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Keloids are considered as benign fibroproliferative skin tumors growing beyond

the site of the original dermal injury. Although traditionally viewed as a form of

skin scarring, keloids display many cancer-like characteristics such as progressive

uncontrolled growth, lack of spontaneous regression and extremely high rates of

recurrence. Phenotypically, keloids are consistent with non-malignant dermal tumors

that are due to the excessive overproduction of collagen which never metastasize.

Within the remit of keloid pathobiology, there is increasing evidence for the various

interplay of neoplastic-promoting and suppressing factors, which may explain its

aggressive clinical behavior. Amongst the most compelling parallels between keloids

and cancer are their shared cellular bioenergetics, epigenetic methylation profiles and

epithelial-to-mesenchymal transition amongst other disease biological (genotypic and

phenotypic) behaviors. This review explores the quasi-neoplastic or cancer-like properties

of keloids and highlights areas for future study.
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INTRODUCTION

Keloids are considered as benign fibroproliferative dermal tumors, which are borne out of abnormal
wound healing processes following injury to the skin. They are characterized visually by raised
exophytic dermal outgrowths extending beyond the original wound boundary and microscopically
by thickened hyalinized collagen bundles (1, 2).

Most individuals affected by keloid disease are aged between 10 and 30 years and are of
pigmented skin with high reports in African, Afro-Caribbean, Afro-American, Hispanic, or Asian
ancestry (3–6). Keloidsmay developmonths or years after the initial injury and can be accompanied
by intense pain, pruritus, and other physical, and psychosocial symptoms (7). Common sites
affected are the anterior chest, shoulders, back, and earlobe, with those on the pre-sternum
and shoulder regions developing under high tension. Keloids tend to be aggressive in invading
adjacent surrounding healthy (normal) skin and can often recur following any form of treatment.
In particular, monotherapy with surgical removal alone carries a recurrence rate of up to 100%
(8). Phenotypically, keloids are consistent with non-malignant dermal tumors that are due to
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the excessive overproduction of collagen which never
metastasize. However, the morphology and clinically aggressive
behavior of keloids can be thought to bear a resemblance to
neoplastic dermal tumors.

Different theories exist to explain the etiology of keloids,
including elevated skin tension (9, 10), hypoxia (11), chronic
inflammation (12), autoimmune (13–15), genetics (16, 17), and
vascular factors (18), none of which, however, are independently
sufficient to do so. To date, options for keloid treatment are
poorly defined, in part due to unsatisfactory outcomes of current
treatments and the poor quality of evidence surrounding their
use. Compounding keloid research is the lack of animal disease
models for testing.

This review aims to explore the salient cancer-like or quasi-
neoplastic attributes and features of keloids (Figure 1) and
highlights several key areas for future study.

KELOIDS: SCARS OR CANCEROUS
TUMORS?

Keloids are traditionally viewed as scars on the spectrum
of fibroproliferative dermal diseases. To elucidate the
etiopathogenesis of keloids, however, the distinction between
scar and disease must be made. A scar is the endpoint of
physiological wound healing, preceded by inflammation,
fibroplasia and granulation, and manifest as non-functioning
fibrotic tissue, which may regress over time (19, 20). Cutaneous
scars often undergo changes in properties such as thickness,
texture, color, and strength but remain within the confines of
the surrounding intact skin (19, 21). In contrast, keloids are
aggressive exophytic dermal outgrowths disproportionately
grown beyond the boundaries of the original wound, from a
source, which remains suspended in “wound healing” and scar
maturation. Although keloids are not routinely classified as
true neoplasms due to their lack of spontaneous occurrence
and absence of metastasis, they exhibit various cancer-like
characteristics such as uncontrolled proliferation, invasiveness
into surrounding tissue, lack of spontaneous regression and
ability to vascularize (22–24). Their disproportionately locally
aggressive clinical phenotype suggests possible links with skin or
mesenchymal tumors that need to be explored in further detail.

Owing to their similar clinical presentation, keloids have been
misdiagnosed as other benign and malignant skin tumors and
vice versa (25). Of these, dermatofibrosarcoma protuberans is the
most commonly linked to keloids amongst others such as keloidal
dermatofibroma (26), keloidal basal cell carcinoma, keloidal
atypical fibroxanthoma (27), suggesting a possible overlap
between them (28). Based on their pathobiology and clinical
phenotype, keloids bear the most similarity between tumors
relating to fibrosis, dermal origin, and mesenchymal origin
(29). Similarities between keloids and mesenchymal tumors
can be found across a range of characteristics from biomarker
expression to clinical presentation (30). Seminal work on keloid
mesenchymal-related biomarkers suggests that stem-cell like
cells identified in keloids deviate from dermal to chondrocytic

or osteogenic lineage (31), however research to confirm such
hypotheses in this direction is still lacking.

KELOID MORPHOLOGY: CELLULAR AND
MATRIX COMPOSITION

On gross examination, keloids are well-demarcated, raised
cutaneous lesions in different shapes and may be bosselated,
nodular, or pendulous (32). They may appear shiny with
a discoloration—often erythematous with telangiectasia in
individuals with fairer skin and hyperpigmented in those
with darker skin (32)—and can reach sizes between several
millimeters to many centimeters in diameter (33). Keloids
display a heterogenic phenotype in relation to stiffness and
range from soft to extremely firm with decreased skin plasticity.
The center of keloid tissue often exhibit central hypoxia due
to capillary occlusion as a result of exuberant collagen and
endothelial cells (34). Keloid margins contain active fibroblasts
which invade into surrounding tissue and are well-vascularized
through angiogenesis to upkeep the oxygen and nutrient supply
required presumably to fuel their invasiveness (24, 35). This is
thought to be the result of endothelial cell migration and survival
from growth factor activation through kinase signaling pathways
such as PI3K/AKT, ERK1/2, FAK, and p38/MAPK (36, 37).

Most of the expansile keloid tissue is in the reticular
dermal layer with a thickened overlying epidermis. Keloid
tissues are not encapsulated and have a perimeter that advances
into the surrounding tissue (2). Marginal fibroblasts are more
metabolically active and engage in higher rates of collagen I
and III production, as reflected by more erythematous skin
overlying these margins (38). Several studies have shown that
the outer margins and inner complex of keloids are populated
by different types of stem cells. In particular, mesenchymal-
like stem cells expressing non-hemapoetic markers constituting
the inner complex appear to represent the niche that is
vital to sustain keloid growth, surrounded by extralesional
hematopoietic stem cells (39, 40). In relation to this, the
concentration of homogenous thickened hyalinized collagen
in the center surrounded by more typical-looking collagen
fibers near the edges is unique to keloids (41), but not always
present (2).

In brief, cutaneous wound healing involves the formation
and remodeling of collagen matrix over time by fibroblasts
and myofibroblasts. Similarly, activated myofibroblasts and
keloid fibroblasts represent the main generators of keloid
matrix through their synergistic action in increasing keloid
tissue stiffness (42, 43). Fibrocytes, thought to be myofibroblast
precursors, are bone marrow-derived circulating cells present
in keloids and tissues undergoing wound healing (44–46).
They appear as a cross between fibroblasts, monocytes, and
hematopoietic stem cells (HSCs) due to their fibroblast products,
hematopoietic surface markers, myeloid antigen expression, and
shared morphological characteristics (47). Their expression of
CXCR4 forms part of the CXCR4/SDF-1 axis, which is crucial
in skin regulating cutaneous wound healing, systematic lupus
erythematosus and angiogenesis of basal cell carcinoma (48).
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FIGURE 1 | Key processes contributing to the quasi-neoplastic expression of keloid pathobiology.

The keloid matrix consists of different collagens,
glycoproteins, and glycosaminoglycans (GAGs) (23, 49, 50). The
initial overproduction of type III collagen in keloid matrix is

replaced by type I collagen, with an extremely high ratio of type
I to type III collagen (17:1) compared to normal scars (6:1) (51).
The collagen fibers constituting keloids are larger than those in
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normal scars and disorderly arranged (2) in loosely cross-linked
(51) whorls of thick bundles in the same plane as the epidermis
(1). Elevated levels ofMMP-2, TIMP-1, and TIMP-2 are observed
in keloids (52), the imbalance of which appears to dysregulate
collagen production and accumulation, with upregulatedMMP-2
andMMP-9 expression additionally linked to cancer invasiveness
(53). Overproduction of collagen and matrix is also linked with
dysregulated mTOR signaling (54), which plays a crucial role
in human cancers (55). Interestingly, elastic fiber deposition is
higher in the reticular dermis than the papillary dermis (56, 57),
but has been shown to be absent in the keloid extracellular matrix
(ECM) alongside deregulated expression of elastic fiber assembly
proteins such as elastin, fibrillin-1 and fibulin-5 (58). This is
attributed to the over-deposition of chondroitin sulfate (CS)
which is 6.9 times higher than that in normal skin. CS is thought
to suppress elastic fiber assembly through the dysregulation
of fibrillin-1 deposition (58) and its aberrant expression has
been found to contribute to tumor metastasis in breast cancer
(59). The functions of fibulin-5 and elastin in tumor formation
are complex, involving the regulation of metalloproteinases
(MMPs) amongst others (60–62). The interplay between these
proteoglycan-associated factors in keloid pathogenesis remain to
be elucidated.

Sox9, the master regulator of chondrogenesis (63), is
upregulated in keloids (31) and its ectopic expression is linked
with the upregulation ofCOL2A1 and cartilage oligomeric matrix
protein (COMP) which culminates in ECM production geared
toward chondrogenesis and fibrosis (64). COMP stimulates the
assembly of collagen 1 fibrils (65, 66), with an expression level
proportional to keloid size and is expressed in scleroderma and
other tumors (67–69). Keloids exhibit significantly raised levels of
biglycan in the nodular dermis of active keloid lesions alongside
decreased decorin expression (70). This is interesting as decorin,
which has recently been found to suppress collagen production,
is raised in malignant conditions (71, 72). All these proteoglycans
have been shown to be differentially regulated by basic fibroblast
growth factor, that is thought to be involved in producing the
tumor phenotype (73, 74).

Keloids share many similarities with other dermal tumors
by virtue of their shared tissue origin. This includes the
integral activation of Wnt β-catenin pathway in desmoid tumors
(75) and elevated levels of TGF-β, collagen, and GAG in
dermatofibrosarcoma protuberans (76). In both of these tumors,
trauma has been cited as a precipitating factor (75, 77).

KELOIDS AND THE HALLMARKS OF
CANCER

Although keloids exhibit the hallmarks of cancer to a large extent,
these characteristics remain to be fully explored in this context
(78, 79). There is potentially a key regulator or group of pre-
requisite factors, which when activated after skin injury, triggers
a cascade of events that culminate in keloid scar formation. The
various relationships between tumor-related factors expressed
in keloids may be complex and their roles in sustaining keloid

growth are still unclear. Table 1 highlights key tumor biomarkers
discussed in this review.

Sustaining Proliferative Signaling
Keloid fibroblasts express higher receptor tyrosine kinase signals
compared to normal skin derived fibroblasts (143, 144). This
increased keloid-derived fibroblast cellular signaling, which may
influence cell growth, differentiation, and survival, is linked to
cancer development when dysregulated (145). Nanog, a gene
which confers self-replication abilities to cells and is elevated
in various cancers (111, 146, 147), is absent in somatic cells
(148), yet recently found to be upregulated in keloid associated
lymphoid tissue (KALT) (112). Zhang et al. (39) described a
population of clonogenic, self-renewing keloid-derived precursor
cells expressing mesenchymal and embryonic stem cell markers
and are driven by IL-6/IL-17 mediated inflammation. IL-
6, alongside hepatocyte growth factor and epidermal growth
factor, is pro-tumorigenic (39). Of interest, IL-6 and its second
messengers JAK/Stat3, both of which are elevated in keloid
fibroblasts, form the IL-6/JAK/Stat3 pathway, which contributes
toward tumorigenesis within the tumor micro-environment.
In particular, Stat3 confers increased cell proliferation and
migration within keloid fibroblasts (99, 149).

Transforming growth factor beta (TGF-β) is a well-researched
cytokine in keloid pathogenesis due to its pivotal role in directing
keloid fibrosis (150, 151). TGF-β1 influences keloid keratinocytes
through both Smad-dependent and Smad-independent signaling
pathways such as ERK1/2 and p38 to promote collagen
accumulation (150, 151). In relation to cancer, TGF-β1 has been
shown to inhibit initial tumor formation before accelerating its
malignancy in a transgenic mouse skin cancer model (152).
Keloid and normal fibroblasts exhibit a differential response to
PDGF, EGF, FGF (153), and TGF-β (154), the majority of which
bind to protein tyrosine kinase (PTK) family receptors. PTK
receptors contribute to cell proliferation, differentiation (155),
and carcinogenesis (156).

Satish et al. (23) found the upregulation of ribosomal
proteins in keloid fibroblasts, which is also seen in cancer
growth, indicating tighter regulations in keloids which
prevent the malignant transformation of their precursor
cells. Transcriptional activating factors involved include c-jun
and c-fos which function as proto-oncogenes. In addition to its
role in cell cycle regulation of fibroblasts (84) and Ras-activated
human epidermal neoplasia, c-jun is also linked to benign
inflammatory conditions like psoriasis and arthritis (157).

Evasion of Growth Suppressors
The mechanisms underlying keloid growth are not
straightforward, involving both up- and downregulation of
tumor suppressors. The deregulation of p53 forms the hallmark
in various cancers; more recently a mechanism by which it is
deregulated in keloids has been identified as TRAF4-USP10
interaction that culminates in fibroblast proliferation (158).
Interestingly, whilst p53mutation is prevalent in keloids (159), its
expression has also been found to be elevated in the central region
of keloid fibroblasts alongside an increase in p63 which inhibits
its translation (101, 160). In turn, this leads to downstream
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TABLE 1 | Expression of tumor biomarkers in keloids.

Biomarker Normal physiological

function

Associated tumor processes Expression in keloids References

Bcl-2 Apoptosis regulation Dysregulated in skin cancers and upregulated in some

chondrosarcomas

Positive in basal keratinocytes and

spindle-shaped cells

(79–82)

BMP2 TGF-β family Highly expressed in malignant fibrous histiocytoma ↑ (31, 83)

c-jun Role in organogenesis Proto-oncogene which promotes cell migration and

motility factor ENPP2 in soft tissue sarcomas and is

strongly expressed in BCC

Expressed in keloid keratinocytes

but absent in resting keloids

(82, 84–86)

CXCR4 Increases fibroblastic

expression of collagen and

TGF-β

Cross-talk between tumor cells and tumor

micro-environment

Positive (87, 88)

HIF-1 Response to hypoxia Adaptation of tumor cells to hypoxia ↑ (89, 90)

HSP27 Stress response protein Highly expressed in cancers ↑ (91–93)

HSP47 Collagen maturation Promotes cell survival in various mesenchymal tumors ↑ (94–96)

HSP90 Indicates cellular replicative

potential

↑ (97, 98)

IL-6 Interleukin with pro- and

anti-inflammatory roles

Pro-tumorigenic ↑ (39, 99, 100)

SERPINB5 P53-regulated tumor

suppressor

Expressed in various cancers Positive (101–103)

MMP-2,

MMP-9

ECM degradation Expressed in various cancers ↑ (53, 104–108)

MRF 15 Cell senescence Senescence induction of human tumor cell lines ↑ in keloid fibroblasts (23, 109)

mTOR Cell signaling mediator Dysregulated in various cancers ↑ (55, 110)

Nanog ESC marker Multifaceted role in cancers, positive in bone sarcomas ↑ in KPCs, KALT (39, 111–113)

NIP3 Pro-apoptotic, induced in

response to hypoxia

Expressed in various tumors ↓ (114–116)

Notch Cell-to-cell signaling Dual role in tumor mediation as promoter and suppressor ↑ (117, 118)

Oct4 ESC marker Regulates EMT and ERK1/2 signaling in ovarian cancer,

positive in bone sarcomas

↑ in KPCs, KALT (39, 112, 113,

119)

Osteopontin Regulation of cellular

functions

Promotes invasiveness in various carcinomas Expressed in epidermis (120, 121)

p53 Tumor suppressor gene Mutated in more than 50% of all tumors ↑ in central region of KFs (122, 123)

p63 Inhibits p53 translational

activation

Expressed in many benign giant cell bone tumors and

uncommon in malignant tumors

↑ (124–126)

PDGF Protein tyrosine kinase (PTK) Mutated in some cancers Positive (99, 100, 127)

Periostin Collagen fibrillogenesis Tumor progression and metastasis ↑ (31, 128, 129)

ROS Apoptosis induction in DNA

damage

Second messenger in intracellular signaling in cancer ↑ (130, 131)

S100 Upregulated in skin tumors Elevated in osteosarcoma Variable expression (132, 133)

Sox2 ESC marker Tumor initiation and maintenance of CSCs in

osteosarcomas and squamous cell carcinomas

↑ (112, 134, 135)

Sox9 Master regulator of

chondrogenesis

Present in classic and mesenchymal chondrosarcoma ↑ (31, 63, 136)

STAT3 ESC marker and oncogene

activated by PDGF and IL-6

Activated in various cancers and tumor cell lines Expressed in endothelium of KALT

microvessels

(112, 137–139)

Wnt10α Anti-apoptosis Promotes carcinogenesis ↑ (140–142)

effects including elevated SERPINB5 and maspin, the latter
of which is also upregulated during keratinocyte senescence
(101). The link between TP53 codon 72 polymorphism and
keloids remains unclear (124, 161, 162). Other examples include
downregulated miR-1224-5p which normally functions through
TGF-β1/Smad3, and has a role in cancers (163). Similarly,
miR-21-5p plays a key role in PTEN-mediated proliferative

and apoptotic mechanisms in keloid fibroblasts (164), causing
decreased levels of PTEN which is a tumor suppressor with
wide-ranging downstream effects on cellular maintenance and
morphology through PI3K/AKT/mTOR (165). Interestingly,
elevated levels of tumor suppressors such as PML are also seen
in the hypercellular regions of keloids, suggesting senescence
as a factor which confers keloids their benign nature (166). It
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is plausible that the concerted interplay between these factors
result in the quasi-neoplastic behavior of keloids.

Induction of Angiogenesis: The Role of
Hypoxia in Keloid Bioenergetics
The Warburg effect is a phenomenon in cancer cells in which
metabolism is favored and ATP is produced through anaerobic
glycolysis in favor of oxidative metabolism. In cancer cells,
the rate of glucose uptake is dramatically increased leading to
lactate production, despite the presence of fully functioning
mitochondria and availability of oxygen. Specifically, this refers
to an increased rate of glycolysis, which is followed by a surge
of lactic acid fermentation even if there is no lack of oxygen
(167, 168). Similarly, keloid fibroblasts have been found to
preferentially utilize the glycolytic pathway instead of oxidative
phosphorylation, the latter of which is utilized by normal
fibroblasts. The ability of keloid fibroblasts to tap into a wider
source of energy may explain why keloids thrive in a hypoxic
microenvironment. Indeed, the same study reported that keloid
fibroblasts have more ATP, are 3.7 times more active than
normal fibroblasts and exhibit lower levels of reactive oxygen
species (ROS), which is a byproduct of mitochondrial oxidative
phosphorylation (22). The switch to aerobic glycolysis in tumors
as a means of ATP production is thought to be the result
of glycolytic enzymes activated by HIF-α (169), which is also
upregulated in keloids (170, 171). These findings are supported
by the higher levels of lactate in keloids due to glycolysis and
increase in keloid ATP synthesis on exposure to hypoxia (89,
172). As tumors become increasingly reliant on glycolysis with
tumor progression (173), it may even be possible to correlate the
growth of keloids with their utilization of glycolysis as a form of
keloid disease staging.

Hypoxia is thought to promote tumor proliferation and
invasiveness in cancer (174). In keloids, local hypoxia within
the injury zone accelerates wound healing by stimulating
angiogenesis and driving fibroblast proliferation (175), as
evidenced by hypoxia-induced vascular endothelial growth factor
(VEGF) expression (176) in keloid fibroblasts and a higher
density of blood vessels in keloids than normal dermis and
scars. In addition to angiogenesis, hypoxia-induced fibroblast to
myofibroblast-like conversion has also been observed in keloids
and postulated to occur by the TGF-β1/Smad3 pathway (177).
Angiogenesis is vital in the development of many cutaneous
diseases (178). Hypoxia induces the activation of HIF-α1 in
both keloids and cancer (179). This results in the activation
of Twist which mediates EMT-related cadherin switching and
is a master regulator of morphogenesis and other embryonic
processes (180).

Periostin, a cell-adhesion ECM protein (128), is increased
in physiological processes involved in skin repair, fibrosis, cell
proliferation, and ECM remodeling, and tumor processes such
as growth and metastasis (181). Periostin increases angiogenesis
by activating ERK1/2 and focal adhesion kinase (FAK) pathways,
increasing VEGF and angiopoeitin-1 (Ang-1) expression (182).
Specific to keloids, periostin is associated with promoting the
ability of keloid fibroblasts to migrate and invade surrounding
tissues in hypoxia (183). Periostin expression is upregulated by
hypoxia through an HIF-1α-dependent pathway (183). Another

group of cell adhesive receptor proteins implicated are integrins
which are thought to interact with periostin to facilitate EMT,
angiogenesis, and the mobility of chondrocytes, fibroblasts, and
cancer cells (184). Periostin promotes angiogenesis in gastric,
breast, and ovarian cancers (185, 186).

Activating Invasion and Metastasis
There is a growing body of evidence recognizing the importance
of EMT in keloid pathophysiology. Whilst EMT is known to
promote the migratory behavior of metastatic cells, the benign
nature of keloids makes it unclear whether they are the result of
type II fibrotic EMT or suspended type III metastatic EMT (187).
There is no evidence of significant epidermal-dermal basement
membrane zone (BMZ) breakdown or disrupted collagen IV
expression in the BMZ of keloids (188), which may explain why
they do not metastasize. Investigating other cell motility factors
in keloids may reveal unique key agents in metastatic prevention.

E-cadherin, a component of epithelial adherens junction, is
encoded by CDH1 and becomes lost in cancer cells undergoing
EMT (189). Although CDH1 gene expression levels are similar
between normal and keloid keratinocytes, keloids express
decreased protein levels of E-cadherin (188, 190), in line with
cadherin switching from E-cadherin to mesenchymal markers
such as N-cadherin (191), fibronectin-1, vimentin, and cadherin-
11. Indeed, vimentin, fibronectin-1, and cadherin-11 have
been identified in keloids, with overexpression of fibronectin-
1 (23, 49). Vimentin, which is commonly expressed in soft
tissue tumors, is highly expressed in keloid keratinocytes (190)
and associated with changes in shape, motility and adhesion
properties during EMT (192). N-cadherin, which is linked to
increased tumor cell mobility (193) and progression (194),
remains to be studied in keloids. Integrin-linked kinase (ILK),
which is normally involved in regulating ECM signaling (195,
196), leads to E-cadherin suppression and promotion of tumor
invasiveness (197–200) alongside a fibroblastic phenotype when
aberrantly upregulated in EMT. In basal cell carcinoma, ILK
expression leads to increased tumor invasiveness and EMT
markers through upregulated Snail, β-catenin and α-SMA (197).
β-catenin is elevated in the nucleus and cytoplasm of cells
undergoing EMT. Similarly, a higher level of β-catenin protein
activity has been found in keloid keratinocytes compared to
normal keratinocytes, and is inversely proportional to E-cadherin
expression despite no significant difference at transcription
level (140).

Upon injury, epidermal keratinocytes induce dermal
fibroblasts to produce keloid matrix features by expressing genes
involved in epithelial-to-mesenchymal transition (EMT) (201)
and upregulating the expression of inflammatory mediators
such as COX1 and COX2 in keloid fibroblasts, endothelial cells,
and inflammatory cells (202). The fibroblast-like phenotype in
these keloid keratinocytes is potentially perpetuated by the local
hypoxic environment in keloids which increase the invasiveness
of these keratinocytes, thereby leading to excessive keloid
growth (202).

MicroRNAs are known to facilitate oncogenesis and
metastasis by regulating post-transcriptional and translational
gene expression in cell proliferation, EMT and cancer stem cells
(203, 204). This may explain several observations in keloids,
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for example, the decreased elastic fiber density in keloids
despite normal elastin expression coding for elastic fibers (205).
MiR-21-5p which mediates PTEN in keloids, also contributes to
EMT in keloids (188, 206), thereby suggesting EMT phenotype
maintenance in keloid keratinocytes through exertion of their
stem-cell like effects (206). This is significant, as MiR-21-5p has
been claimed to be overexpressed in most cancers and various
fibrotic disorders such as those involving the skin, kidneys and
cardiopulmonary systems (206, 207).

Additionally, insulin-like growth factor-I receptor, which
promotes fibroblast invasiveness, is highly upregulated in keloid
fibroblasts compared to normal fibroblasts (208). Osteopontin
is a major cytokine, which promotes matricellular interaction,
tumor progression, angiogenesis, and resistance to apoptosis
in malignancies (120). It is expressed in keloids, skin, and
mesenchymal tumors. S100 influences the chondroid metaplasia
of fibroblasts to fibrocartilage cells (209) and is expressed in
desmoplastic melanoma (160), however it has only been found
in low levels in keloids (132).

Resisting Cell Death
Keloid myofibroblasts are thought to sustain extended “healing”
by eluding apoptosis (210) despite prolonged hypoxia. Tumor
cells may escape apoptosis through periostin-activated Akt/PKB
pathway in hypoxia (211). In keloids, periostin activation is
linked with downstream activation of ERK1/2 (182) which
is known to regulate the functions of Fra-1 and ZEB1/2 in
tumorigenesis (212). There is no accepted consensus on the
apoptosis levels in keloids. It was previously thought that keloids
elude apoptosis by sustaining lower levels of oxidative stress
(213). More recent evidence contradicts this; the discovery of
increased ROS (125) and downregulated Nrf2 (214) is consistent
with other papers suggesting increased rates of apoptosis in
keloids (215, 216). Nrf2 is protective against oxidative stresses
and various diseases including cancer (217, 218), whereas ROS
is thought to act both as a second messenger in intracellular
signaling (130) to facilitate cancer progression and as an
apoptotic agent by promoting cell senescence (219). This suggests
the possibility of differential response to ROS by different
cell populations.

Up to eight apoptosis genes were found to be down-regulated
amongst 64 which were studied in keloids, compared to normal
skin by Sayah et al. (114). Amongst these, NIP3 is known pro-
apoptotic, induced in response to hypoxia by HIF-1α (115). The
distribution of apoptotic cells was mapped and found to be equal
across the normal tissues but were fewer and concentrated at
the margins of keloid tissues. From a regional perspective, Luo
et al. (220) described in detail the heterogeneous nature of the
microenvironment and subcellular regions in keloids with regard
to apoptosis. Within the keloid tissue itself, apoptotic cells are
concentrated in hypercellular areas at the edges and lacking in
the collagen-abundant center (221), corroborating with previous
findings of p53 and Bcl-2 localizing to the same regions (79). The
concerted up- and down- regulation of various apoptotic-related
genes in keloid tissues suggest an interplay of these factors in the
tumorigenic capabilities of keloids.

Keloids express several heat shock proteins (HSPs) which are
responsible for increasing cell survivability through interprotein
interactions in response to stresses (97, 222). HSP47, which
is vital in collagen synthesis and maturation (223), is highly
expressed in carcinomas of the head, neck (224), and pancreas
(225). HSP90 increases in response to cellular stresses to increase
cell survival (97) and is upregulated in keloids (98). Similarly,
clusterin is increased in cellular stresses (226, 227), and invasive
tumors (228).

A study by Yu et al. (140) found increased expression
of Wnt10A, β-catenin, and telomerase in keloids. Increased
Wnt signaling in keloids promotes cell growth by minimizing
apoptosis through upregulation of β-catenin and telomerase
activity (140). In normal cells, β-catenin is inhibited by Sox9
to promote chondrogenesis (229, 230). It is unclear whether
these two molecules are simultaneously upregulated and if so,
the effects they have on keloid growth. Telomerase activity,
which is linked with disease aggressiveness of bone and soft
tissue tumors, is found in 10% of benign and 44% of malignant
tumors (231). Keloid precursor cells have been shown to
demonstrate telomerase activity which may mediate telomere
lengthening by interacting with IL-6 (39). There are reports,
however, of decreased telomere length (131) and suppressed
telomerase activity in keloids as it is thought that telomerase
ceases to function after the initial stages of keloid formation
(232). Unsurprisingly, telomere length is negatively correlated
with ROS levels (131, 233).

It is postulated that a reciprocal protective relationship exists
between tumor cells and their stem cell niche, as shown by
the upregulation of various genes and proteins in endothelial
cells to increase survivability in response to cytotoxic conditions
(234, 235). The role of micro-environmental signals (17, 236)
which promote chemokine-related changes in keloid fibroblasts
(237) has been investigated recently following similar studies on
epigenetics in cancer development (238, 239). Studies on DNA
methylation profiles of keloid tissue and healthy skin suggest that
DNAmethylationmay be a key driver in the pathology of keloids.
These include the discovery of DNMT1 in keloid fibroblasts
(240) and master regulator genes such as pyroxamide, tributyrin,
PRKG2, and PENK in keloid tissue (241–243). Other studies
found evidence for histone modification such as upregulated
HDAC2 in keloid tissue (244) and expression of non-coding
RNAs in keloids (245). These discoveries are significant as they
represent known biomarkers of cancer. HSPs such as HSP27,
HSP47, and HSP70 are also found to be overexpressed in keloids
(246), with HSP27 and HSP70 having links to cancer (247).

Enabling Replicative Immortality: The Role
of a Keloid Stem Cell Niche
Stem cells perform various roles in cutaneous wound healing
(248). Distinct populations of several stem or stem-like cells (249)
have been identified in keloid tissues, including hematopoietic
stem cells, mesenchymal-like stem cells, and keloid progenitor
cells (40). The fate of stem cells dictated by signals from the stem
cell niche microenvironment (250) represents a tightly regulated
process in keloids (251).
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A population of keloid precursor stem cells (KPCs) was
described in the dermis which harbor the capacity for multi-
lineage differentiation and self-renewal, the latter of which
may explain the high recurrence rates in keloids (39). Their
telomerase activity is higher than normal skin precursor cells but
lower than cancers. The significance of this is their correlation
with tumor or cancer stem cells (252) which are thought to
originate from adult stem cells mutated under the influence of a
deregulated stem cell niche, following which they become capable
of uncontrolled growth, perpetual self-renewal and multi-lineage
differentiation, eventually leading to cancer. They may also have
a role in conferring resistance to treatment (253, 254). The role
of the cancer stem cell niche is outlined in further detail by
Borovski (255).

As part of the wound healing process, orchestrated
upregulation and interactions between neutrophils, eosinophils,
T-cells, B-cells, macrophages, and mast cells have been
demonstrated in keloid tissue, and more recently along
with keloid-associated lymphoid tissue (KALT) (41, 256). Within
KALT, primitive cells within the sub-epidermal micro-vessel
endothelium have been recently found to express embryonic
stem cell (ESC) markers Oct4, Sox2, pSTAT3, and Nanog (112),
suggesting a possible relationship between the immunogenicity
and presence of stem cells in keloids.

RESPONSIVENESS TO CANCER
TREATMENTS

High quality evidence on keloid treatment is limited (257, 258).
Larger keloids often require surgical excision (259) which carry
recurrence rates of up to 100% as monotherapy (8). Radiation,
which is another long-established modality of treatment, has
been shown to produce varying results in the literature. Primary
radiation given to a sample of 84 unresectable keloids over
5 weeks resulted in 97% significant regression in the course
of 18 months (260). Another study found that post-operative
radiotherapy in the form of beta radiation at 400cGy twice a week
totaling up to 16Gy was found to result in flattened scars in 67%
of patients, but not without side effects such as pain and atrophy,
and carries a recurrence rate of 21.2% (258, 261). Brachytherapy
has also yielded favorable results, with a recurrence rate of
3.1% at 33.6 months in a recent study (262). Combined with
surgical excision and application of platelet-rich plasma, post-
operative superficial radiotherapy up to three fractions has been
demonstrated to result in low disease recurrence (263).

Chemotherapy and targeted therapy agents have also shown
promising results. Sorafenib, a tyrosine kinase inhibitor, has
been found to be effective in suppressing keloid activity
by targeting the TGF-β/Smad and MAPK/ERK pathways
which are involved in keloid fibroblast growth and cell cycle
processes (264). A recent systematic review identified post-
excision 5-fluorouracil in combination with triamcinolone
acetonide as a favorable treatment with up to 92% non-
recurrence (265) in what is termed as “combination therapy.”
In comparison,monotherapy using intra-lesional corticosteroids,
the first-line treatment for keloids (8) has been shown to

yield positive results in only 77% of patients (266). The
recurrence rates in triple therapy incorporating surgical excision,
intra-lesional steroids, and silicone sheet have been reported
at 4.6% (263), 9.1% (267), and 12.5% (268). Keloids are
also responsive to recombinant adenovirus-mediated double
suicide gene therapy using CDglyTK which is used in
cancer (269).

The use of photodynamic therapy (PDT) in keloids led to
the suppression of blood flow and collagen levels alongside
improved tissue flexibility (270). This is a cancer treatment used
in Bowen’s, basal cell carcinoma and actinic keratosis, thought
to suppress fibroproliferation through protoporphyrin 9 (PpIX)-
mediated activation of ROS, which is in turn cytotoxic (271, 272).
Although keloids are not metastatic, their responsiveness to
multimodal cancer treatment suggests similar underlying disease
mechanisms with tumorigenesis.

CONCLUSION

The idea that keloids behave like non-malignant locally
aggressive cutaneous cancers is not new and this is evident in
both its phenotypical and genetic properties. The biomarker
expression profile in these diseases highlights the striking
parallels between keloids and both benign and malignant
mesenchymal tumors across transcriptional, translational,
cellular, and tissue levels. Keloids also exhibit characteristics
displayed by cancer cells to some degree, in particular the
Warburg effect which confers increased survival to keloid cells
in hypoxia. Furthermore, signaling pathways common to these
diseases have been found to mold the matrix composition
of keloids with the inclusion of chondrogenic signatures.
This, in turn, is perpetuated by key cells such as melanocytes,
keratinocytes, fibroblasts, and those from the fibrocytic
family, which participate in EMT and possess stem cell-like
properties. A keloid stem cell niche has also been postulated
to support this. Many important tumor-related factors, which
have been shown to contribute to the overall pathogenesis
by influencing cellular processes such as apoptosis. To this
point in time, the use of cancer treatments in keloids has
shown encouraging results, further diminishing the fine line
between keloids and cancerous tumors. Taken together, this
poses many questions in relation to keloid pathobiology
which need to be answered, in order to understand how
the cascade encompassing prolonged, dysregulated wound
healing culminates in the cancer-like or quasi-neoplastic
processes which result in keloid formation, progression,
persistence and recurrence. This is vital due to the implications
it may have for the future therapy and further investigative
research of this elusive disease and those with which it shares
similar properties.
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