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A B S T R A C T   

Background: Paraquat (PQ) is a herbicide that is used globally in the agriculture sector to eradicate 
unwanted weeds, however it also induces significant damages in various organs of the body such 
as testes. Tectochrysin (TEC) is an important flavonoid that shows versatile therapeutic poten-
tials. Currently, there is no established antidote to cure PQ-induced testicular toxicity. 
Objective: The present study was conducted to evaluate the ameliorative effects of TEC against PQ 
prompted testicular damage. 
Methods: Sprague-Dawley rats (n = 48) were used to conduct the trial. Rats were allocated in to 4 
groups i.e., Control, PQ administrated group (5 mgkg− 1), PQ + TEC co-administrated group (5 
mgkg− 1 + 2.5 mgkg− 1) and TEC only administrated group (2.5 mgkg− 1). The trial was conducted 
for 8 weeks. The activity of anti-oxidants and the levels of MDA and ROS were determined by 
spectrophotometric method. Steroidogenic enzymes as well as apoptotic markers expressions 
were evaluated by qRT-PCR. The level of hormones and inflammatory indices was quantified by 
enzyme-linked immunosorbent assay. 
Results: PQ exposure markedly (P < 0.05) disturbed the biochemical, spermatogenic and histo-
logical profile in the rats. Nevertheless, TEC treatment considerably (P < 0.05) increased CAT, 
GPx GSR and SOD activity, besides decreasing MDA and ROS contents. TEC administration also 
increased sperm viability, count and motility. 17β-HSD, 3β-HSD, StAR and Bcl-2 expressions were 
also increased following TEC administration. The supplementation of TEC substantially (P <
0.05) decreased Bax, Caspase-3 expression and the levels of inflammatory markers i.e., inter-
leukin-1β (IL-1β), interleukin-6 (IL-6), nuclear factor kappa-B (NF-κB), tumor necrosis factor-α 
(TNF-α) and cyclooxygenase-2 (COX-2) activity. Additionally, the levels of plasma testosterone, 
follicle-stimulating hormone (FSH) and luteinizing hormone (LH) were increased following TEC 
supplementation. Furthermore, TEC supplementation considerably decreased sperm structural 
abnormalities and histomorphological damages of the testes. The mitigative role of TEC might be 
due to its anti-inflammatory, anti-apoptotic, androgenic and anti-oxidant potentials. 
Conclusion: Taken together, it is concluded that TEC can be used as a potential candidate to treat 
testicular toxicity.  
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1. Introduction 

Paraquat (PQ) acts as herbicide in agriculture to inhibit the growth of different weeds [1,2]. Due to its low cost and high efficiency, 
it has replaced other pesticides that became less effective due to plant resistance [3,4]. Therefore, PQ is used as a herbicide in many 
countries due to its low cost of production [5]. PQ shows low volatile potential and high-water solubility [6], therefore, its exposure 
can induce serious health issues [7]. Humans are generally subjected to PQ through dermal contact or mouth and its acute exposure 
can cause death within 3.5 hours [8]. The rate of PQ induced toxicity has been increased in developing countries [9,10]. PQ toxicity 
causes respiratory failure and induces damage in the hepatocytes, adrenal glands, kidneys, lungs, immune system and heart [11]. 
Moreover, neurological degenerative diseases in rats have also been reported following PQ exposure [12]. 

Testes are the vital organs that contain seminiferous tubules responsible for the sperm production [1]. Various exogenous chemicals 
may affect sperm production and maturation in testes [13]. PQ suppresses the endogenous anti-oxidant enzymes and generates free 
radicals [14]. These free radicals stimulate the ROS production in the testicular tissues, which eventually prompts oxidative stress (OS) 
that can impair the Leydig and Sertoli cells [15,16]. Any disturbance in these cells may interfere with spermatogenesis. Moreover, PQ 
exposure instigates sperm mitochondrial damage that eventually reduces the formation of ATP necessary for sperm motility [17]. 
Previous literature has reported that PQ intoxication loweres hormonal levels (FSH, LH and testosterone) and anti-oxidant activities 
[14,18,19]. 

Flavonoids belong to a family of hydroxylated phenolic compounds that are getting attention due to their multiple pharmacological 
properties [20,21]. They are reported to show anti-inflammatory, anti-cancer and anti-oxidant potentials [22,23]. Tectochrysin (TEC) 
is a flavone that is present in many plants [24], particularly, edible species such as propolis [25] Lychnophora markgravii [26] and 
Alpinia oxyphylla Miq [27]. TEC demonstrates anti-microbial, anti-cancer [26,28] anti-diarrheal [29] anti-oxidant and 
anti-inflammatory [24,30] properties. Moreover, the supplementation of TEC improves the spatial memory performance in mice [31]. 

To overcome PQ induced testicular toxicity, a detailed investigation on plant-based remedies was required. Therefore, based on the 
abovementioned pharmacological potentials of TEC, the current study was formulated to assess the attenuative role of TEC against PQ 
induced testicular impairments. 

2. Materials and methods 

2.1. Chemicals 

PQ (Molecular Weight: 257.16, CAS No: 75365-73-0) and TEC (CAS No: 520-28-5, Molecular Weight: 268.26) were purchased from 
Sigma-Aldrich (Germany). 

2.2. Experimental animals 

Sprague-Dawley rats (body weight 200 ± 30g, n = 48) were kept in the research station of University of Agriculture, Faisalabad by 
using steel cages. The experiment was performed under standard environmental conditions i.e., 23–25 ◦C temperature and photo-
period of 12 h day/night cycle were maintained. Balanced rodent diet and tap water was supplied to all the animals. Rats were handled 
in line with instructions of European Union of Animal experimentation and Care (CEE Council 86/609) that were further approved by 
UAF ethical committee (DGS/18657–60/19–05–2022). 

2.3. Experimental protocol 

Four groups were made, each consisting of 12 rats and exposed to different regiments for 8 weeks. These groups included control, 
PQ group (5 mgkg− 1), PQ + TEC group (5 mgkg− 1 + 2.5 mgkg− 1) and TEC group (2.5 mgkg− 1). The doses were administered with an 
oral gavage. After 8 weeks of trial, the rats were sedated, cardiac blood was gathered and centrifuged for 15 min (3000 rpm) to isolate 
the plasma. The plasma was stored at − 20 ◦C for analysis. Testes were collected and right testis was kept in formalin for histological 
analysis. Left testis was kept at − 80 ◦C for biochemical analysis. Testicles were homogenized in Na3PO4 buffer solution at 12000 rpm 
for 14–15 min. Finally, various parameters were evaluated using the supernatant. 

2.4. Biochemical analysis 

2.4.1. Catalase (CAT) 
The method described by Aebi [32] was followed to evaluate CAT activity. 0.4 mL of 5.9 mM H2O2, 2.5 mL of 50 mM phosphate 

buffer (pH 5.0) and 0.1 mL of enzyme extract were used to make reaction mixture. At 240 nm, variations in the mixture’s absorbance 
were recorded. A change in absorbance of 0.01 units per minute was considered to quantify CAT activity. 

2.4.2. Superoxide dismutase (SOD) 
SOD activity was evaluated by following the practice of Kakkar et al. [33]. The reaction mixture consisted of 0.1 mL of phenazine 

methosulphate (186 mM) and 1.2 mL of sodium pyrophosphate buffer (0.052 mM; pH 7.0). The reaction solution was mixed with 0.3 
mL of supernatant obtained from centrifugation of the homogenate at 10,000×g for 15 min. Then, 0.2 mL of NADH (780 mM) was 
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poured to trigger reaction and it was terminated by pouring glacial acetic acid (1 mL). Lastly, the quantity of chromogen was 
determined by observing the color intensity change (at 560 nm). The activity of SOD was denoted as units/mg protein. 

2.4.3. Glutathione peroxidase (GPx) 
GPx activity was appraised by using Rotruck et al. [34] technique. The components of reaction mixture were 0.2 mL of 10 mM 

glutathione, 0.5 mL of 0.2 mM H2O2, 2.0 mL of 0.4 M Tris-HCl buffer (pH 7.0) and 0.01 mL of 10 mM sodium azide. After incubation for 
10 min at 37 ◦C, 0.4 mL of 10 % (v/v) TCA was used to terminate the reaction. After centrifuging the mixture at 5000 rpm, for 5 min 
absorbance was noted at 430 nm. Values were presented as unit/mg protein. 

Glutathione reductase (GSR) 
Carlberg and Mannervik strategy [35] was employed to determine GSR activity. The reaction mixture (2 mL volume) contained: 

1.65 mL of phosphate buffer (0.1 M, pH 7.6), 0.05 mL of oxidized glutathione (1 mM), 0.1 mL homogenate (10 %) as well as 0.1 mL 
NADPH (0.1 mM). GSR activity was quantified by observing the decrease in NADPH at 340 nm. 

2.4.4. Assessment of MDA 
MDA content was determined by using Afsar et al. method [36]. Thiobarbituric acid reactive compounds assessment was carried 

out by examining against standard curve of MDA (equivalents) generated by 3 tetramethoxy propane and acid-catalyzed hydrolysis of 
1, 1, 3. The resultant values were denoted by standard unit (nmoL/mg protein). 

2.4.5. Assessment of ROS 
ROS level was ascertained by using 2′, 7′-dichlorofluorescein diacetate (DCFH-DA). 100 μL of 2 mg/mL DCFH-DA was reacted with 

100 μL of cell lysates. Following the period (30 min) of incubation at 37 ◦C, fluorescence change was observed employing fluorescence 
plate reader. The wavelength of excitation was measured at 488 mm, while emission wavelength was determined at 525 mm when 
both the wavelengths were set accordingly. Result was displayed as relative fluorescence unit (RFU) per mg protein. 

2.5. Assessment of inflammatory indices 

ELISA kits (Cloud-crone Corp. USA) were used to assess IL-1β (CSB-E08055r), NF-kB (CSB-E13148r), IL-6 (CSB-E04640r), TNF-α 
(CSB-E07379r) levels and COX-2 (CSB-E13399r) activity, by following the company instructions. 50 μL of sample was dispensed in the 
microplate wells. Subsequently, 50 μL of an antibody cocktail were added to each well.Incubated was accomplished at room tem-
perature for 1 h. After washing with the wash buffer, 100 μL of TMB substrates were added and allowed to incubate for 10 min. The 
color was produced when 100 μL of stop solution was mixed. Tecan Multimode Reader was used to quantify optical density at 450 nm. 

2.6. Evaluation of sperm indices 

Sperm count was appraised by using a hemocytometer, as demonstrated by Yokoi et al. [37]. The left epididymal region was gently 
crushed in 5 mL saline solution. To dilute the supernatant, a solution consisting of 1 mL of formalin, 25 mg eosin/100 mL of distilled 
water and 5g of sodium bicarbonate was taken at a ratio of 1:100. After that, 10 μL drops of the aforesaid combination was put in a 
sperm count chamber and analyzed microscopically (400X). Moreover, the semen samples were observed to quantify sperm motility by 
using the method delineated by Kenjale et al. [38]. The sperm viability was evaluated by staining the samples using eosin-nigrosin and 
then observed under a microscope [39]. Furthermore, the protocol of Correia et al. [40] was used to assess sperm anomalies. 

2.7. Hypo-osmotic swelling test (HOS) 

HOS test was employed to evaluate sperm integrity by using the method of Correa and Zavos [41]. HOS test was performed by 
adding 20 μL of semen in 180 μL of fructose solution and maintained at 70 mOsm/L osmotic pressure for 25 min. After incubation, the 
specimens were examined under a microscope at 400X and stained with eosin or nigrosin. 

2.8. Assessment of hormonal level 

Plasma testosterone (serial no. H090), LH (serial no. H206) and FSH (serial no. H101) levels were measured using (ELISA) kits by 
following the company’s instructions (Los Angeles, CA, USA). ELISA plate was filled with assay diluent (50 μL) as well as plasma (10 
μL). Incubation was carried out for 120 min at room temperature. Following through washing with deionized water, the plates were 
incubated for 2 h then 100 μL of peroxidase-conjugated immunoglobulin G (IgG) anti-LH, anti-FSH or anti-testosterone was added to 
each well. Plates were once again washed with deionized water, then wells were filled with substrate solution following the incubation 
period (25 min) at room temperature. To terminate the reaction, stop solution (50 μL) was used. Finally, the absorbance of plasma 
testosterone, LH, and FSH was measured at 450 nm. 

2.9. Real-time polymerase chain reaction (qRT-PCR) 

Steroidogenic enzymes and apoptotic markers expressions were estimated by RT-qPCR. Total RNA was separated employing TRIzol 
reagent and cDNA was generated by using a Fast Quant RT kit (China). The relative expressions of these parameters were determined 
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by 2− ΔΔCT and β-actin was considered as an internal control [42]. Primer sequence of targeted genes are presented in Table 1 [43]. 

2.10. Histopathology 

The testicular tissues were washed using normal saline solution and fixed in formalin (10 %). After that testicular tissues were 
dehydrated by using alcohol and fixed in paraffin wax. Using a microtome 5 μm slices were made and slides were dipped in tape water 
for 1 min. Hematoxylin stain was poured onto the slides for 5 min. Slides were again dipped in tape water for 1 min and then 
transferred to a jar containing 1 % acid alcohol and washed in tape water. Finally, 1 % eosin was poured onto the slides for 30–60 
seconds and washed with tape water and observed under a microscope. The analysis of microphotographs were carried out by using 
Image-J2X. 

2.11. Statistics 

Data were shown as Mean ± SEM. The assessment of normality was carried out by employing Shapiro-Wilk test. Minitab was used 
to perform statistical analysis followed by one-way ANOVA and Tukey’s test. The level of significance was set at P < 0.05. 

3. Results 

3.1. Protective potential of TEC on oxidants 

Exposure to PQ noticeably (P < 0.05) lowered anti-oxidants activity and considerably increased MDA and ROS contents with 
respect to control rats. Nevertheless, PQ + TEC administration considerably (P < 0.05) improved anti-oxidants activity, while 
decreasing ROS and MDA levels with respect to PQ administered rats. The rats administered with TEC alone showed the values of these 
parameters comparable to control rats (Table 2). 

3.2. Protective potential of TEC on inflammatory mediators 

IL-6, NF-κB, IL-1β, TNF-α levels and COX-2 activity were markedly (P < 0.05) increased after exposure to PQ with respect to control 
rats. Nonetheless, a substantial decrease in the aforementioned markers was noticed in PQ + TEC rats as compared to PQ-treated rats. 
Moreover, inflammatory indices in TEC administered group were compareable to control group (Table 3). 

3.3. Protective potential of TEC on spermatogenic profile 

A remarkable (P < 0.05) decrease was observed in sperm motility, count and viability after PQ exposure. Conversely, PQ-treated 
rats showed more sperm abnormalities as compared to control group. The co-treated group (PQ + TEC) showed improvements in 
sperm viability, motility and count, while a decrease in sperm structural abnormalities was noticed with respect to PQ intoxicated 
group. Moreover, the semen profile of TEConly treated group was comparable to control (Table 4). 

3.4. Protective potential of TEC on hormonal profile 

The results of the hormonal assay revealed that PQ exposure prompted a notable (P < 0.05) reduction in FSH, LH and testosterone 
level with respect to control group. Conversely, in PQ + TEC group the hormonal levels were considerably increased with respect to 
PQ-treated group. Moreover, TEC only treated rats showed a normal hormonal profile as in the control group (Table 5). 

Table 1 
Primers sequences for qRT-PCR.  

Gene Primers 5′-3′ Accession number 

3β-HSD Forward: GCATCCTGAAAAATGGTGGC NM_001007719 
Reverse: GCCACATTGCCTACATACAC  

17β-HSD Forward: CAGCTTCCAAGGCTTTTGTG NM_054007 
Reverse: CAGGTTTCAGCTCCAATCGT  

StAR Forward: AAAAGGCCTTGGGCATACTC NM_031558 
Reverse: CATAGAGTCTGTCCATGGGC  

Bax Forward: GGCCTTTTTGCTACAGGGTT NM_017059.2 
Reverse: AGCTCCATGTTGTTGTCCAG  

Bcl-2 Forward: ACAACATCGCTCTGTGGAT NM_016993.1 
Reverse: TCAGAGACAGCCAGGAGAA  

Caspase-3 Forward: ATCCATGGAAGCAAGTCGAT NM_012922.2 
Reverse: CCTTTTGCTGTGATCTTCCT  

β-actin Forward: TACAGCTTCACCACCACAGC NM_031144 
Reverse: GGAACCGCTCATTGCCGATA   
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3.5. Protective potential of TEC on anti-apoptotic and apoptotic markers 

The results of apoptotic and anti-apoptotic assay demonstrated that PQ exposure prompted a substantial (P < 0.05) up-regulation in 
Caspase-3, Bax expressions and a decline in Bcl-2 expression with respect to control group. However, PQ + TEC group showed upsurge 
in Bcl-2 expression and a notable downregulation in Caspase-3 and Bax expression as compared to PQ treated group. Furthermore, in 
TEC only treated rats the aforementioned expressions were comparable to control group [Fig. 1(a-c)]. 

Table 2 
Effects of PQ + TEC on the biochemical markers.   

Parameters 
Groups 

Control PQ PQ + TEC TEC 

CAT (U/mg protein) 10.39 ± 0.27 4.97 ± 0.08# 8.67 ± 0.18* 10.43 ± 0.26* 
GPx (U/mg protein) 26.49 ± 0.38 11.10 ± 0.30# 20.23 ± 0.78* 26.61 ± 0.47* 
SOD (U/mg protein) 8.45 ± 0.17 3.61 ± 0.05# 7.04 ± 0.19* 8.49 ± 0.16* 
GSR (nM NADPH oxidized/min/mg tissue) 6.52 ± 0.12 2.56 ± 0.21# 5.32 ± 0.19* 6.61 ± 0.12* 
MDA (nmol/mL) 0.59 ± 0.07 3.51 ± 0.13# 1.57 ± 0.08* 0.56 ± 0.08* 
ROS (RFU/ mg protein) 0.65 ± 0.04 5.29 ± 0.18# 1.21 ± 0.15* 0.62 ± 0.07* 

Values are shown on the basis of Mean ± SEM. Significant differences are displayed as # P < 0.05 compared to control, * P < 0.05 compared to PQ 
treated group. All the values in this table are based on 12 biological replicates per group with 3 technical replicates of each. 

Table 3 
Effects of PQ + TEC on the inflammatory markers.   

Parameters 
Groups 

Control PQ PQ + TEC TEC 

NF-κB (ng/g tissue) 15.46 ± 1.33 85.67 ± 2.09# 33.59 ± 1.12* 15.39 ± 1.33* 
TNF-α (ng/g tissue) 11.62 ± 0.18 43.70 ± 2.40# 19.51 ± 1.09* 10.81 ± 0.18* 
1L-1β (ng/g tissue) 17.40 ± 1.22 82.66 ± 0.57# 38.84 ± 1.39* 17.33 ± 1.21* 
IL-6 (ng/g tissue) 5.85 ± 1.06 61.58 ± 1.64# 16.51 ± 1.58* 5.72 ± 0.96* 
COX-2 (ng/g tissue) 24.39 ± 1.22 75.94 ± 1.35# 32.55 ± 0.68* 24.30 ± 1.26* 

Values are shown on the basis of Mean ± SEM. Significant differences are displayed as # P < 0.05 compared to control, * P < 0.05 compared to PQ 
treated group. All the values in this table are based on 12 biological replicates per group with 3 technical replicates of each. 

Table 4 
Effects of PQ + TEC on sperm parameters.  

Parameters Groups 

Control PQ PQ + TEC TEC 

Epididymal sperm count (million/mL) 21.96 ± 0.86 7.12 ± 0.20# 16.62 ± 0.71* 22.21 ± 0.92* 
Sperm motility (%) 87.37 ± 1.15 29.78 ± 0.79# 71.05 ± 1.10* 87.48 ± 1.21* 
Dead sperm (%) 8.40 ± 0.15 80.40 ± 0.55# 23.93 ± 0.86* 8.30 ± 0.09* 
Head abnormality (U/mg protein) 4.35 ± 0.10 34.20 ± 1.29# 8.75 ± 0.46* 4.32 ± 0.09* 
Mid sperm abnormality (%) 0.69 ± 0.03 6.74 ± 0.11# 2.71 ± 0.08* 0.67 ± 0.04* 
Tail abnormality (%) 3.39 ± 0.12 25.26 ± 0.76# 6.76 ± 0.35* 3.36 ± 0.13* 
Hypo- osmotic swelled sperm count (HOS) (%) 84.10 ± 1.30 23.44 ± 1.21# 71.19 ± 1.39* 84.36 ± 1.48* 

Values are shown on the basis of Mean ± SEM. Significant differences are displayed as # P < 0.05 compared to control, * P < 0.05 compared to PQ 
treated group. All the values in this table are based on 12 biological replicates per group with 3 technical replicates of each. 

Table 5 
Effects of PQ + TEC on hormonal level.   

Parameters 
Groups 

Control PQ PQ + TEC TEC 

Plasma Testosterone (ng/mL) 5.07 ± 0.10 2.47 ± 0.09# 4.22 ± 0.09* 5.12 ± 0.10* 
LH (ng/mL) 2.60 ± 0.07 0.58 ± 0.11# 1.99 ± 0.12* 2.64 ± 0.09* 
FSH (ng/mL) 4.13 ± 0.11 1.06 ± 0.12# 3.78 ± 0.07* 4.27 ± 0.12* 

Values are shown on the basis of Mean ± SEM. Significant differences are displayed as # P < 0.05 compared to control, * P < 0.05 compared to PQ 
treated group. All the values in this table are based on 12 biological replicates per group with 3 technical replicates of each. 
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3.6. Protective potential of TEC on steroidogenic enzymes profile 

PQ exposure noticeably (P < 0.05) decreased the expressions of 3β-HSD, StAR and 17β-HSD. Whereas, a substantial increase in 
these expressions was observed in co-treated (PQ + TEC) group as compared to PQ intoxicated group. Moreover, in TEC only treated 
group the expression of these markers was compareable to the control group [Fig. 2(a-c)]. 

3.7. Protective potential of TEC on testicular histology 

PQ treatment induced severe histological damage in the testicular tissues, including lowered seminiferous epithelial height, tunica 
propria width along with seminiferous tubular diameter. On the other hand, interstitial spaces (IS) along with tubular lumen (TL) 
showed a substantial increase with respect to control group. Conversely, PQ + TEC co-administration markedly regained tunica 
propria thickness, epithelial height as well as seminiferous tubular diameter, besides IS and TL were lowered in comparison to the PQ 
intoxicated rats. Additionally, in the TEC treated rats the histological profile was close to control rats [Table 6, Fig. 3(a-d)]. 

4. Discussion 

Environmental and industrial toxicants can potentially cause male infertility. These toxic chemicals disrupt endocrine system that 
leads to reproductive abnormalities or infertility [44]. PQ is a herbicide that deteriorates semen quality and induces germ cell 
apoptosis by increasing OS [45,46]. Moreover, PQ administration may trigger cytotoxic damage to the male reproductive tract [47]. 
Plant-based compounds are getting attention owing to their potential pharmacological effects [22,23]. TEC is a phytochemical that 
shows anti-apoptotic, anti-oxidant and anti-inflammatory activities [24,26,28]. Therefore, the current study was intended to appraise 
the sheilding effect of TEC on PQ-prompted testicular impairments. 

PQ intoxication remarkably lowered CAT, GPx, GSR and SOD activities, whereas the levels of MDA and ROS were elevated in the 
testicular tissues. ROS induces adverse effects on biological molecules (DNA, lipid and protein) by inducing OS [48,49]. Hydroxyl free 
radicals, hydrogen peroxide along with superoxide anion are the main oxidative species [50]. These free radicals attack the testicular 

Fig. 1. The effects of PQ and TEC on (a) Bax (b) Bcl-2 and (c) Caspase-3 expression. Bars are based on Mean ± SEM. Significant differences are 
displayed as # P < 0.05 compared to control, * P < 0.05 compared to PQ treated group. All the graphs in this figure are based on 12 biological 
replicates per group with 3 technical replicates of each. 
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antioxidant enzymes and impair the whole organ [51]. Moreover, ROS can attack PUAFs in the plasma membrane of sperm and 
triggers lipid peroxidation (LP) [52]. During LP, MDA is released as a byproduct and its level can indirectly reveal the damage that 
results due to LP and ROS [53]. CAT is a major enzyme of the antioxidant system that is involved in H2O2 catabolism [54]. SOD is 
another free radical-scavenging enzyme that neutralizes the superoxide radicals by reducing them into O2 and H2O2 [55]. GSR 
maintains GSH concentration, which is essential for the continue activity of GPx [56]. However, TEC + PQ co-treatment significantly 
increased the anti-oxidants activities, besides lowering MDA and ROS contents. Flavonoids display anti-oxidant activity due to the 
presence of phenolic rings and OH groups in their structural formula [57]. The results of our experiment showed compatibility with the 
study of Lee et al. [58], who performed an in vivo experiment and reported that TEC significantly increased the activity of anti-oxidant 

Fig. 2. The effects of PQ and TEC on steroidogenic enzymes expression: (a) 17β-HSD (b) 3β-HSD (c) StAR. Bars are based on Mean ± SEM. Sig-
nificant differences are displayed as # P < 0.05 compared to control, * P < 0.05 compared to PQ treated group. All the graphs in this figure are based 
on 12 biological replicates per group with 3 technical replicates of each. 

Table 6 
Effects of PQ + TEC on testicular histology.   

Parameters 
Groups 

Control PQ PQ + TEC TEC 

Interstitial Space (μm) 7.89 ± 0.54 75.39 ± 1.79# 18.94 ± 1.33* 7.79 ± 0.45* 
Tunica propria (μm) 64.77 ± 1.05 12.82 ± 0.77# 35.47 ± 1.27* 65.25 ± 1.01* 
Diameter of tubules (μm) 386.01 ± 6.81 110.38 ± 7.72# 278.10 ± 8.98* 388.49 ± 7.16* 
Seminiferous tubule epithelial height (μm) 89.47 ± 1.46 22.62 ± 1.01# 78.72 ± 1.73* 89.94 ± 1.78* 
Tubular lumen (μm) 18.74 ± 1.44 74.32 ± 1.27# 35.60 ± 1.07* 18.58 ± 1.43* 
Spermatogonia (n) 64.65 ± 1.23 19.67 ± 1.12# 57.63 ± 1.02* 64.72 ± 1.27* 
Primary spermatocytes (n) 59.83 ± 1.43 21.69 ± 0.79# 45.37 ± 1.26* 59.97 ± 1.47* 
Secondary spermatocytes (n) 55.52 ± 1.26 18.48 ± 0.63# 47.34 ± 1.09* 55.59 ± 1.27* 
Spermatids (n) 51.53 ± 1.42 12.74 ± 1.51# 42.22 ± 1.57* 51.74 ± 1.52* 

Values are shown on the basis of Mean ± SEM. Significant differences are displayed as # P < 0.05 compared to control, * P < 0.05 compared to PQ 
treated group. All the values in this table are based on 12 biological replicates per group with 3 technical replicates of each. 
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enzymes and lowered the level of MDA. 
PQ exposure significantly reduced sperm quantity, motility along with sperm viability. Besides the morphological abnormalities of 

sperms i.e., head, midpiece and tail were increased. According to previous literature, sperms are highly susceptible to free radicals 
[59]. Excessive ROS can disrupt the PUAFs of sperm membrane by inducing LP. This process adversely effects the permeability and 
fluidity of the plasma membrane of male germ cells [60]. Our results are in line with the study of Wasiu and Abdulfatai [61], who 
reported that PQ administration resulted in oxidative stress which eventually reduced sperm motility and sperm count. Furthermore, 
OS produced due to high ROS concentration adversely affects the mitochondria of sperm and disturbs the production of ATP. Reduced 
production of ATP decreases flagellar activity of spermatozoa that induces immobility and apoptotic death of male gametes [60]. 
However, TEC treatment significantly mitigated all these impairments due to its ROS-scavenging property. 

PQ intoxication considerably increased the levels of inflammatory markers. Various oxidizing agents stimulate the activation of NF- 
κB, a crucial redox-responsive transcriptional factor that has a primary role in the expression of other pro-inflammatory mediators (IL- 
1β, TNF-α, IL-6) [62]. A high level of pro-inflammatory mediator promotes the process of inflammation [63]. Moreover, COX-2 also 
performs a pivotal role in cellular inflammation [64]. However, TEC supplementation significantly reduced the levels of NF-κB, IL-1β, 
TNF-α, IL-6 and the activity of COX-2. Hou et al. [24] revealed that the chemical strcture of TEC such as double bond at C2–C3 and 
7-OCH3 on its A-ring are responsible for its anti-inflammatory property. Our results are also confirmed by a previous study [65], which 
reported that TEC treatment reduced the inflammatory indices in the liver of rats. 

According to our findings, exposure to PQ dramatically lowered plasma testosterone, FSH, and LH levels. The hypothalamic- 
pituitary-gonadal (HPG) axis controls fertility and reproduction [66]. The production of testosterone is very crucial for male repro-
ductive potential [67]. FSH is a glycoprotein polypeptide hormone that enhances sperm maturation and indirectly regulates testicular 
function [68]. LH mediates the synthesis of testosterone by Leydig cells, which is essential for sperm production [69]. Thus, the process 
of spermatogenesis depends on an appropriate ratio of LH, FSH and testosterone in testicular tissues [70]. According to Soni et al. [71], 
PQ affects the HPG axis that eventually disturbs the reproductive system. Nevertheless, TEC treatment significantly improved the 
hormonal levels that may be due to its regulatory effects on HPG axis. 

3β-HSD, 17β-HSD and StAR expressions were markedly reduced following the PQ exposure. These enzymes play a vital role in the 
production of steroid hormone (testosterone) [72]. In males, testosterone is responsible for gametes production and secondary sexual 
characteristics. Cholesterol is used as a substrate by Leydig cells to produce testosterone [73]. StAR is a protein that performs important 

Fig. 3. (a) Control group displaying normal histopathology (b) PQ treated group showing epithelial cells sloughing, lessened the tunica propria 
thickness as well as augmented IS and TL. (c) PQ + TEC co-treated group showing improvement in the process of spermatogenesis by increased 
spermatid number, reduced epithelial cell sloughing and interstitial space. (d) TEC-treated group presenting typical seminiferous tubules with a tiny 
IS and luminal section contained germ cells, indicating regained spermatogenesis. 
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role in transportation of cholesterol into mitochondria [74]. However, the two main enzymes that are essential for androgenesis are 
3β-HSD and 17β-HSD [75,76]. These enzymes catalyze the conversion of cholesterol into testosterone [77]. The expressions of 
abovementioned enzyme were significantly increased in rats co-treated with PQ + TEC. Upregulated expression of the steroidogenic 
enzymes may be due to the fact that chemical configuration of flavonoids closely resembles with cholesterol and many other steroids 
that significantly regulates the androgen production [78]. 

The administration of PQ significantly increased the expressions of Caspase-3 and Bax, besides lowering the Bcl-2 expressions [79]. 
Moreover, Li et al. [1] demonstrated that Bcl-2 expressions were decreased in the rats following PQ exposure. Apoptosis is primarily 
activated by mitochondria, a central hub of cellular respiration and energy source [80]. Mitochondria normally release ROS as a 
by-product of mitochondrial respiration but high production of ROS due to certain chemical exposure can induce adverse effects such 
as swelling and rupturing of mitochondrial membrane [81]. Ruptured mitochondrial membrane encourages cytochrome C discharge 
into the cytosol [82]. This immense liberation of cytochrome C triggers Caspase-3 that leads to apoptosis [83]. The co-treatment of PQ 
+ TEC lowered Caspase-3 and Bax expression and upsurged Bcl-2 expression owing to its anti-apoptotic property. 

PQ administration induced significant testicular histopathological damages i.e., decrease in seminiferous epithelial height, 
diameter and tunica propria width. Tubular lumen (TL) along with interstitial spaces (IS) were increased following the PQ exposure. 
According to the findings of Wasiu and Abdulfatai [61], PQ exposure increases the interstitial space, damages the morphology of male 
germ cells, and distortes seminiferous tubules in rat testes. Nevertheless, these histopathological damages were significantly alleviated 
followed by PQ + TEC co-treatment. In conclusion, TEC improved the histological profile due to its ROS-scavenging, anti-in-
flammatory, anti-apoptotic and androgenic properties. 

5. Conclusion 

Our findings demonstrated that TEC showed protective effects against testicular damage prompted by PQ. TEC administration 
significantly recovered the activities of anti-oxidant enzymes and the levels of MDA and ROS. Moreover it restored the levels of 
inflamatory markers and regulated the expressions of apoptotic markers and steroidogenic enzymes. TEC administration also 
recovered the PQ induced histological impairments. Therefore, it is concluded that TEC has tendency to cure PQ prompted testicular 
impairments. 

Limitations and future perspective 

The study was performed using rats as experimental animal, however its clinical trials on human are imperative in future. 
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