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Abstract

In visual inspection tasks, such as airport security and medical screening, researchers often use the detection measures d' or A’ to
analyze detection performance independent of response tendency. However, recent studies that manipulated the frequency of
targets (target prevalence) indicate that d,, with a slope parameter of 0.6 is more valid for such tasks than d' or A". We investigated
the validity of detection measures (d', A, and d,) using two experiments. In the first experiment, 31 security officers completed a
simulated X-ray baggage inspection task while response tendency was manipulated directly through instruction. The participants
knew half of the prohibited items used in the study from training, whereas the other half were novel, thereby establishing two
levels of task difficulty. The results demonstrated that for both levels, d'and A’ decreased when the criterion became more liberal,
whereas d, with a slope parameter of 0.6 remained constant. Eye-tracking data indicated that manipulating response tendency
affected the decision component of the inspection task rather than search errors. In the second experiment, 124 security officers
completed another simulated X-ray baggage inspection task. Receiver operating characteristic (ROC) curves based on confidence
ratings provided further support for d,,, and the estimated slope parameter was 0.5. Consistent with previous findings, our results
imply that d’ and A’ are not valid measures of detection performance in X-ray image inspection. We recommend always
calculating d, with a slope parameter of 0.5 in addition to d’ to avoid potentially wrong conclusions if ROC curves are not

available.
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Introduction

X-ray baggage screening at airports is an essential component
for securing air transportation. To prevent passengers from
bringing potential threats onto an aircraft, airport security of-
ficers visually search X-ray images of passenger bags and
decide within seconds whether a bag contains a prohibited
item or is harmless. This task can be described as visual in-
spection consisting of visual search and decision making
(Koller, Drury, & Schwaninger, 2009; Wales, Anderson,
Jones, Schwaninger, & Horne, 2009) in line with the two-
component model of Spitz and Drury (1978). An airport se-
curity officer's (screener's) decision on whether a bag is
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harmless (target absent) or might contain a prohibited item
(target present) determines whether a secondary search must
be conducted at airport security checkpoints (typically using
explosive trace detection and a manual search of passenger
bags; Sterchi & Schwaninger, 2015). Table 1 presents the four
possible decision outcomes and associated terminology from
visual search studies (e.g., Biggs & Mitroff, 2015; Eckstein,
2011; Wolfe, 2007, p. 99), signal detection theory (SDT; e.g.,
Gescheider, 1997, p. 106; Green & Swets, 1966, p. 34), and
X-ray baggage screening (e.g., Cooke & Winner, 2007;
Schwaninger, Hardmeier, & Hofer, 2005).

In detection theory (Macmillan & Creelman, 2005), the
percentage of bags that contain a prohibited item that are cor-
rectly classified as such is called the 4if rate (HR), whereas the
percentage of harmless bags that are falsely considered to con-
tain a prohibited item is the false alarm rate (FAR). There is a
trade-off between the HR and the FAR: If, for example, some-
one's tendency to respond with target present increases, both
the HR and FAR will increase. At its extremes, someone could
decide to always respond with target present, thereby resulting

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.3758/s13414-018-01654-8&domain=pdf
mailto:yanik.sterchi@fhnw.ch

1298 Atten Percept Psychophys (2019) 81:1297-1311
Table 1 Outcome of decisions depending on stimulus using the terminology of visual search, signal detection theory, and X-ray baggage inspection
Decision
Stimulus Target absent Target present
No signal Signal
Bag is harmless Bag requires secondary search
Target absent Correct rejection False alarm
Noise
No prohibited item present
Target present Miss Hit

Signal plus noise
Prohibited item present

Note. Target present and target absent are terms used in visual search studies (Biggs & Mitroff, 2015; Eckstein, 2011; Wolfe, 2007, p. 99). Noise, no
signal, signal plus noise, signal, hit, miss, false alarm, and correct rejection are terms used in signal detection theory (Gescheider, 1997, p. 106; Green &
Swets, 1966, p. 34). The other terms have been used in X-ray baggage inspection studies (Cooke & Winner, 2007; Schwaninger, Hardmeier, & Hofer,

2004)

in a HR and FAR of 100%. Individuals with the same ability to
detect prohibited items can have different HRs and FARs be-
cause of differences in their response tendency (also referred to
as response bias; Macmillan & Creelman, 2005). SDT pro-
vides measures (such as d" and A') for assessing detection per-
formance. These can be calculated from HR and FAR and are
assumed to be (relatively) independent of the observer’s re-
sponse tendency (Macmillan & Creelman, 2005, p. 39).
Since 9/11, a growing body of research on X-ray image inspec-
tion of passenger bags has led to an increasing use of "and A’
in this domain (e.g., Brunstein & Gonzalez, 2011; Halbherr,
Schwaninger, Budgell, & Wales, 2013; Ishibashi, Kita, &
Wolfe, 2012; Madhavan, Gonzalez, & Lacson, 2007,
Mendes, Schwaninger, & Michel, 2013; Menneer, Donnelly,
Godwin, & Cave, 2010; Rusconi, Ferri, Viding, & Mitchener-
Nissen, 2015; Schwaninger, Hardmeier, Riegelnig, & Martin,
2010; Yu & Wu, 2015). Moreover, d'and A" are also frequently
used in related domains, such as the inspection of medical X-
ray images (e.g., Chen & Howe, 2016; Evans, Tambouret,
Evered, Wilbur, & Wolfe, 2011; Evered, Walker, Watt, &
Perham, 2014; Nakashima et al., 2015) and visual search tasks
with artificial stimuli (e.g., Appelbaum, Cain, Darling, &
Mitroff, 2013; Huang & Pashler, 2005; Ishibashi & Kita,
2014; Miyazaki, 2015; Russell & Kunar, 2012).

However, as will be discussed in more detail below, the
results of several studies in recent years cast doubt on the
validity of using d' or A’ for X-ray image inspection tasks
(i.e., visual search and decision tasks). Before discussing these
findings, we shall briefly summarize the theory behind 4’ and
A’, and the methods used to evaluate their validity.

First, d’ is based on SDT, which, in turn, has its roots in
statistical decision theory. For a detailed introduction to SDT,
we recommend Green and Swets (1966), Macmillan and
Creelman (2005), Wickens (2002), and Gescheider (1997, pp.
105-124). The basic idea of SDT is that when confronted with
a binary detection or decision task, cognitive information
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processing will ultimately result in some type of one-
dimensional subjective evidence variable for or against one of
the two alternatives (Wickens, 2001, p. 150). This subjective
evidence variable is also called the decision variable
(Macmillan & Creelman, 2005, p. 16). Figure 1a and b show this
evidence/decision variable on the x-axis. Because the process
leading to the evidence is noisy, target-absent (noise) and target-
present (signal plus noise) trials both produce a distribution of the
decision variable. Whereas the expected value is higher for the
target-present trials than for the target-absent trials, the two distri-
butions overlap and do not allow a perfect distinction between the
two alternatives. SDT further assumes that individuals derive their
decisions by setting a threshold, called the criterion, to the deci-
sion variable. If the evidence falls short of the criterion, subjects
decide that a target is absent (noise); if it exceeds the decision
criterion, then they decide that a target is present (signal plus
noise). The HR and FAR then each correspond to the cumulative
density of one of the two evidence distributions with the criterion
as the lower bound (colored areas in Fig. la and d). SDT assumes
that the criterion can be shifted, with a /iberal criterion resulting in
a higher HR and FAR, and a conservative criterion, resulting in a
lower HR and FAR. Figure 1a presents an example based on the
assumption that the evidence distributions of the two alternatives
are normal with equal variance. This equal-variance Gaussian
model is the most common model of SDT (Pastore, Crawley,
Berens, & Skelly, 2003) and the basis for the detection measure
d". In the equal-variance Gaussian model, d' is the distance be-
tween the means of the two distributions in units of their standard
deviation and it fully defines the detection performance, called
sensitivity. The detection measure d’ can be calculated as

d' = z(HR)—z(FAR) (1)

where z is the inverse of the cumulative distribution function
of the standard normal distribution (Green & Swets, 1966). The
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Fig. 1 Illustration of noise and signal-plus-noise distribution (first column), receiver operating characteristic (ROC) curves (second column), and ROC
curves in z-transformed space (zZROC; third column) corresponding to d’ (first row), d,, (second row), and A’ (third row)

receiver operating characteristic (ROC) curve (Fig. 1a) de-
scribes pairs of HR and FAR values for constant levels of d".
If these ROC curves are illustrated in z units with z(FAR) as the
abscissa and z(HR) as the ordinate (hereafter, ZROC), they form
lines with slope 1 and d" as their intercept (Fig. 1b).

Whereas SDT is often interpreted as implying the equal
variance Gaussian model (Pastore et al., 2003), SDT can also
assume other underlying evidence distributions. One example
is an SDT model that assumes the two evidence distributions
to be normal, but with unequal variance. For a given ratio s
between the standard deviation of the target-absent (noise) and
target-present (signal-plus-noise) distribution, the resulting
zROC has slope s. For this SDT model, Macmillan and
Creelman (2005) proposed using Simpson and Fitter's
(1973) detection measure:

2
1+ s2

da

X [z(HR)—sz(FAR)). (2)

If the ROC curve is known empirically, there are also de-
tection measures that can be estimated without any model
assumptions. The most popular of these measures is the area
under the curve (AUC; Pepe, Longton, & Janes, 2009). When
only one point of the ROC curve is known, Pollack and
Norman (1964) provide a one-point estimation of the AUC:

(HR—FAR)(1 + HR—FAR)
4HR(1-FAR)

A =05+ HR>FAR.

(3)

By estimating the AUC with one ROC point, A" should not
be considered assumption-free (Macmillan & Creelman,
2005, p. 103; Wickens, 2001, p. 71). Whereas SDT models
make explicit assumptions about the decision process that
define the shape of the ROC curves, A’ also implicitly defines
very specific ROC curves as specified by the formula for its
calculation. This results in the ROC curves shown in Fig. 1g.
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To summarize, each one-point detection measure (detec-
tion measure based on only one ROC point, i.e., one value
for HR and one for FAR), such as d' or A, implies a
specific ROC curve; that is, a specific assumption about
how HR and FAR change when response tendency (i.e.,
the decision criterion) changes. Whether the implied ROC
curve is approximately correct determines whether the de-
tection measure is a valid measure of detection perfor-
mance. Most importantly, because different detection mea-
sures imply different ROC curves, they can lead to differ-
ent conclusions when, for example, interpreting results of
X-ray image inspection tasks.

The shape of the ROC curve for a specific task can be
investigated by empirically measuring multiple points of the
ROC curve. Macmillan and Creelman (2005) describe four
methods with which to gather ROC data from study partici-
pants. The first is based on confidence ratings. Instead of
providing only a binary decision, the participants provide a
rating on a k-point Likert scale — for example, ranging from
target certainly absent to target certainly present.
Alternatively, the participants deliver the binary response
(e.g., target present or target absent) and then rate their con-
fidence regarding that decision. Each change in level of con-
fidence is then considered as a possible decision criterion
(Macmillan & Creelman, 2005, pp. 51-54). With this ap-
proach, k£ - 1 ROC points can be derived for k response
categories.

The other three methods for deriving multiple points of the
ROC curve are based on manipulating response tendency (i.e.,
criterion; Macmillan & Creelman, 2005, p. 71). One method is
to manipulate the rewards and costs of a decision (e.g., study
participants can be paid according to the amount of hits and
false alarms, and the reward of a hit and cost of a false alarm
can be manipulated). A second method is to instruct the par-
ticipants directly to change their criterion by, for example,
being conservative in responding target present on one set
of'trials and being more liberal on another set. The third meth-
od for gathering ROC points is to manipulate the presentation
probability of the signal (Macmillan & Creelman, 2005, p. 72)
— the so-called farget prevalence (Wolfe, Horowitz, & Kenner,
2005). If, for example, most trials contain a prohibited item,
subjects will shift their response tendency toward target
present and therefore achieve a higher HR and FAR.
Manipulating the criterion means that each point of the ROC
curve requires a separate condition (payoff, instruction, or
target prevalence).

Of these four methods, gathering confidence ratings can be
applied relatively easily and rapidly, but it is heavily based on
the concept of SDT. It is assumed that the subject's decision
process is based on a decision variable and that a subject
derives a confidence rating from that variable. The other three
methods do not require such assumptions because they mea-
sure actual decisions under different conditions.
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When multiple ROC points are gathered, they can be inter-
polated to calculate A, — an estimate of the AUC — without
relying on assumptions about the shape of the ROC
curve (Pollack & Hsieh, 1969). Hofer and Schwaninger
(2004) compared different measures of detection performance
and investigated ROC curves derived from confidence ratings
in an X-ray image inspection task. They derived ROC curves
from pooled confidence ratings and found deviances from
symmetrical ROC curves that would be more consistent with
the two-state low-threshold theory (Luce, 1963) or non-equal
variance Gaussian SDT. However, they also found that d’, A’,
and Am (a measure for non-equal variance SDT; Wickens,
2001) were highly correlated.

Several other studies using target prevalence manipulations
have cast further doubt on the validity of d' and A’ for X-ray
baggage inspection. Wolfe et al. (2007) conducted a series of
experiments in which subjects performed an X-ray baggage
inspection task under varying target prevalence conditions.
They found a reduced HR and FAR in low target prevalence
conditions with averaged results seeming to lie on a zZROC line
with a slope of 0.6. Two further publications (Godwin,
Menneer, Cave, & Donnelly, 2010a; Van Wert, Horowitz, &
Wolfe, 2009) reported zZROC slopes similar to those reported
by Wolfe et al. (2007), and another study reported a slope of
0.56 (Wolfe & Van Wert, 2010), which is also close to 0.6.

Under Gaussian SDT assumptions, a zZROC slope of 0.6
indicates that the target-absent (noise) distribution has a small-
er standard deviation than the target-present (signal-plus-
noise) distribution. A possible explanation for this is that
prohibited items vary in difficulty and this brings additional
variation into the target-present distribution.

The aim of our study was to investigate the validity of
the detection measures d', A', and d, and to derive recom-
mendations on how to calculate detection performance in
future studies on X-ray image inspection, visual search,
and decision tasks. We explored this using two experi-
ments, in which professional X-ray screeners completed a
simulated X-ray baggage inspection task. In the first exper-
iment, response tendency (criterion) was manipulated
through instruction to test whether it affected the detection
measures. The experiment included targets that were
known from training and targets that were novel, which
resulted in two levels of sensitivity. Valid detection mea-
sures should be independent of response tendencies; how-
ever, they should differentiate well between different levels
of sensitivity. We therefore calculated the effect size of the
difference in the detection measures between known and
novel targets as an indicator of how well they differentiate
between the two levels of sensitivity. In the second exper-
iment, the participants provided confidence ratings that
were used to investigate whether the ROC curves are ap-
proximately linear in zZROC space, as assumed by both d’
and d,, and to estimate the zZROC slope.
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Experiment 1

For this study, we reanalyzed data from Sterchi,
Hattenschwiler, Michel, and Schwaninger (2017). The origi-
nal study evaluated how the rejection rate of screeners can be
manipulated, and how performance was related to knowledge
about everyday objects. In the experiment, 31 professional
screeners completed a simulated X-ray baggage screening
task in which the criterion was manipulated directly through
instructions. Half of the prohibited items used in the study
were known to the screeners from training, whereas the other
half were novel. This corresponds to two levels of task diffi-
culty. This experiment allowed us to observe a criterion shift
with two levels of sensitivity induced by other means than the
previously applied manipulations of target prevalence.

For a detection measure to be valid, it should not be affect-
ed by a shift in the decision criterion. In line with the results of
the previous studies mentioned above (Godwin, Menneer,
Cave, & Donnelly, 2010a; Hofer & Schwaninger, 2004; Van
Wert et al., 2009; Wolfe et al., 2007; Wolfe & Van Wert,
2010), we expected the zZROC slope to be around 0.6, and
therefore for d' to decrease when the criterion was shifted to
a more liberal level (more target-present responses) in
Experiment 1. Both d' and A’ are symmetric — any point
(HR,, FAR)) leads to the same value of d' and A" as (1 —
HR,,1—FAR,) — and this implies equal variance in terms of
SDT (Macmillan & Creelman, 2005, p. 103). We therefore
also expected A’ to decrease when the criterion decreased.
As aresult of the expected zZROC slope of 0.6, a criterion shift
should not affect d, based on that slope. We also aimed at
validating A,. As already described in the introduction, A, is
an estimate of the AUC that does not assume a specific shape
of the ROC curve but requires multiple ROC points (e.g.,
derived from confidence ratings) and is therefore not a one-
point detection measure like d’, d,, or A". Because A, should
not depend on the shape of the ROC curve, it was expected to
remain constant. A detection measure should not change when
the decision criterion changes; however, it should differentiate
well between different levels of ability to detect targets. We
therefore analyzed effect sizes of the detection measures when
comparing detection performance for the two levels of task
difficulty resulting from known and novel prohibited items.

Method
Participants

A total of 31 screeners (20 females) from an international
airport participated in this experiment. They were all certified
screeners, which means that they were qualified, trained, and
certified according to the standards set by the appropriate na-
tional authority (civil aviation administration) in accordance

with the European Regulation (European Commission, 2015).
The participating screeners were between 26 and 61 years old
(M= 45.4, SD = 8.9) and had between 2 and 26 years of work
experience (M = 8.4, SD = 5.5). The research complied with
the American Psychological Association Code of Ethics and
was approved by the Institutional Review Board of the School
of Applied Psychology, University of Applied Sciences and
Arts, Northwestern Switzerland. Informed consent was ob-
tained from each participant.

Design

The experiment used a 2 x 2 design with two instructions to
manipulate response tendency (normal decision vs. liberal de-
cision) and with two levels of task difficulty (targets known
from training vs. novel target items) as within-subject factors.
Dependent variables were HR, FAR, d', d,, A', A, response
times, and eye-tracking data.

Stimuli and materials

The simulated X-ray baggage inspection task contained 128
X-ray images of passenger bags. Of these, 64 images
contained one prohibited item (target-present images). They
were merged into X-ray images of passenger bags using a
validated X-ray image merging algorithm (Mendes,
Schwaninger, & Michel, 2011). Four categories of prohibited
items were used to create these target-present images: 16 X-
ray images contained a gun, 16 images a knife, 16 images an
IED, and 16 images contained other prohibited items. To cre-
ate these 16 X-ray images per threat category, eight threat
items per category were each used twice, once in an easy view
(as defined by the two X-ray screening experts and the au-
thors) and once rotated (by 85° around the horizontal or ver-
tical axis).

Further, for each threat category, half of the prohibited
items were part of the training system (Koller, Hardmeier,
Michel, & Schwaninger, 2008; Schwaninger, 2004) used at
the particular airport (known targets). The other half of the
prohibited items were newly recorded (novel targets). Visual
comparisons were used to ensure that they were different from
the prohibited items contained in the training system (see Fig.
2 for an example).

All 128 X-ray images were equally divided into four test
blocks such that each block contained the same number of
known and novel targets per category and viewpoint. X-ray
images were presented in a random order within each of the
four blocks. The order of the blocks was counterbalanced
across the participants.

For eye tracking, we used an SMI RED-m eye tracker with
a gaze sample rate of 120 Hz, gaze position accuracy of 0.5°,
and spatial resolution of 0.1°. This noninvasive, video-based
eye tracker was attached to a 22-in. TFT LCD screen with a
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Fig. 2 Two examples of the prohibited item category knife: (a) example
of a known target item and (b) example of a novel target item (Asian
combat knife)

resolution of 1,280 x 1,024 pixels placed 50-75 cm from the
participant. The stimuli (X-ray images) covered about two-
thirds of the screen. Eye tracking was used to examine the
users’ eye movements using a post hoc analysis of visual
fixations falling within a certain area of interest (AOI).
Therefore, in each target-present image, a screening expert
manually drew the AOI around the target item (BEGAZE
Software; SensoMotoric).

Procedure

The screeners were tested individually. Each session began
with a 9-point calibration of the eye-tracking apparatus. The
participants had to follow a moving black dot with their eyes.
Then, the task was introduced with on-screen instructions.
The screeners were instructed to visually inspect X-ray images
of passenger bags by searching for prohibited items and de-
ciding whether each bag was harmless (target absent) or
might contain a prohibited item (target present) and would
therefore require a secondary search. The screeners were fur-
ther instructed that the test contained four blocks. For two
blocks, they should inspect (i.e., search and decide) the image
as if they were working at a checkpoint (referred to in this
article as a normal decision). For the other two blocks, they
were instructed to visually analyze each object in the X-ray
image and decide that the bag was harmless only if each object
in the image could be recognized as harmless (liberal
decision). After the instructions, ten practice trials followed
to familiarize the screeners with the task itself and the user-
interface of the simulator. The practice trial consisted of five
target-absent and five target-present images presented in ran-
dom order without any feedback on the correctness of the
response.

For the test, each trial started with a fixation cross displayed
at the center of the screen. After this had been fixated contin-
uously for 1.5 s, it was replaced by an X-ray image. Screeners
had to decide whether the content of this image was harmless
or not by pressing a key, and then had to give a confidence
rating on a 10-point scale ranging from 1 (very unconfident) to
10 (very confident). There was no feedback on the correctness
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of responses, and the participants took about 30 min to com-
plete the test.

Data analysis

A HR of one or FAR of zero leads to an infinite value of d' and
d,. For the calculation of d' and d,, HR and FAR values were
therefore transformed using the log-linear rule to correct for
extreme proportions (Hautus, 1995), which is one of the two
common adjustments to avoid infinite values (Macmillan &
Creelman, 2005, p. 8). All within-subject contrasts were tested
with exact permutation tests that are appropriate for skewed
data and smaller sample sizes. For the estimation of d,, the
slope parameter was set to 0.6 in accordance with previous
findings from studies that manipulated target prevalence
(Godwin, Menneer, Cave, & Donnelly, 2010a; Wolfe et al.,
2007; Wolfe & Van Wert, 2010). For zROC slopes and effect
sizes, we report bootstrapped BCa-Cls (Efron, 1987) based on
20,000 resamples.

In a review of ROC curves in recognition memory,
Yonelinas and Parks (2007) raised the concern that the
manipulation of the criterion (i.e., pay-off, instruction, or
target prevalence) might also influence sensitivity. In our
experiment, we analyzed eye-tracking data to control
whether our manipulation also affected search performance
and not just decision making. It can be assumed that failure
to detect a target can arise from a scanning error (Cain,
Adamo, & Mitroff, 2013; Kundel, Nodine, & Carmody,
1978; Nodine & Kundel, 1987), where the target is never
fixated. If the target is fixated, inspection can still fail be-
cause of recognition or decision errors, and it is unclear
whether a distinction between recognition and decision er-
rors is possible and useful (Cain et al., 2013).

In accordance with McCarley's (2009) study, we tested the
effect of our manipulation by calculating the proportion of
target-present trials with one or more fixations within the
AOI (i.e., the location of the target). Rich et al. (2008) also
distinguished fixated and non-fixated targets to analyze search
errors. They noted that if a target is not fixated, this does not
necessarily mean that it was missed during the visual search.
However, a target missed during the visual search is more
likely to not have been fixated. If the proportion of target-
present trials on which the target was fixated is not affected
by the manipulation of the criterion, this indicates that the
changes in HR and FAR are not caused by search errors in
which the study participants simply failed to look at the rele-
vant part of the image (Rich et al., 2008).

Results

The instructions for the liberal decision condition were de-
signed to change response tendency, that is, to increase the
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participants' relative frequency of responding with target
present (rejection rate). A manipulation check revealed an
effect of the instruction on the rejection rate with a Cohen's
d of 0.58. However, ten of the participants did not even show a
small increase in the rejection rate (i.e., increase smaller than a
Cohen's d 0f 0.20). Because we were interested in whether the
detection measures change when participants change their re-
sponse tendency (and not how successfully we could induce
such a change), we excluded participants who did not change
their rejection rate from further analysis. The excluded partic-
ipants did not differ significantly in their HR for known targets
(excluded: M =.78, included: M =.79, p =.636), HR for novel
targets (excluded: M = .63, included: M = .58, p = .298), or
FAR (excluded: M = .11, included: M = .09, p = .570). Table 2
shows the means and standard deviations of the normal deci-
sion and liberal decision condition for HR, FAR, d’, d,, A, and
A,. Exact permutation tests revealed a significantly lower d'in
the liberal decision condition for both known (p = .041) and
novel (p = .002) targets. Moreover, A’ was significantly lower
for both known (p = .034) and novel (p = .017) targets. For
both d, (known targets: p = .714, novel targets: p = .383) and
Ag (known targets: p = .322, novel targets: p = .750), differ-
ences did not attain significance. Table 2 also shows the stan-
dardized average difference of the detection measures be-
tween the two decision conditions as an indicator for the
within-subject effect.

The HR and FAR of the two decision conditions were used
to calculate individual zZROC slopes for known and novel
targets separately. The estimated slope had a median of 0.53
(95% BCa-CI [0.24, 0.75]) and a mean of 0.62 (95% BCa-CI
[0.34, 1.04]) for known target items, and a median of 0.56
(95% BCa-CI [0.00, 0.83]) and mean of 0.49 (95% BCa-CI
[0.27,0.78]) for novel target items (slopes were first converted
into angles of incline and converted back after averaging be-
cause steep slopes would otherwise disproportionately influ-
ence the mean).

Table 3 summarizes the response time (time from the onset
of image display until the submission of the decision by the
participant) for correct responses by image type (target-

present trials vs. target-absent trials) and decision condition
(normal decision vs. liberal decision). For both target-present
and target-absent trials, permutation tests indicated a signifi-
cant difference in response time between normal and liberal
decision (target-present trials: p = .004, target-absent trials: p <
.001).

To control whether the criterion manipulation affected
search errors, we calculated the proportion of target-present
trials with at least one fixation within the AOI (i.e., the
location of the target; see McCarley, 2009). Three participants
had to be excluded from the analysis of eye-tracking data be-
cause they had either no fixations or no saccades recorded in
73%, 52%, or 24% of their trials, which indicated difficulty
with eye tracking for these participants. The remaining 18 par-
ticipants had a total of 1,151 target-present trials. Twelve (1%)
of these had to be excluded because either no fixations or no
saccades were recorded. One further trial was excluded because
the fixation was in the AOI at the time of stimulus onset. Then,
for each participant, the proportion of target images on which
the participant fixated the target was calculated separately for
the two decision conditions (normal and liberal decision) and
the two target types (known and novel targets). Table 4 shows
the means and standard deviations of these proportions. The
difference between the two decision conditions did not attain
significance for either known targets (p = .459) or novel targets
(p = .675), which suggests that the instruction to decide with a
more liberal criterion did not affect search errors.

To investigate the statistical power of the detection mea-
sures in terms of reflecting differences in task difficulty
(known vs. novel targets) for each detection measure and each
of the two decision conditions, we calculated standardized
differences (i.e., differences divided by the standard deviation
of the differences) as effect sizes of the detection measures
between known and novel targets (Table 5). Because d,, is a
linear transformation of d’ when the false alarm rate is con-
stant, the effect sizes of d" and d, were identical.

Figure 3 shows the ROC curves based on the three detec-
tion measures d’, A’, and d,, of the normal decision condition
for known targets (curves with higher HR for a given FAR)

Table2 Mean (SD) of the normal and liberal decision condition and the effect size (standardized difference) of the decision condition for hit rate (HR),

false alarm rate (FAR), and detection measures d', A, d,,, and A,

Decision condition HR FAR d d, A’ Ay
Known targets
Normal decision .79 (.10) .09 (.08) 2.25(0.61) 2.03 (0.57) 916 (.044) .894 (.072)
Liberal decision .90 (.10) 25 (.13) 2.01 (0.58) 2.08 (0.61) .899 (.049) .906 (.073)
Effect size -0.40 -0.08 -0.42 0.23
Novel targets
Normal decision .58 (0.14) .09 (.08) 1.63 (0.41) 1.28 (0.38) .851 (.040) 799 (.082)
Liberal decision 71 (0.13) 25 (.13) 1.27 (0.44) 1.19 (0.43) .817 (.074) 793 (.076)
Effect size -0.70 -0.19 -0.50 -0.07
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Table 3  Response times [ms] for correct responses

Normal decision Liberal decision

M (SD) Mdn M (SD) Mdn
Target-present 6,000 (2,407) 4,295 8,018 (4,331) 6,291
Target-absent 6,813 (2,798) 5,873 11,162 (6,872) 9,464

Note. The reported means and standard deviations are based on individual
mean response times, and the reported medians on individual median
response times

and novel targets (curves with lower HR for a given FAR).
Because this figure is based on pooled data, it should be
interpreted with caution: The aggregation of individual ROC
curves can distort their shape, and the figure is therefore not a
one-to-one illustration of the tested hypotheses (Yonelinas &
Parks, 2007; see the Appendix for a discussion of pooling).

Discussion

In Experiment 1, we instructed X-ray screeners for one con-
dition to visually inspect X-ray images in the same manner
used when they performed their job. For another condition,
they were instructed to apply a more liberal decision criterion.
Half of the target-present trials contained target items known
from training, the other half contained novel target items. As
can be seen in Fig. 3, the resulting four points defined by the
pooled HR and FAR fit the ROC curve implied by d,, that was
set to a slope of 0.6, as suggested by previous research
(Godwin, Menneer, Cave, & Donnelly, 2010a; Wolfe et al.,
2007; Wolfe & Van Wert, 2010). The permutation tests re-
vealed that d" and A’ values decreased when screeners were
instructed to apply a more liberal decision, which casts doubt
on the validity of these detection measures in the context of X-
ray image inspection. By contrast, d, with a slope of 0.6 and
A, did not change significantly between the two experimental
conditions.

The fact that the instructed, more liberal criterion caused a
decrease in d'and A'is in line with previous findings of chang-
es in d' when target prevalence manipulations induced a shift

Table4 Mean (SD) share of images per subject with a recorded fixation
within the area of interest

Share AOI fixations
Image type Normal decision Liberal decision
Known target 713 (.237) 740 (.258)
Novel target 742 (.165) 730 (.180)
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in the criterion (Godwin, Menneer, Cave, & Donnelly, 2010a;
Wolfe et al., 2007; Wolfe & Van Wert, 2010). The results of
these studies also suggest that d' and A’ can lead to wrong
conclusions when used to decompose a unidirectional change
of HR and FAR into sensitivity and criterion changes.

When trying to induce a criterion shift using experimental
manipulation, there is a risk that the manipulation might also
affect sensitivity (Yonelinas & Parks, 2007). In our experi-
ment, the given instruction to decide more liberally slowed
the response times. Similarly, studies that manipulated target
prevalence also found slower responses in high target preva-
lence conditions (Godwin, Menneer, Cave, & Donnelly,
2010a; Wolfe et al., 2007; Wolfe & Van Wert, 2010). Our main
findings should be robust regarding a potential change in sen-
sitivity for two reasons: First, we found no difference in the
share of images with target fixation between the two decision
conditions. This supports the assumption that the observed
change in HR and FAR was caused by a change in decision
making and not a change in search errors (McCarley, 2009;
Rich et al., 2008). Second, if the manipulation affected sensi-
tivity, then one would expect higher sensitivity in the liberal
decision condition in which response times were longer
(following the line of argument in Wolfe et al., 2007). Such
an accidental effect on sensitivity could therefore not explain
the decrease we found in d'and A".

Experiment 2

In Experiment 1, we calculated d', A’, and d,,, for which we set
the slope to 0.6 based on previous findings (Godwin,
Menneer, Cave, & Donnelly, 2010a; Wolfe et al., 2007;
Wolfe & Van Wert, 2010). d, was found to be a more valid
detection measure than d’and A’. However, estimations of the
slope parameter with the data from Experiment 1 resulted in
large confidence intervals. Further, ten of the participants were
excluded because they failed the manipulation check, which
might have biased the sample. Experiment 2 was therefore
intended to provide a more precise estimation of the slope
parameter and to further investigate the validity of detection
measures using another methodological approach: multiple
ROC points were obtained by analyzing confidence ratings.
In comparison to Experiment 1, the criterion was not manip-
ulated directly, and the test therefore included more trials per
participant and condition.

Methods
Participants

A total of 124 professional, certified cabin baggage screeners
(68 female) from an international airport participated in
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Table 5  Effect size (standardized difference) [and 95% confidence intervals] of target novelty (known vs. novel targets)

d'ld, Ag
Normal decision 1.60 [1.21,2.10] 1.72 [1.34,2.15] 1.24 [0.84, 1.64]
Liberal decision 1.98 [1.20, 3.02] 1.73 [1.11,2.48] 2.20 [1.35,3.04]

Experiment 2. The participants were between 22 and 64 years
old (M'=44.3, SD = 11.2; one participant did not report his/her
age) and they had up to 29 years of work experience (M = 7.1,
SD = 5.6; seven participants did not report their work experi-
ence). The research complied with the American
Psychological Association Code of Ethics and was approved
by the Institutional Review Board of the School of Applied
Psychology of the University of Applied Sciences and Atrts,
Northwestern Switzerland. Informed consent was obtained
from each participant.

Stimuli and materials

The test consisted of 128 X-ray images of real passenger bags.
Half of these images contained a prohibited item. The merging
of the prohibited items into the bag images was performed in
the same manner as in Experiment 1 using a validated algo-
rithm (Mendes et al., 2011). Four categories of prohibited
items were used: 16 images contained a gun, 16 images a
knife, 16 images an IED, and 16 explosive material. Each

1.0
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= /,' —d’
04 /, —d,
Decision condition
0:2 7 ® Normal decision
; A |iberal decision
0.0 . T T T T
0.0 0.2 04 0.6 0.8 1.0
FAR

Fig. 3 Receiver operating characteristic (ROC) curves implied by d', A’,
and d, estimated by the pooled hit rate (HR) and false alarm rate (FAR) of
the normal decision condition for known prohibited items (higher HR)
and novel prohibited items (lower HR)

prohibited item appeared twice, once in an easy view and once
rotated. None of the prohibited items were part of the training
system used at the particular airport. The 128 images were
equally divided into two blocks with each block containing
the same number of targets per category and view. Images
were presented in a random order within the block. The order
of the two blocks was counterbalanced across the participants.

Procedure

The participants were tested in groups of maximally six
screeners at a time. The screeners had to inspect the X-ray
images for prohibited items. If they detected a prohibited item,
they had to mark its location in the image (this was conducted
for another study). They had to press a key to decide whether
the bag was harmless or not, and they then had to assign a
confidence rating on a 5-point scale ranging from 1 (very
unconfident) to 5 (very confident). To become familiar with
the test, the instruction was followed by eight practice trials,
on which the screeners received feedback on the correctness
of the responses. During the test itself they did not receive
feedback. Participants were allowed to take a short break after
the first half of the test that lasted for 1 min in average.
Participants took about 20 min to complete the test.

Data analysis

For each participant, the HR and FAR were calculated for the
different levels of confidence rating according to Macmillan
and Creelman (2005, pp. 51-54), resulting in nine ROC points
per participant.

To estimate individual slope parameters based on the con-
fidence ratings, we used the maximum likelihood estima-
tion algorithm LABROC4 developed by Metz, Herman,
and Shen (1998). Because the slope parameter is the ratio
of two differences in two variables, it is inappropriate to
directly calculate its mean (because steep slopes result in
large numbers, a horizontal zZROC, for example, has a
slope of zero and a vertical zZROC has a slope of infinity
and the mean of the two slopes would only consider the
vertical slope). We therefore arctan-transformed the slope
parameters into angles of incline before averaging, and
then transformed them back for interpretability.
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Results

One participant provided the maximum confidence level for
all trials and was therefore excluded. A second participant had
to be excluded because all derived ROC points for FAR were
either zero or one, not allowing for a maximum likelihood
estimation of the slope parameter. The remaining 122 partic-
ipants achieved a mean HR of .70 (SD = .07) with a mean FAR
of .07 (SD = .05). The response time (time from the onset of
the image display until the submission of the decision by the
participant) is summarized in Table 6 for correct responses by
image type (target-present trials vs. target-absent trials).

Figure 4 shows individual zZROC points and the averaged
zZROC curves based on confidence ratings (for a discussion of
pooling ROC curves see the Appendix). The averaged zZROC
curves seem to better fit the zROC curve predicted by d,, based
on a slope of 0.6 than those predicted by d’ or A’ (one excep-
tion is the mean of the leftmost zROC point, which, however,
is distorted downwards as a result of the necessary exclusion
of ROC points with a false alarm of zero that are not defined in
ZROC space).

Arctan-transformed individual slope parameters (i.e., an-
gles of incline) estimated using the LABROC3 algorithm
(Metz et al., 1998) are illustrated in Fig. 5. When transformed
back, they show a mean of 0.54 (95% BCa-CI [0.50, 0.60])
and median of 0.50 (95% BCa-CI [0.46, 0.55]).

Discussion

In Experiment 2, the participants completed an X-ray baggage
inspection task providing confidence ratings for each image.
The pooled zZROC points and the estimated zROC slopes of
around 0.5-0.6 confirm the findings of Experiment 1 that d'
and A’ overestimate HR, or underestimate FAR when the cri-
terion is shifted and becomes more liberal. The pooled zZROC
curves were approximately linear, which supports the validity
of d, for the X-ray baggage inspection task in line with the
results of Wolfe and Van Wert (2010). The results show a
mean slope of 0.54, close to other studies that reported
zROC slopes of around 0.6 (Godwin, Menneer, Cave, &
Donnelly, 2010a; Wolfe et al., 2007) and another study that
reported a slope of 0.56 (Wolfe & Van Wert, 2010).

Table 6 Response times [ms] for correct responses

M (SD) Mdn
Target-present 4,781 (1,087) 3,816
Target-absent 5,079 (1,959) 4,008

Note. The reported group means and standard deviations are based on
individual mean response times, and the reported medians on individual
median response times
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Fig. 4 Individual (grey; jittered) and pooled (black) empirical zZROC
curves, the lines corresponding to the mean A’, d', and d,, with a slope
of 0.6, and the chance line (dashed)

Despite the similar zZROC slopes found in these studies, one
should be cautious to always adopt d,, with a slope of 0.5-0.6
for any X-ray baggage inspection or other visual search task.
A non-unit slope zZROC implies that there is a point at which
the ROC curve falls below the chance line, where the FAR
exceeds the HR (Macmillan & Creelman, 2005, p. 68). When
sensitivity is sufficiently high, this becomes negligible be-
cause it only concerns values very close to the limits of the
ROC space. However, for low sensitivity (e.g., for difficult
items or inexperienced X-ray screeners), a zZROC with a slope
of 0.5-0.6 implies below-chance performance for a possibly
relevant range of the decision criterion (see Fig. le). It would
therefore be reasonable to assume that the zZROC slope con-
verges to a unit slope with decreasing sensitivity. Such a con-
vergence has been found repeatedly in research on recognition
memory (Brown & Heathcote, 2003; Glanzer, Kim, Hilford,
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Fig. 5 Distribution, mean (red dashed line), and median (solid blue line)
of arctan-transformed individual slope parameters
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& Adams, 1999; Hirshman & Hostetter, 2000; Ratcliff,
McKoon, & Tindall, 1994).

In addition to the level of sensitivity, other factors might
influence the slope parameter. There is some empirical evi-
dence that the zZROC slope might vary between different
implementations of the X-ray baggage inspection tasks or de-
pending on the participants: Alongside our findings and other
studies reporting zROC slopes around 0.5-0.6 (Godwin,
Menneer, Cave, & Donnelly, 2010a; Wolfe et al., 2007;
Wolfe & Van Wert, 2010), one study found a lower d' for
lower target prevalence (Wolfe, Brunelli, Rubinstein, &
Horowitz, 2013), which indicates a zROC slope larger than
one. There are also a few studies that show an effect of target
prevalence on HR and FAR without a significant effect on d'
(Godwin, Menneer, Cave, Helman, et al., 2010b; Ishibashi
et al., 2012) or A’ (Godwin, Menneer, Cave, Thaibsyah, &
Donnelly, 2015). They therefore do not contradict a unit-
slope zZROC. To summarize, whereas it is reasonable to infer
that a zZROC slope is around 0.5-0.6 for many visual inspec-
tion, visual search, and decision tasks with X-ray images, this
might not be always true. In the following section we discuss
how this issue can be addressed in future studies.

General discussion

To investigate the validity of two detection measures com-
monly used in visual search and decision tasks such as airport
security and medical screening, we conducted two studies
with different methodological approaches. Experiment 1 ma-
nipulated the criterion by direct instruction, whereas
Experiment 2 used confidence ratings to generate multiple
ROC points. For both studies, d' and A" were found to be
invalid detection measures for the investigated X-ray baggage
inspection tasks. More specifically, d' and A’ would have
wrongly indicated lower sensitivity for a more liberal decision
criterion.

Studies investigating the effect of target prevalence on X-
ray baggage inspection tasks also found d’ to indicate lower
sensitivity for more liberal decision criteria where equal or
lower sensitivity would be expected (Godwin, Menneer,
Cave, & Donnelly, 2010a; Wolfe et al., 2007; Wolfe & Van
Wert, 2010). Our studies extend this research by showing that
this phenomenon is not specific to the effect of target preva-
lence but also holds for other means of manipulating the cri-
terion, and therefore seems to be a property of the ROC curve
of the X-ray baggage inspection task in general.

Despite A’ not making any assumptions about the underly-
ing decision processes, A’ implies a very specific and symmet-
ric ROC curve (Macmillan & Creelman, 2005). It should
therefore not be expected to have an advantage over d', which
the results of our studies confirmed. The general discussion
and our recommendations will therefore focus on d'and d,,.

When lifting the assumption of equal variance, the
Gaussian SDT model is extended by an additional parameter:
the ratio s between the standard deviation of the signal-plus-
noise (target-present) and noise (target-absent) distribution.
The Gaussian SDT model assumes an ROC curve that be-
comes a straight line when z-transformed with parameter s
as its slope. For detection measure d,, which corresponds to
this model, to be valid for X-ray baggage inspection tasks,
zZROC curves should be approximately linear. In line with a
study from Wolfe and Van Wert (2010), the results of
Experiment 2 show approximately linear pooled zROC
curves. In our experiments, the slope parameter was around
0.5-0.6, which corresponds well with the findings in other
experiments that investigated the X-ray baggage inspection
task (Godwin, Menneer, Cave, & Donnelly, 2010a; Wolfe
et al., 2007; Wolfe & Van Wert, 2010). However, the slope
parameter might depend on the level of sensitivity and might
vary between different implementations of the X-ray baggage
inspection tasks or depending on the participants.

To better understand what factors influence the slope pa-
rameter, a better understanding of the inspection process
would be useful and should be the focus of future studies.
From the perspective of Gaussian SDT, a zZROC slope smaller
than one implies that the signal-plus-noise distribution has a
higher standard deviation than the noise distribution. A possi-
ble explanation for this is that prohibited items can vary
strongly in how well they can be recognized — for example,
depending on item category (Halbherr et al., 2013; Koller
et al., 2009) and the exemplar within categories (Bolfing,
Halbherr, & Schwaninger, 2008; Schwaninger et al., 2007).
The SDT framework might have to be extended to provide a
better model of the visual inspection process. For instance,
Wolfe and Van Wert (2010) described the task as successive
decisions for single items within the X-ray image. This model
assumes that the observer makes a decision according to SDT
for one item after the other until the observer either decides
that an item is prohibited or a quitting threshold is reached.
Conceptually, this is similar to the two-component model of
visual inspection by Spitz and Drury (1978), which has been
applied to the visual inspection of X-ray images and consists
of visual search and decision processes (Koller et al., 2009;
Wales et al., 2009). For modeling recognition memory, SDT
has been extended in various forms by assuming that recog-
nition can be based on either recollection or familiarity
(Yonelinas & Parks, 2007). Similarly, different types of rec-
ognition might apply in X-ray baggage inspection — some
items might be recognized with certainty, whereas for other
items, a decision has to be made under high uncertainty.

Our studies and the reviewed literature focus on the task of
inspecting X-ray images of passengers’ cabin baggage. Our
findings do not necessarily directly translate to related do-
mains, such as the inspection of medical X-ray images or other
visual search tasks with artificial stimuli; however, such
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related domains should also not expect d’ and A’ to be valid
without further consideration. Future research should specifi-
cally investigate to what extent the findings we report also
apply in related domains.

We hope that future research will provide more insights into
the image inspection process; however, we suggest a critical yet
pragmatic approach when investigating performance in image
inspection tasks. As famously stated by Box (Box & Draper,
1987, p. 424), “all models are wrong, but some are useful.” In
X-ray image inspection, the main use of a detection measure is to
identify whether a unidirectional difference in HR and FAR (i.e.,
when both HR and FAR are higher in one group or condition) is
only a difference in the decision criterion or also a difference in
detection performance in terms of sensitivity. That is, a compar-
ison of detection measures should answer the question of who
would have the higher HR and lower FAR if everyone used a
similar decision criterion.' For one-point detection measures, the
implied ROC curve therefore needs to be approximately correct.
Our studies and the reviewed literature show that for X-ray bag-
gage inspection, this is often not the case for d’and A", Instead, d,
with a zZROC slope of 0.5 to 0.6 often seems to provide the better
measure. However, while it is not clear what factors determine
the zZROC slope, we recommend testing d,, with a slope of 0.5 in
addition to d,, with a slope of 1 (i.e., d') as the upper and lower
bound, respectively. Another approach is to gather confidence
ratings and use A, as a detection measure. Whereas d’, A, and
d, imply a specific shape of ROC curve, A, is conceptually valid
for any form of ROC curve. However, it requires the collection of
confidence ratings, and is based on the assumption that these
confidence ratings allow a prediction of alternative criterion lo-
cations at an individual level. Moreover, some methodological
problems can arise because A, estimates the AUC by linearly
interpolating empirical ROC points (Pollack & Hsieh, 1969).
This approach increasingly underestimates the AUC with a de-
creasing number of ROC points (Macmillan & Creelman, 2005,
p. 64). A, might therefore require a relatively high number of
trials to be a valid detection measure. In Experiment 1, A, per-
formed acceptably well — it was not significantly affected by the
manipulation of the decision condition, and differentiated be-
tween known and novel targets with statistical power comparable
to d,. However, this is only limited support for the measure, as
the results are restricted to a within-subject comparison of a small
sample. Future research might clarify whether confidence ratings
allow a reliable prediction of criterion shifts induced by changes
in target prevalence or instruction.

In conclusion, X-ray image inspection research and related
domains will have to be cautious when using one-point esti-
mates of sensitivity such as d’ and A". We recommend always
starting by performing an analysis and discussion of the directly
accessible HR and FAR. Estimating the sensitivity and criterion

! For different levels of sensitivity, it is conceptually not clear what constitutes
an equal decision criterion (Macmillan & Creelman, 2005, pp. 36-44).
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is often only necessary if HR and FAR are affected unidirec-
tionally. In that case, it should be considered that a zZROC slope
can be expected to lie somewhere between 0.5 and 1 for X-ray
baggage inspection tasks. With d,, effects on sensitivity can be
estimated for these two slopes separately to test the two limits
of the assumption of constant sensitivity (where the upper limit
with a zZROC slope of 1 corresponds to d'). Collecting confi-
dence ratings allows to directly estimate the ZROC slope for the
investigated task, to calculate A4, which provides an additional
estimation of sensitivity, and help to further understand the
shape of the ROC curve in X-ray image inspection.

Appendix
Pooling and ROC curves

When investigating receiver operating characteristic (ROC)
curves based on the framework of signal detection theory
(SDT), in almost all experiments of real interest, some type
of averaging must be performed (Macmillan & Creelman,
2005, p. 331). For X-ray image inspection, combining differ-
ent stimuli in an experiment seems reasonable because this is
representative of this task in the real world. However, when
responses from different subjects are averaged, the resulting
ROC curve can deviate systematically from individual ROC
curves, as we will illustrate in the following paragraphs.
Figure 6 assumes two subjects with an identical ROC curve
in the shape assumed by Gaussian SDT. If these subjects differ
in their decision criterion, their averaged ROC point (i.e., hit

00 T T T T
0.0 0.2 04 0.6 0.8 1.0

FAR

Fig. 6 When the two points A and B from the same receiver operating
characteristic (ROC) curve are averaged, the resulting ROC point C is
below the original ROC curve
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and false alarm rate) will lie in the middle of the line
connecting their individual ROC points and therefore below
their true ROC curve. How far away the averaged ROC point
is from the true ROC curve depends on the difference between
the decision criteria (i.e., the distance between the individual
ROC points) and on the curvature of the ROC. When looking
at pooled ROC points, it is therefore important to consider the
between-subject variation in decision criteria. Plotting ROC
curves based on confidence ratings now assumes that each
level of the confidence rating could be a possible criterion
and therefore each confidence level provides an ROC point
(one of them is guaranteed to be at a HR and FAR of one,
therefore & confidence levels result in A-1 meaningful ROC
points). Figure 7 shows that for Experiment 2, the variation
between the individual criteria is different between the confi-
dence levels. Some of the ROC points based on pooled data
should therefore be further away from the "true" ROC curve.

Figure 8 shows individual and pooled ROC points of
Experiment 2 in comparison with the theoretical ROC curves
based on the average d', d,, and A". As expected, particularly
the two most liberal (i.e., rightmost) ROC points fall below the
theoretical ROC curves.

To test whether the deviation from the theoretical ROC curves
could be the mere result of pooling, we ran a simulation. The
simulation assumed that the ROC curve based on d,, with a slope
parameter of 0.6 holds true for each individual and, for simplifi-
cation, that individuals deviate normally from the mean d, of
Experiment 2 (M = 1.37) with the standard deviation of
Experiment 2 (SD = 0.26). Additionally, for the criterion ¢, of
each confidence level, it was assumed that subjects vary normally
around the group's average, and again, these parameters were
estimated using Experiment 2. According to these assumptions
10,000 observations were created for each confidence level and
pooled. The result of this quite simple simulation is also depicted
in Figure 8 and falls close to the pooled ROC points from the
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Fig. 8 Receiver operating characteristic (ROC) points based on individ-
ual (gray) and pooled confidence rating data of dataset 2 (black, dashed),
created from a simulation (red, dashed), as assumed by the average d’
(green), d,, (blue), and A’ (red)

original data. This suggests that the pooled ROC points might
simply deviate from the ROC curve based on d, because of the
variation in the criterion and sensitivity between subjects (how-
ever, this does not, of course, prove that the pooled ROC curve
would look like the ROC curve based on d, if all pooling artifacts
were eliminated).

As illustrated, pooling ROC points can severely distort the
shape of ROC curves. The illustrated problems of pooling
should not occur if averaging is performed after z-transforma-
tion and the zROC curves are linear. However, z-transformation
before pooling is often not fully possible because of FAR or HR
values of zero or one on an individual level, for which the z-
transformation (i.c., the inverse of the cumulative distribution
function of the standard normal distribution) is undefined.
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