

complications posed by multistability.

Single neurons can produce a plethora of regimes of activity

including silent, spiking and bursting regimes depending on their

membrane properties. What is less appreciated is that these

regimes can coexist with each other. Multistability has been

reported for different neurons in a number of experimental and

modeling studies [5–18]. It can play either a functional role or

present a substrate for dynamical diseases. A comprehensive

database of a neuronal model should attempt to describe all

possible observable regimes of activity to assess the functionality of

each case of the model.

Neuronal models exhibit a variety of activities depending on the

set of parameters chosen. Parameter set databases of computa-

tional models are powerful tools used to understand how different

components of neuronal dynamics interact to produce functional

activity. Brute-force database approaches classify these dependen-

cies and infer the roles played by intrinsic membrane and synaptic

currents in the normal and pathological dynamics of the neuronal

system of interest. These applications have proven their effective-

ness in finding suitable parameter regimes that fit experimental

measurements and recorded activities, and have shown that a

large variety of the parameter regimes can satisfy experimental

constraints [2,19–25]. Here we show that it is feasible to expand

such a database by appending information about stable and

unstable stationary states. To obtain this information, we applied

techniques from the bifurcation theory. These techniques allowed

us to systematically reveal cases of multistability of bursting and

stationary states.

Doloc-Mihu and Calabrese [25] have built a database for a

model of an isolated leech heart interneuron and a model of the

half-center oscillator consisting of a reciprocally inhibitory pair of

interneurons (HCO). An individual leech heart interneuron is
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represented as a single isopotential electrical compartment with

eight Hodgkin-Huxley type intrinsic membrane conductances

[26]. In addition, the model of the HCO includes two types of

inhibitory synaptic currents, spike mediated and graded [26]. By

varying a set of 8 key parameters (the leak reversal potential and

maximal conductances of synaptic and several membrane

currents) in all combinations possible (brute-force approach) the

authors of [25] systematically explored the parameter space and

analyzed more than 10 million simulations (cases) of the model.

In this study, we wanted to assess how prevalent multistability of

bursting and silent regimes is in a population of functional cases of

the leech heart interneuron. Application of the theory of

dynamical systems allows mapping the transitions between the

regimes by using bifurcation diagrams [10,17,18,27]. Through the

use of numerical continuation of stationary states, we incorporated

information about stable and unstable stationary states into the

database developed in [25]. This novel approach does not resort to

direct integration of differential equations, circumventing the

arbitrariness in the choice of initial conditions, besides being less

computationally demanding. Our methodology allowed us to

systematically reveal cases of multistability in the database, and it

turned out that the number of such cases is surprisingly large.

Coexistence of silent regimes with functional bursting regime of

leech heart interneurons poses a threat to viability of the animal

since they pace the heartbeat. We also investigated how alteration

of leak current and network interactions could resolve this

potential problem.

Methods

Model and database
Doloc-Mihu and Calabrese [25] built an extensive database of a

model of a half-center oscillator (HCO). This model was

developed to represent dynamics of the elemental oscillator which

produces the basic rhythm of the central pattern generator

controlling heartbeat of the medicinal leech [26]. It consists of two

reciprocally inhibitory identical neurons. The canonical model

replicates the electrical activity of the oscillator interneurons of the

leech heartbeat central pattern generator (CPG) under a variety of

experimental conditions [26]. Doloc-Mihu and Calabrese [25]

analyzed activity regimes of the HCO model implemented in

Genesis2.3, a software for simulation of neuronal dynamics [28].

Each individual leech heart interneuron (HN) was modeled as a

single isopotential electrical compartment with Hodgkin and

Huxley type intrinsic membrane currents. It has 8 voltage-gated

currents: 1) INa- fast Na+ current, 2) IP - persistent Na+ current, 3)

ICaF- rapidly inactivating low-threshold Ca++ current, 4) ICaS -

slowly inactivating low-threshold Ca++ current, 5) Ih- hyperpolar-

ization-activated cation current, 6) IK1 - delayed rectifier-like K+

current, 7) IK2 - a persistent K+ current, and 8) IKA - a fast

transient K+ current. The model also included two types of

inhibitory synaptic currents between the two interneurons: graded

ISynG, and spike-mediated ISynS. The differential equations

describing the model are given in the appendix of Hill et al. [26].

Doloc-Mihu and Calabrese [25] used a brute-force approach to

explore the parameter space of the HCO model, by systematically

varying a set of eight key parameters: the leak conductance and

reversal potential, the maximal conductances of the spike-

mediated and graded synaptic currents, �ggSynS and �ggSynG , and

the maximal conductances of IP, ICaS, Ih, and IK2. Five distinct

values were used for the leak reversal potential (270 mV,

265 mV, 260 mV, 255 mV, 250 mV) and eight values were

used for the maximal conductances, which were set to 0%, 25%,

50%, 75%, 100%, 125%, 150%, and 175% of the canonical

values described in Hill et al. [26]. All possible combinations of the

values of the varied parameters were tested. This brute-force

approach generated a grid in the parameter space of the HCO

model consisting of 10,321,920 cases, which had at least one of the

two types of synaptic currents present (�ggSynS?0 nS and/or

�ggSynG?0 nS). A special set of the database represents decoupled

neurons (�ggSynS = 0 nS and �ggSynG = 0 nS). This set consisted of

163,840 cases of the isolated neuron model. All simulations of HCOs

were started from the same initial conditions such that one of the

two cells was firing while the other was hyperpolarized. These

initial conditions were picked as a point on a bursting trajectory of

the canonical HCO, obtained as the last point of an activity trace

generated by integrating the canonical model for 200 s. For each

case of the isolated neuron model, two trajectories were generated

starting from the two different initial states described for the pair of

neurons in the HCO model.

Trajectories obtained for each case were analyzed and a

plethora of different regimes were found and classified as subsets of

the database [25]. The classification of the trajectories is mostly

based on the analysis of spike times. Spikes were detected by

finding the maximum value of the membrane potential above a

threshold of 210 mV. Any trace that didn’t contain spikes was

classified as silent (sub-threshold oscillations would be considered

as a silent regime). Time series with all inter-spike intervals (ISI)

smaller than 1 s were classified as tonic spiking. If at least one ISI

was larger than 1 s, bursting descriptive statistics were calculated

determining interburst interval, burst duration, and period of

bursting. If the coefficient of variation of bursting period was

higher than 5%, the trace was classified as irregular. Furthermore,

Doloc-Mihu and Calabrese [25] defined HCO models as

functional if both cells exhibited regular bursting activity with a

small variability of the burst period (coefficient of variation of the

bursting period smaller than 5%) and relative phase in the range

0.45–0.55 (balanced activity).

We focused our analysis on a subset of the cases in the database

which conformed to a number of constraints on the activity. These

cases were classified as the robust bursters ([25], Figure 1). When

disconnected (i.e., as isolated neurons), they exhibited robust

bursting activity for at least one of the two initial conditions. This

bursting activity was not plateau-like or irregular. The coefficient of

variation of the period was less than 5%. While connected into a

Author Summary

It is often not appreciated that different activity regimes
can coexist with each other in a given neuron so that a
transient stimulus can cause a persistent change of
activity. Such multistability of the neuronal dynamics has
in fact been shown in a variety of neurons and can play
either a functional role or present a substrate for
neurological diseases. We explored the propensity for
multistability in a database of a leech heart interneuron
model, testing each case (parameter set) in a database for
multistability. We found a large proportion of multistable
cases, especially the coexistence of silent and bursting
regimes. This was a surprising result, since these cells pace
the heartbeat of the leech, and the coexistence of silence
and bursting could disrupt the functional pattern, threat-
ening the viability of the leech. Analysis of networks of
mutually inhibitory multistable neurons, however, showed
robustness in maintaining functional activity, suggesting
that the mutually inhibitory coupling can act as a
protective mechanism against failures induced by multi-
stability.

Multistability of Bursting and Stationary Regimes
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HCO, they produced a functional alternating bursting pattern for

at least some values of synaptic conductances. In addition, the

coefficient of variation of the interburst interval was smaller than

10% (formulae Figure 1). The database subset of such isolated

neuron cases (robust bursters) had a total number of 2,387.

Computational details
In this study, numerical integration of the model equation

implemented in C was performed with an implicit Runge-Kutta

method of 5-th order, Radau IIa [29], suitable for stiff systems of

ordinary differential equations. The relative error tolerances were

1029 for each state variable, and the absolute tolerance was 10212.

Unless otherwise mentioned, the trajectories were integrated for

400 s (model time); the initial 200 s of activity were discarded to

remove the transient part of the trajectory, and the last 200 s were

analyzed.

Continuation of stationary states
For each robust burster case, we performed a single parameter

bifurcation analysis of the stationary states. The leak current

conductance gleak was used as the controlling parameter. The

continuation was initiated from the stable hyperpolarized station-

ary state obtained by direct integration of the system with a large

gleak value (20 nS). The coordinates of all codimension 1

bifurcations of stationary states (saddle-node and Andronov-Hopf

bifurcations) as well as the stability of each stationary state in the

curve were recorded (Figure 2). Numerical continuation of

stationary states was performed with the PyDSTool Python

package [30], using 4,000 control parameter steps, with minimum

and maximum step sizes of 0.02 nS and 10212 nS respectively.

Ranges of gleak supporting robust bursting activity
We determined the ranges of gleak for which the robust bursters

exhibited robust bursting activity. Starting from the original gleak

value from the database, we iteratively incremented gleak by 1 nS

steps and integrated the model, until a transition from bursting to

silence, tonic spiking, or irregular bursting was detected. Once this

transition was found, the initial conditions were reset to the

coordinates of the endpoint of the last accepted bursting trajectory,

and the process repeated with a tenfold smaller gleak step size to

achieve a certain precision of the critical parameter value. This

procedure was iterated until the precision of 1024 nS had been

achieved. Then, the whole procedure was repeated with negative

steps, to determine the boundary of robust bursting towards

smaller gleak values. Thus a range of gleak values was determined

for which the robust bursting regime was observed. All analysis

and auxiliary scripts were developed in-house, using Python 2.6

along with the SciPy package [31], and were run on an Intel Core

i7 platform cluster. The calculation of steady state curves

(numerical continuation) for 2,387 robust bursters took approxi-

mately 2.5 cpu days, while calculating the ranges of gleak

supporting bursting (direct integration) took approximately 3.5

cpu days.

Ranges of gleak supporting multistability
The ranges of gleak supporting the coexistence of attracting

regimes were determined by checking for overlaps of the gleak

ranges supporting robust bursting activity and the ranges

supporting stable stationary states, obtained from the continuation

curves. Similarly, ranges supporting multistability of stationary

states were determined by finding the overlaps of the correspond-

ing ranges.

Upgrading the database with information on stationary
states and multistability

For building the database extension concerning the stationary

states, we used home-written Java scripts (Java 1.5). We used the

Java language for several reasons: to have scripts that can be run as

is on different operating systems, to be able to query a large table

(millions of records), and to be consistent with the previous work

on the HCO model [25]. The database was built as two

standalone database tables using MySQL (www.mysql.com).

Now, for the cases considered in this article one database table

has entries describing each determined stationary state by its

coordinates in the state space and information on stability. This

database table also has entries describing types of multistability

determined. The second database table contains all the bifurcation

values of the bifurcations determined in the first table. This

information was recorded into the tables by using the same

identification (unique) number as it had in the original HCO/

single neuron database. In this way, one could query the three

databases simultaneously, or could just work only with the latter.

Half-center oscillator analysis
To determine the effects of multistability on neurons in a half-

center oscillator, we used the HCO model composed of two

identical neurons connected through both spike mediated and

graded synaptic currents [10,26]. This is the simplest network that

retains the topology and synaptic currents observed in the leech

heartbeat central pattern generator, and allows direct checking of

whether the presence of stable stationary states can disrupt

rhythmic pattern generation. The simulation protocol consisted of

setting the maximal synaptic conductances �ggSynS and �ggSynG to

150 nS and 30 nS respectively, and then of integrating the HCO

model for 100 s. Then one of the cells had its initial conditions

reset (not clamped) to a stable stationary state (two possibilities in

the case of tristable cells), and the synaptic interactions were

Figure 1. Diagrammatic illustration of the extraction of the
robust burster subset from the leech heart interneuron
database. The database describes the model of the isolated leech
heart interneuron (163,840 cases) and the model of the half-center
oscillator (10,321,920 cases). Among the cases representing the isolated
interneurons there are a few which produce bursting activity (2,698
cases); and there are a small number of cases of the model of half-
center oscillators which produce functional activity (38,713 cases). The
subset of interest (2,387 robust bursters) was obtained as the
intersection of these sets with the additional requirement of producing
steady endogenous bursting activity (coefficient of variation of the
interburst interval smaller than 10%).
doi:10.1371/journal.pcbi.1002930.g001

Multistability of Bursting and Stationary Regimes
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Figure 2. One parameter bifurcation diagrams of stationary states of the robust burster cases from the leech heart interneuron
database. The bifurcation parameter is the conductance of the leak current, gleak . The solid and dashed intervals of a bifurcation curve denote stable
and unstable stationary state branches, respectively. Labeled points in panels B–F indicate bifurcations of stationary states: LP and AH stand for the
fold and Andronov-Hopf bifurcations, respectively. The navy blue bars indicate the ranges of gleak values supporting attracting bursting regimes,
while the colored bars above them denote ranges supporting the coexistence of distinct attracting regimes. The color code of the bars is described in
the key and is consistent between figures (Figures 2,4,6). Panels D, and F are magnifications of the diagrams around the range supporting bursting in
panels C and E, respectively. The vertical navy blue lines in panels B, D, and F and Figure 4B indicate the original gleak value for the case in the
database. A: A stylized bifurcation diagram illustrating the naming convention for the intervals on the branches where stationary states are stable:
hyp1, hyp2, dep1, and dep2. B: Magnification of the bifurcation diagram for case #288298 that displays a stable interval hyp2 on the middle branch
delimited by two Andronov-Hopf bifurcations, AH2 and AH3. The green bar denotes a gleak range supporting bursting and the hyp2 stationary state.
C and D: In the case #1292494 there are three stable stationary state intervals. C: The red brown bar indicates a range of gleak values supporting the
coexistence of dep1 and dep2 stationary states. The Andronov-Hopf bifurcation (AH2) and the fold bifurcation LP3 determine the dep1 interval. The
fold bifurcation (LP4) defines the right border of the dep2 interval. The left border of the bistability range is 0 nS. C and D: The magenta bar marks
coexistence of dep1 and bursting. The bar is limited by the range supporting bursting on the left side and by Andronov-Hopf bifurcation AH2 on the
right side. The cyan bar indicates coexistence of hyp1 and bursting between the Andronov-Hopf Bifurcation (AH1) and the border where bursting

Multistability of Bursting and Stationary Regimes
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removed for 5 s, by setting their maximum conductances �ggSynS

and �ggSynG to 0 nS. After these 5 s, the synaptic currents were

restored and the system was integrated for additional 100 s.

Bursting activity was analyzed separately for both the initial and

final intervals.

Results

Analysis of robust bursting cases – Continuation of
stationary states

Application of bifurcation analysis allowed us to obtain

information about stationary states for each case considered from

the database. These results are not sensitive to the choice of the

initial conditions. We used single parameter bifurcation diagrams:

the stationary state curves. It is difficult to obtain such steady state

information by direct integration from random initial conditions,

as a brute force gridding of the model’s high dimensional state

space would involve prohibitive computational power require-

ments. We chose the leak current conductance gleak as the

continuation parameter because it is present in vast majority of

biophysically meaningful models of neurons. In our previous work

[10,17,26], we have shown its importance in shaping multistable

behavior in leech heart neuron models.

In Figure 2A, we sketch the naming convention for the intervals

of the bifurcation parameter supporting stable stationary states on

the branches of the stationary state curve. We classified stationary

states as either hyperpolarized (hyp) or depolarized (dep) ones, if the

membrane potential was negative or positive to 235 mV,

respectively. For some cases we found that there could be more

than one interval of each type. We numbered them in a sequence

so that the hyp1 interval includes the first point of the curve. For

example, the case # 288298 exhibits stable hyp2 stationary state

(Figure 2B). The approach was based on the assumption that for

any case of the database, making the leak conductance sufficiently

large will cause the model to exhibit a stable stationary state. For

the cases considered (robust bursters) it was sufficient to set

gleak = 20 nS. To establish the first point (hyp1) on the stationary

state curve we integrated the model with this large value of gleak.

We used bifurcation analysis software to follow this stationary state

as the parameter gleak was decreased. In the vast majority of cases,

the hyp1 state lost stability at some smaller value of gleak via an

Andronov-Hopf bifurcation (AH1). After that the stationary state

was continued on the curve as an unstable one. We numbered hyp

and dep states in a sequence, following the curve.

As an example, let us consider the bifurcation diagram of case

#1292494 (Figure 2C,D). We continued the stable stationary state

exhibited at gleak = 20 nS. It lost stability at an Andronov-Hopf

bifurcation (AH1). The bifurcation analysis software allowed us to

continue the now unstable stationary state. The interval hyp1

includes only stable stationary states. Thus, it is located on the

diagram to the right from AH1 bifurcation value of gleak. As we

traced the stationary state further, it disappeared at a fold

bifurcation marked by LP1. At this bifurcation point two unstable

stationary states met and disappeared. On the diagram, the curve

turned at this bifurcation value, and proceeded to the right,

towards larger values of gleak. At the value of gleak marked on the

diagram by LP2, another fold bifurcation occurred and the curve

of the stationary state made a second turn. The curve still

represented unstable stationary states. Notice that, after the second

Andronov-Hopf bifurcation (AH2) on the curve, the stationary

state curve reached a stable interval (dep1). A stable stationary state

from this interval represents a neuron with excitability block. The

stable stationary states persisted even after gleak turned negative

until it coalesced with an unstable stationary state at a saddle-node

(LP3) bifurcation. Tracing the stationary states after gleakturned

negative does not have biophysical meaning, but, interestingly, this

unstable branch reached back to the positive gleak values, where it

coalesced with a new stable stationary state branch (dep2) at yet

another fold bifurcation (LP4). This highly depolarized stationary

state has never been observed in models or experimental studies of

the leech heart interneurons. A simple analysis of this bifurcation

diagram reveals overlap of dep1 and dep2 intervals, determining a

range of multistability supporting both stable stationary states

(Figure 2C).

The multistability of two excitability blocks with different values

of the rest potential was demonstrated by a perturbation which

triggers a switch from one regime to the other. First, by using

information from the stationary state curves in Figure 2C, we

chose a gleakvalue from the range supporting both stationary states

(denoted by a red brown bar in Figure 2C). The bifurcation curve

provides the initial conditions corresponding to the dep2 stationary

state. For the demonstration, we selected initial conditions in a

vicinity of the actual dep2 stationary state. A switch from the dep2 to

the dep1 state was induced by a brief pulse of hyperpolarizing

current (Figure 3).

There was also a case that presented a gleak range supporting

stable stationary states in the middle branch (hyp2) of the

continuation curve, as seen in the expanded section of the

bifurcation diagram for case #288298 displayed in Figure 2B. The

interval of hyp2 is delimited by two Andronov-Hopf bifurcations. If

the system is integrated from initial conditions close to this region,

it will give rise to subthreshold oscillations damped towards the

hyp2 stationary state.

disappears. E and F: A case where the original gleak value in the database falls into a range of bistability of bursting and hyp1 stationary state (cyan
bar). The bistability range is defined by the Andronov-Hopf bifurcation (AH1) and the right border where bursting disappears.
doi:10.1371/journal.pcbi.1002930.g002

Figure 3. A switch between dep2 and dep1 stationary states
triggered by a short hyperpolarizing pulse of current. These
states correspond to two states of excitability block. The case
(#1292494) leak conductance in the database is 14 nS. The value
used, gleak = 0.5783 nS, is taken from the interval of coexistence of the
dep1 and dep2 branches of stationary states, denoted by a red brown
bar in Figure 2C. The model was started near the dep2 stationary state
(blue line), and was perturbed with a square pulse of current after 10 s
(green line). The amplitude and the duration of the pulse were 20.1 nA
and 0.2 s, correspondingly. The red line depicts transition of the neuron
into dep1 state.
doi:10.1371/journal.pcbi.1002930.g003

Multistability of Bursting and Stationary Regimes
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Multistability of regimes
Our methodology also allowed us to systematically detect

multistability, when the ranges of gleak values corresponding to

stable stationary states and to robust bursting activity overlapped.

For this analysis, the cases from the database which differ only in

gleak belong to the same bifurcation diagram and are treated as

one case thus giving rise to 2,223 cases of unique robust bursters

instead of the original 2,387 cases. We considered five distinct

regimes: the hyperpolarized stable stationary states hyp1 and hyp2,

the depolarized ones dep1 and dep2, and bursting (Figure 2A), and

screened each case for all possible coexistences of these regimes.

In the bifurcation diagram for case #1292494 (Figure 2C,D),

we can locate three gleak ranges supporting multistability, denoted

by colored bars below the continuation curve: the red brown bar -

coexistence of dep2 and dep1 stationary states, the magenta bar -

dep1 and bursting, and the cyan bar -hyp1 and bursting.

Multistability is also prominently present in case #861497, as

can be seen in the bifurcation diagram shown in Figure 4. In the

diagram, the yellow bar indicates the coexistence of three regimes,

bursting, hyp1 and dep1 stationary states (tristability), while the

orange bar corresponds to the coexistence of hyp1 and dep1

stationary states (bistability) and the magenta bar locates the

coexistence of bursting and the dep1 stationary state (bistability).

We illustrated tristability detected in Figure 4 by integrating

case #861497 from three different sets of initial conditions

(Figure 5). The first set of initial conditions led to bursting

(Figure 5A). The second set of initial conditions led to slow

oscillations damped into the hyp1 stationary state (Figure 5B), and

the third set of initial conditions produced damped spiking

oscillations towards the dep1 stationary state (Figure 5C).

Applying this procedure to the whole unique robust burster subset

(2,223 cases), we obtained the following five multistability

scenarios upon variations of gleak (Figure 6):

1. One range of multistability, supporting exactly two attracting

regimes. Considering the cases with only one overlapping

range, the vast majority showed coexistence of bursting and the

hyp1 stationary state. Of the 2,223 unique robust bursting cases,

1,922 (86%) showed this type of bistability under variation of

gleak (Figure 6A). We found only one case of co-existence of

bursting with hyp2 (case #288298 of Figure 2B, Figure 6B).

2. Two ranges of multistability, each one supporting exactly two

attracting regimes. We also found cases with exactly two ranges

supporting exactly two attracting regimes. 13 cases showed one

range of coexistence of the hyp1 stationary state and bursting,

along with another range of bistability of the two depolarized

stationary states, dep1 and dep2 (Figure 6C). 23 cases showed

one range of coexistence of the hyp1 stationary state and

bursting, along with one range of coexistence of the dep1

stationary state and bursting (Figure 6D). 7 cases exhibited one

range of coexisting hyp1 and dep1 stationary states and one

range of coexistence of the dep1 stationary state and bursting

(Figure 6E).

3. Three ranges of multistability, each one supporting exactly two

attracting regimes. There were two cases with three ranges of

coexistence of exactly two attracting regimes (Figure 6F). These

ranges supported the following types of coexistences: (1) the

dep2 and dep1 stationary states, (2) bursting and the dep1

stationary state, and (3) bursting and the hyp1 stationary state.

The case #1292494 in Figure 2C,D illustrates this scenario.

4. Three ranges of multistability, one of them involving tristability

and the others bistability. All models with ranges of gleak

supporting tristability showed additional ranges supporting

bistability. In 34 cases, there were two bistable ranges, one of

them supported the coexistence of the hyp1 and dep1 stationary

states, while the other supported the coexistence of the dep1

stationary states and bursting (Figure 6G). Five cases exhibited

ranges with bistability of the hyp1 state and bursting, along with

bistability of the dep1 state and bursting (Figure 6H). Three

cases exhibited two additional bistable ranges, both involving

the hyp1 and dep1 stationary states, in addition to the range

supporting tristability (Figure 6J).

5. Four ranges of multistability, one of them involving tristability

and the others bistability. Along with a range supporting

Figure 4. One parameter bifurcation diagram of stationary states of the case #861497 with the marked range supporting bursting.
The bifurcation diagram (A) illustrates tristability. The inset (B) is focused on the range of coexistence of hyp1 and dep1 stationary states and bursting
regime. The range of gleak , where the bursting regime is an attractor, is indicated by a navy blue bar. The magenta bar marks the range of coexistence
of the bursting regime and dep1 stationary state. The gleak range supporting tristability, where the neuron can exhibit either the bursting regime,
hyp1 stationary state, or dep1 stationary state is marked by the yellow bar. The range supporting coexistence of hyp1 and dep1 states without a
bursting regime is marked by an orange bar. Notice that the original gleak value (8 nS) from the database (indicated by the blue vertical line) belongs
to the range supporting tristability.
doi:10.1371/journal.pcbi.1002930.g004
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tristability, six cases exhibited a range supporting bistability of

the hyp1 and dep1 stationary states, a range of coexistence of the

dep1 stationary state and bursting, as well as a range of

coexistence of the dep1 and dep2 stationary states (Figure 6I).

In summary, tristability was found in 48 out of 2,223 unique

robust bursting cases (2%). Adding up all multistable cases, we

found that 2,016 cases (91% of the unique robust bursters)

exhibited multistability under some range of gleak values. To assess

the significance of these results we introduced a measure

describing the sensitivity of multistability to variation of the leak

conductance. For each case exhibiting multistability, we calculated

the prevalence of multistability of bursting and silent regimes as

the percentage of the whole range of gleak values supporting

bursting that supported multistability of the stationary states and

robust bursting. A histogram of the prevalence of the multistability

showed a large peak around 17% (Figure 7). The histogram also

had a smaller peak at 100%. Interestingly, all cases with tristability

had the prevalence of 100%. The mean value of the prevalence of

the multistability was 19.6% with the standard deviation 17.7%. If

we drop outliers from consideration by excluding the cases with

prevalence two times larger than the mean value, we obtain the

mean value corresponding to the large peak. This adjusted mean

value was 15.5% with standard deviation 5.6%. This analysis

shows a high prevalence of multistability of bursting and silent

regimes in the dynamics of the leech heart interneuron model.

Multistability in the database
Besides determining the ranges supporting multistability for a

wide range of gleak values, our methodology allowed us to check

for its presence in any case extracted from the robust burster subset of

the database, just by determining whether the original gleak value

belonged to the range supporting coexistence of bursting and other

regimes. This value is marked in Figures 2B,D,F and 4B as a solid

vertical blue line. For the case #1292494, the original gleak

belonged to a range which supported the robust bursting as the

only attractor available (indicated by the navy blue bar), thus no

multistability was observed. For the case #637432 the original

value of gleak belonged to the range supporting multistability of

bursting and hyp1 (the range is indicated by the cyan bar,

Figure 2E,F), while in the case #288298, the original gleakvalue

belonged to the range supporting two regimes, bursting and hyp2

stationary state (indicated by the green bar, Figure 2B). In the case

#861497 the original gleakvalue belonged to a range supporting

hyp1, dep1 and bursting (indicated by a yellow bar) (Figure 4). Thus,

for the last two cases, multistability was already present in the robust

burster subset of the database.

Applying this procedure to all robust burster cases, out of the 2,387

models 421 (18%) were multistable for the original gleak value in

the database. This result is consistent with the results of the

analysis of the prevalence of multistability of bursting and silent

regimes. Out of those 421 cases, 361 exhibit bistability between

bursting and the hyp1 stationary state; 47 cases show bistability of

bursting and the dep1 stationary state; and one case shows

bistability of bursting and the hyp2 stationary state (Figure 6).

Moreover, 12 cases demonstrated tristability: coexistence of

bursting, the hyp1 and dep1 stationary states (Figure 4B and

Figure 5).

Functionality of half-center oscillators built from
multistable neurons

The leech heart interneurons analyzed in the robust burster

database are units of half-center oscillators (HCO) that control the

leech heartbeat. The possibility of one of the cells going into a

silent state presents a potentially dangerous situation for the leech.

As stated previously, the analyzed cases show high prevalence of

multistability of bursting and silence, with 89% of them exhibiting

multistability for some range of gleakvalues. Hence, we developed

the protocol described in the methods section to examine whether

HCOs constructed of multistable neurons regain functional

alternating bursting pattern after a perturbation setting one of

the cells exactly into its stable rest state.

In Figure 8, we present four examples: two with the functional

pattern restored (A,B) and two with both cells caught in the

depolarized rest states (C,D). Either bistable or tristable cases could

be assembled into HCOs resistant to perturbation: a bistable case

#637432 (Figure 8A) exhibiting coexistence of the hyp1 stationary

state and bursting (Figure 2E,F) and a tristable case #861497

(Figures 4,5,8B) demonstrating coexistence of the hyp1 and dep1

stationary states and bursting. For the first case (Figure 8A), when

the synapses were blocked and the bottom cell set into the hyp1

stationary state (red part of the time series), the top cell continued

to burst according to its endogenous dynamics, since it was not

being inhibited. When the synaptic connections were restored

(green part of the time series), the upper cell was in the

hyperpolarized phase of bursting, but already on its way towards

initiation of the next burst. There were no synaptic currents to

perturb the bottom cell towards its bursting regime, so it stayed

Figure 5. Three different regimes of steady state activity are
attractors of a tristable model – two distinct silent states
coexist with bursting. On the bifurcation diagram of case #861497
there is a range of gleak values supporting tristability of bursting, dep1,
and hyp1 regimes (Figure 4B). Here, we used the original database
value, gleak = 8.0 nS. A: the neuron exhibits steady bursting. B: the
neuron exhibits slow damped oscillations towards the hyp1 stationary
state. C: the neuron transiently fires spikes damping onto the dep1
stationary state.
doi:10.1371/journal.pcbi.1002930.g005
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close to the hyp1 stationary state. When the top cell began its burst

(still not inhibited by the bottom cell), the synaptic currents

perturbed the bottom cell out of the basin of attraction of the

stationary state, restoring its bursting activity and the functionality

of the system as a half-center oscillator.

For the second case (Figure 8B), where two tristable cells formed

the HCO, when the synaptic coupling was restored the top cell

was already firing a burst due to its own dynamics. Thus, the

bottom cell was immediately pushed out of the dep1 stable

stationary state into bursting, and the half-center oscillator

recovered its alternating bursting pattern. Similar activity was

obtained when we reset the cell to the hyp1 stationary state, as in

the bistable example (Figure 8A).

The half-center configuration was not always effective in

restoring the functional pattern after this perturbation

(Figure 8C). In the case #820216 a single neuron is tristable. It

exhibits the hyp1 and dep1 rest states and bursting regime. In this

example, both cells ended in the dep1 depolarized stable rest state

after the perturbation. The perturbation set the second cell to the

dep1 rest state during a burst. At the beginning of the perturbation

the first cell was inhibited. Having the inhibition from the second

cell removed the first cell experienced a rebound and ended in the

depolarized rest state too. At the end of the perturbation both cells

were found in their rest states and stayed there afterwards. This

scenario was also observed in the case of an asymmetric HCO

(Figure 8D). We modified the HCO from the previous example by

changing gleak of one cell from 6 nS to 5.9 nS; the other cell

remained at 6 nS. With this value the altered cell was bistable

since the hyp1 stationary state lost stability via an Andronov-Hopf

bifurcation at gleak = 5.951 nS. This difference in the values

between the leak conductance caused strong asymmetry of the

Figure 6. A classification scheme for the cases with multistability. The bifurcation diagrams describe stationary states branches as the
conductance of the leak current is varied and have the ranges supporting bursting marked. There are 10 multistability arrangements classified here:
(A) bursting and the hyp1; (B) bursting with hyp2; (C) a range supporting hyp1 and bursting along with a range supporting dep1 and dep2; (D) a range
of bistability of hyp1 and bursting along with a range of bistability of dep1 and bursting; (E) one range of coexisting hyp1 and dep1 and one range of
coexisting dep1 and bursting; (F) three ranges of coexistence of exactly two regimes: (1) dep1 and dep2, (2) dep1 and bursting, and (3) hyp1 and
bursting; (G) one range of tristability along with a range of coexistence of hyp1 and dep1 and a range of coexistence of dep1 and bursting; (H) one
range of tristability along with a range of bistability of hyp1 and bursting and a range of bistability of dep1 and bursting; (I) Four ranges of
multistability: a range of tristability along with a range of bistability of hyp1 and dep1, a range of bistability of dep1 and bursting, and a range of
bistability of dep1 and dep2; (J) two ranges of bistability of hyp1 and dep1 in addition to a range supporting tristability. The solid (dotted) curves
represent stable (unstable) branches. The navy blue bar underlies the range supporting bursting activity. The other colored bars mark different types
of multistability as indicated in a key.
doi:10.1371/journal.pcbi.1002930.g006

Figure 7. A histogram of prevalence of the multistability of the
silent and bursting regimes. Prevalence of multistability was
calculated as the percentage of the whole range of gleak values
supporting bursting that supports multistability of the stationary states
and robust bursting.
doi:10.1371/journal.pcbi.1002930.g007
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bursting pattern but the perturbation still caused the switch into a

dysfunctional silent regime.

To check whether the recovery of functionality was prevalent

among other half-center oscillators built from multistable units, we

explored the activity of HCOs constructed with the 421 cases that

were multistable in the original database, as described above. Not

all of those models displayed functional activity for the initial

conditions given in [25], so our analysis was restricted to the 353

(84%) that were initially functional for at least one of the initial

conditions. Applying the protocol to this subset, we observed that

in 96% of the cases the HCOs recovered functional bursting after

the perturbation, proving themselves robust against the presence

of multistability involving stationary states. In the remaining 4% of

cases, the HCOs were switched by perturbation into dysfunctional

regimes where both cells were stuck in rest states, or at least one of

them produced damped oscillations around a rest state, tonic

spiking, or irregular bursting.

Discussion

The same identified neurons and their synaptic connections in a

circuit show a high level of variability from preparation to

preparation and yet produce surprisingly similar, appropriate

patterns of activity in accordance with their function [1–4]. This

fact shifts the paradigm in modeling from searches for a canonical

model, which would be perfectly tuned to experimental data,

towards construction of populations of well-tuned cases of a model

[24,25,32]. Application of a brute force database approach showed

that, indeed, multiple sets of parameters produce a model

exhibiting similar, functional activity, i.e., an activity with

characteristics satisfying all constraints measured experimentally

[20,21]. With this study we demonstrate that multistability of

oscillatory and silent regimes can be prevalent in dynamics of

neuronal models and has to be taken into account.

A brute force database is a powerful tool for assessing and

cataloging regimes of neuronal activity [2,19–25,33]. It sweeps

through multidimensional parameter space, obtaining and cate-

gorizing the activities of the model for each parameter set, i.e.,

case. The goal is to describe the activity of each case with maximal

completeness and store it into a database. Since the dynamics of

neurons and networks can be multistable [6,7,10,15–18] to

achieve this goal one has to describe all possible regimes of

activity. In the face of a large number of cases to be analyzed,

which easily reaches an order of magnitude of 10 million, it is not

Figure 8. Perturbation of half-center oscillators constructed from pairs of multistable neurons. Functional alternating bursting pattern
(blue) was interrupted by the perturbation, during which the synaptic interaction was blocked for 5 s (red) and one cell (bottom trace) was reset (not
clamped) to its stable stationary state (one of the two states in the case of tristable cells). After the perturbation, the synaptic interactions were
restored (green). Panels A–C show results for symmetric HCOs with two identical neurons. In the case #637432 neurons exhibit coexistence of the
hyp1 stationary state and bursting (A). In the cases #861497 (B) and #820216 (C) neurons are tristable (coexistence of the hyp1 and dep1 stationary
states and bursting). Panel D shows an example of perturbation of an asymmetric HCO. One neuron (bistable, gleak = 5.9 nS) differs in the leak
conductance from the other neuron (tristable case as in C, gleak = 6.0 nS). The panels A and B represent majority of the cases by showing that an HCO
regains functional bursting after perturbation. Panel C presents an example where the perturbation led to a dysfunctional activity. This dysfunctional
outcome of the perturbation could be observed in asymmetric HCOs as well (D). The difference between the neurons’ leak conductances is reflected
in strong asymmetry in the bursting pattern before the perturbation.
doi:10.1371/journal.pcbi.1002930.g008
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feasible to use more than a few initial sets of state variables (initial

conditions). This turns the investigation of multistability of the

dynamics of each case into a computational challenge. This

computational challenge raises a question: How common is

multistability? If only a negligible number of models show

multistability, it might appear that it is not worth the effort to

investigate the database for multistability.

By using methods developed in the bifurcation theory, we

extended an existing database of a leech heart interneuron,

providing information on stationary states. To demonstrate a

proof of these methods we analyzed a set of important cases in the

database – the cases representing a single neuron which produces

robust endogenous bursting when isolated and functional bursting

when assembled into a half-center oscillator. For each of these

cases we upgraded the database with entries describing all

stationary states found, stable and unstable. The number of

stationary states varied from case to case from 1 to 5. This analysis

also provided new information on possible regimes of activity. We

found that the model could have excitability block, represented by

stable depolarized stationary states, at two different levels of

membrane potential. The highly depolarized one occurs around

+20 mV and is reported here for the first time.

A high percentage of the cases considered showed multistability

of activity regimes. We found that 18% of the cases exhibited the

coexistence of stationary states and bursting. Furthermore,

considering these cases under leak conductance variation, 91%

of them exhibited multistability in some range of leak conduc-

tance. These results complement studies which have established

the prominent role of leak currents as a target of modulation [34–

36]. The results show that modulation of the leak current can lead

not only to transitions between silent, bursting and spiking regimes

but also into and out of the multistable dynamics.

The prevalence of multistable cases in the database of a leech

heart interneuron is intriguing since these neurons pace an

animal’s heartbeat, and multistability of an oscillatory regime and

a stationary state poses a threat to the functionality of the central

pattern generator, which is required to produce a persistent, steady

pattern. These results raise questions concerning how a neuronal

network exhibiting co-existence of functional and dysfunctional

regimes can maintain normal operation in the face of naturally

occurring variation in parameters and external perturbations.

We suggest that the half-center oscillator configuration could

serve as a network-based protective mechanism against instances

of dysfunctional multistability. By analyzing multistable models

coupled via mutual inhibition, we verified that in the majority

(96%) of the robust bursting cases, the functional regime is robust

against tested types of perturbations of initial conditions and

synaptic coupling, showing that multistability involving stationary

states is not necessarily disruptive to HCO functional bursting

activity. This conclusion is consistent with our previous findings

that half-center configuration brings robustness to the CPG

against deviations in the dynamics of the single neurons involved

[10].

The main results presented here were obtained for symmetrical

half-center oscillators with two identical neurons. The alternating

bursting pattern was sensitive to differences in properties of the

two cells, exhibiting a difference between the burst durations of the

two cells (Figure 8D). It seems obvious that there exist no two

identical neurons in living neuronal networks. This notion leads us

to further questions concerning homeostatic mechanisms preserv-

ing functional patterns under variation of cellular properties and

persistence of the dysfunctional regimes [37,38]. In other systems

of coupled endogenously bursting cells, heterogeneity of cellular

properties in the network was shown to eliminate some dynamical

regimes. This effect is particularly prominent in cases of electrically

coupled cells like the b-cells of the islet of Langerhans [39]. In our

model of the leech heartbeat HCO, this mechanism does not

eliminate the high risks of the multistability with rest states

(Figure 8D). The rest states observed in single cells are preserved in

HCOs, if silent cells cannot interact. If a perturbation places both

cells into their stable rest states without the possibility of synaptic

interaction the HCO would remain silent. This consideration

applies to asymmetric HCOs as well. Here we considered a

perturbation less severe but one more likely to happen in a real

system: only one cell was set into a stable rest state. Although most

cases of the leech heartbeat HCO model restored functional

pattern, 4% cases ended in a dysfunctional regime. One could

observe that either a symmetrical or heterogeneous HCO can get

trapped in a silent regime (Figure 8CD).

In our previous studies, the canonical models of a leech heart

interneuron and of a HCO were instrumental in explaining

experimental results and showing predictive power for new

experiments [10,26]. These models capture the electrical activity

of an isolated interneuron and of a HCO under a variety of

experimental conditions [10,26,40–47]. They were developed

following the Hodgkin-Huxley formalism, and have incorporated

the kinetics of currents measured in voltage-clamp experiments.

These models provide a solid framework for studies of the

variability of cellular properties among animals. As these models

have been so valuable as a predictive tool in the past [10,44,47],

we anticipate that the predictions made with the brute-force

database of these models are credible. Our results suggest that it

would be much easier to detect the multistability in the

pharmacologically isolated neurons first, since the half-center

motifs of the CPG circuit can restore functional bursting pattern in

the face of potentially disruptive multistability. We predict that

multistability of bursting and silent regimes can be demonstrated

experimentally by increasing the leak conductance using a

dynamic clamp technique [10]. To achieve this demonstration,

we would have to solve a number of technical issues: the dynamic

clamp requires intracellular recording with sharp microelectrodes.

Such electrodes add significant leak. When applied to the leech

heart interneurons, these electrodes transform the regime of

neuronal activity from endogenously bursting into endogenously

tonically spiking. In future we plan to identify modifications of

ionic and leak currents (using Dynamic Clamp, e.g.), which would

allow us to record endogenously bursting and silent regimes of the

leech heart interneurons while recording intracellularly. Having

this milestone achieved, we anticipate detecting multistability of

the bursting and silent regimes within the border region between

the transitions from silence into bursting and from bursting into

silence. On the other hand, multistability could play unknown

important roles in normal functioning of the leech heart CPG.

Multifunctional central pattern generators
Multistability of single neurons could be a valuable requisite

property for a variety of functions executed by neuronal networks.

Multistable neurons are a substrate for memory units, toggle

switches, and elements of multifunctional central pattern gener-

ators. A multifunctional central pattern generator is a neuronal

network which can centrally generate more than one functional

rhythmic motor pattern [48–56]. Studies of multifunctional CPGs

in invertebrate preparations benefit from multiple advantages: the

neuronal circuits can be described in terms of identified neurons

and the connections between them. For example, in the medicinal

leech there is a set of interneurons contributing to either a slow

pattern, producing crawling, or a fast pattern, producing

swimming. In the jellyfish Aglantha digitale multistability in the

Multistability of Bursting and Stationary Regimes

PLOS Computational Biology | www.ploscompbiol.org 10 March 2013 | Volume 9 | Issue 3 | e1002930



dynamics of single neurons is implicated in mechanisms under-

lying two different behaviors. This jellyfish shows two different

swimming patterns: it swims slowly when feeding and rapidly

when escaping [48]. These two different modes of swimming are

driven by motoneurons and are explained by the fact that these

motoneurons exhibit two regimes of spike propagation, a slow one

based on T-type calcium current and a fast one driven by sodium

current. The mechanisms of multistability are generally not well

understood, however.

Mechanisms of multistability
The mechanisms underlying multistability can be thoroughly

studied by applying the theory of dynamical systems [5,6–

8,11,16,17,54,57–63]. A key ingredient of a description of a

mechanism is the identification of the unstable regime(s) which

creates the boundary separating observable regimes. Among such

unstable regimes leading to multistability, the most ubiquitous are

saddle stationary states and saddle periodic orbits [60]. Using

Morris- Lecar model as an example, Rinzel and Ermentrout

showed two different mechanisms of bistability of spiking and

silence [60]. In one case the stable manifold of a saddle stationary

state separated a stable stationary state from limit cycle

representing spiking activity, and in the other case the saddle

periodic orbit separated these regimes [60]. In a mechanism

described by Rinzel, an unstable periodic orbit representing

unstable sub-threshold oscillations is responsible for the co-

existence of periodic tonic spiking and silent regimes [5,6]. The

stable manifold of the periodic orbit separates silent and periodic

spiking regimes [5]. Even a simple model of a single neuron can

show a variety of different mechanisms underlying the coexistence

of silence, subthreshold oscillations, spiking, and bursting in

different combinations. In our previous work, we described six

different types of multistability in a single simplified model [18].

Information on the bifurcations limiting the unstable regime is also

important for understanding multistability in the neuronal

dynamics and for description of the mechanisms of multistability

[5,6,16–18,60,61]. Rinzel showed mechanisms of multistability

which involve fold bifurcations for the stationary states and

periodic orbits, homoclinic bifurcation, and torus bifurcation

[61,62]. The slow-fast decomposition techniques are instrumental

in the analysis of the mechanisms supporting multistability [60–

63]. They allow thorough description of multistability in terms of

the averaged dynamics of the slow variables [2,6,11,40,41,58–63].

The methods described here allow one to determine stationary

states of the full model, stable and unstable, and to conduct large

scale screening of a model database for new mechanisms of

multistability, stationary states and other observed regimes. The

brute-force database approach is a promising tool for screening

cases of a model for novel mechanisms supporting multistability.

Author Contributions

Conceived and designed the experiments: BM RLC GSC. Performed the

experiments: BM WHB GSC. Analyzed the data: BM WHB GSC.

Contributed reagents/materials/analysis tools: BM ADM RLC GSC.

Wrote the paper: BM WHB ADM RLC GSC.

References

1. Golowasch J, Goldman MS, Abbott LF, Marder E (2002) Failure of averaging in

the construction of a conductance-based neuron model. J Neurophysiol 87:

1129–1131.

2. Marder E, Goaillard JM (2006) Variability, compensation and homeostasis in

neuron and network function. Nat Rev Neurosci 7: 563–574.

3. Norris BJ, Wenning A, Wright TM, Calabrese RL (2011) Constancy and

variability in the output of a central pattern generator. J Neurosci 31: 4663–

4674.

4. Roffman RC, Norris BJ, Calabrese RL (2011) Animal-to-animal variability of

connection strength in the leech heartbeat central pattern generator.

J Neurophysiol 107:1681–1693.

5. Rinzel J (1978) On repetitive activity in nerve. Fed Proc 37:2793–2802.

6. Guttman R, Lewis S, Rinzel J (1980) Control of repetitive firing in squid axon

membrane as a model for a neuroneoscillator. J Physiol 305:377–395.

7. Lechner HA, Baxter DA, Clark JW, Byrne JH (1996) Bistability and its

regulation by serotonin in the endogenously bursting neuron R15 in Aplysia.

J Neurophysiol 75:957–962.

8. Butera RJ (1998) Multirhythmic bursting. Chaos 8:274–284.

9. Hsiao CF, Del Negro CA, Trueblood PR, Chandler SH (1998) Ionic basis for

serotonin-induced bistable membrane properties in guinea pig trigeminal

motoneurons. J Neurophysiol 79: 2847–2856.

10. Cymbalyuk GS, Gaudry Q, Masino MA, Calabrese RL (2002) Bursting in leech

heart interneurons: cell-autonomous and network-based mechanisms. J Neurosci

22: 10580–10592.

11. Cymbalyuk G, Shilnikov A (2005) Coexistence of tonic spiking oscillations in a

leech neuron model. J Comput Neurosci 18: 255–263.

12. Shilnikov A, Calabrese RL, Cymbalyuk G (2005) Mechanism of bistability: tonic

spiking and bursting in a neuron model. Phys Rev E 71: 056214.

13. Crunelli V, Toth TI, Cope DW, Blethyn K, Hughes SW (2005) The ‘window’

T-type calcium current in brain dynamics of different behavioural states.

J Physiol 562: 121–129.
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