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Abstract: While adjustment of total energy and nutritional balance is critically important, meal
sequence, a relatively simple method of correcting postprandial hyperglycemia, is becoming
established as a practical dietary approach for prevention and management of diabetes and obesity.
Meal sequence, i.e., consumption of protein and/or fat before carbohydrate, promotes secretion of
glucagon-like peptide-1 (GLP-1) from the gut and ameliorates secretions of insulin and glucagon
and delays gastric emptying, thereby improving postprandial glucose excursion. GLP-1 is known to
suppress appetite by acting on the hypothalamus via the afferent vagus nerve. Thus, enhancement of
GLP-1 secretion by meal sequence is expected to reduce body weight. Importantly, consumption of a
diet rich in saturated fatty acids such as meat dishes before carbohydrate increases secretions of not
only GLP-1 but also glucose-dependent insulinotropic polypeptide (GIP), which promotes energy
storage in adipose tissue and may lead to weight gain in the long term. Dietary fiber intake before
carbohydrate intake significantly reduces postprandial glucose elevation and may have a weight loss
effect, but this dietary strategy does not enhance the secretion of GLP-1. Thus, it is suggested that
their combination may have additive effects on postprandial glucose excursion and body weight.
Indeed, results of some clinical research supports the idea that ingesting dietary fiber together with
meal sequence of protein and/or fat before carbohydrate benefits metabolic conditions of individuals
with diabetes and obesity.
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1. Introduction

Early metabolic changes in type 2 diabetes (T2D) typically show an increase in postprandial
blood glucose [1]. Postprandial hyperglycemia is an independent risk factor for complications of T2D,
including microvascular and macrovascular complications [2–4]. Furthermore, it has been shown
that decreasing postprandial glucose elevation can reduce the incidence of T2D and that controlling
postprandial blood glucose with dietary therapy may be effective in preventing diabetes [5,6]. Under
these circumstances, there is much interest in meal sequence for the control of postprandial glucose
elevation and body weight. Meal sequence, a relatively simple method of correcting postprandial
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hyperglycemia, is becoming established as a practical dietary treatment for diabetes and obesity. In
this article, the mechanisms involved in the beneficial effects of meal sequence are discussed.

2. Secretion and Function of Glucagon-Like Peptide-1 (GLP-1)

GLP-1 is one of two incretins secreted from the gut in response to ingestion of the various
nutrients (e.g., carbohydrate, protein, and fat), and stimulate insulin secretion from pancreatic β-cells
glucose-dependently [7]. In addition, GLP-1 suppresses glucagon secretion from pancreatic α-cells
and delays gastric emptying, thereby ameliorating postprandial glucose excursion [7]. GLP-1 has been
attracting interest as an important therapeutic strategy for diabetes, and GLP-1 receptor agonists are
now being used to manage glycemia in individuals with T2D globally. GLP-1 is also known to suppress
appetite and reduce food intake; and GLP-1 receptor agonists reduce body weight substantially, making
the drugs valuable for individuals with morbid obesity [7]. Studies in experimental animals revealed
that effects of GLP-1 on secretions of insulin and glucagon, gastric emptying and appetite involve
activation of the vagus nerve [8]. Studies using GLP-1 receptor- deficient mice revealed that GLP-1
exerts protective effects on heart, kidney, and nervous system, suggesting that GLP-1 may prevent
diabetes-related complications [9–11]. Indeed, some GLP-1 receptor agonists have been shown to
reduce incidence of cardiovascular death, non-fatal myocardial infarction, non-fatal cerebral infarction,
and impaired renal function in high-risk T2D patients [12,13]. Taken together, it is conceivable
that enhancement of GLP-1 secretion by nutrients should exert beneficial effects on prevention and
progression of diabetes and obesity.

3. Preloading Protein and/or Fats before Carbohydrates

Various studies have been conducted to investigate the effects of amelioration of postprandial
blood glucose levels by preloading protein and amino acids before carbohydrate intake. For example,
intake of 55 g whey protein before potato soup enhances GLP-1 and insulin secretion, delays gastric
emptying and ameliorates postprandial glucose elevation [14]. Intake of 40 g glutamine before mixed
meal (37 g carbohydrate, 1.3 g fat, and 16 g protein) enhances GLP-1 and insulin secretion and
ameliorates postprandial glucose elevation as well [15]. These effects have been observed in T2D
and nondiabetic subjects [16]. It was reported that the glucose-lowering effect of protein preload was
dose-dependent [17]. Several studies have been conducted to investigate the effects of preloading fats.
Gentilcore D et al. reported that intake of 30 mL olive oil before mashed potato (61 g carbohydrate)
enhances GLP-1, delays gastric emptying and ameliorates postprandial glucose elevation [18]. However,
enhancement of insulin secretion was not found in the study. The effect of delay in gastric emptying
appears more strongly when preloading olive oil than when preloading whey proteins. Thus, inhibition
of gastric emptying may ameliorate glucose elevation more strongly than enhancement of insulin
secretion by incretins.

Preloading protein or fat before carbohydrate increased GLP-1 secretion and ameliorated
postprandial hyperglycemia; however, intake of several tens of grams of whey protein, glutamine
or olive oil at each meal, as performed in those protocols, is unrealistic. Thus, our group previously
investigated preloading nutrients in daily meals. The effects of preloading fish (boiled mackerel: 15 g
protein, 18 g fat, 0 g carbohydrate) and meat (grilled beef: 15 g protein, 18 g fat, 0 g carbohydrate) as
a source of mixed protein and fat to be consumed before rice, as the source of carbohydrate, were
evaluated in a crossover study comparing drug-naive T2D patients and healthy subjects (Figure 1) [19].
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Figure 1. Summary of preloading fish and meat before carbohydrate. Preload of fish and meat ameliorated 

postprandial glucose excursion by enhancing GLP-1 secretion and delaying gastric emptying. Preload of meat, 

which is rich in saturated fat (SFA) and monounsaturated fat (MUFA), enhances glucose-dependent 

insulinotropic polypeptide (GIP) secretion more than fish, which is rich in polyunsaturated fat (PUFA). As GIP 

promotes fat accumulation, frequent preload of meat before carbohydrate might well increase body weight. 

When fish or meat dishes were consumed before rice, the postprandial glucose elevation was 

significantly reduced, and the secretion of GLP-1 was increased and gastric emptying time was 

prolonged. These findings are consistent with currently available data on preloading oil, protein, and 

their mixture with or without dietary fiber (Figure 2 and Table 1). 

 

Figure 2. Flow diagram of the systematic review. Relevant articles were searched in PubMed and Cochrane 

library. The search terms were (Fat OR Protein OR fiber) AND (Preload OR “meal sequence” OR “postprandial 

glycemia” OR “postprandial glucose” OR “glucose excursion”) AND (“type 2 diabetes”) AND (“glucose-

dependent insulinotropic polypeptide”) AND (“glucagon-like peptide-1”) NOT (Review[pt]). The resulting 37 

articles were inspected for their relevancy, and 7 manuscripts are listed in Table 1.

Figure 1. Summary of preloading fish and meat before carbohydrate. Preload of fish and meat
ameliorated postprandial glucose excursion by enhancing GLP-1 secretion and delaying gastric
emptying. Preload of meat, which is rich in saturated fat (SFA) and monounsaturated fat (MUFA),
enhances glucose-dependent insulinotropic polypeptide (GIP) secretion more than fish, which is rich
in polyunsaturated fat (PUFA). As GIP promotes fat accumulation, frequent preload of meat before
carbohydrate might well increase body weight.

When fish or meat dishes were consumed before rice, the postprandial glucose elevation was
significantly reduced, and the secretion of GLP-1 was increased and gastric emptying time was
prolonged. These findings are consistent with currently available data on preloading oil, protein, and
their mixture with or without dietary fiber (Figure 2 and Table 1).
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Figure 2. Flow diagram of the systematic review. Relevant articles were searched in PubMed and
Cochrane library. The search terms were (Fat OR Protein OR fiber) AND (Preload OR “meal sequence”
OR “postprandial glycemia” OR “postprandial glucose” OR “glucose excursion”) AND (“type 2
diabetes”) AND (“glucose-dependent insulinotropic polypeptide”) AND (“glucagon-like peptide-1”)
NOT (Review[pt]). The resulting 37 articles were inspected for their relevancy, and 7 manuscripts are
listed in Table 1.
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Table 1. Preloading fat, protein, and their mixture with and without dietary fibers before carbohydrate in individuals with type 2 diabetes.

Preload Details of Main
Meal

n Outcomes Ref

Type Details Timing Glucose Insulin Glucagon GLP-1 GIP CCK GE

F 30 ml olive oil 30 min
before C

65 g mashed
potato/20 g glucose

(C 61 g)
6 Peak

delayed
Peak

delayed ND Enhanced NC ND Delayed [18]

P 55 g whey protein 30 min
before C

65 g mashed
potato/20 g glucose
(C 59.1 g; P 5.2 g; F

4.3 g)

8 Suppressed Enhanced ND Enhanced Enhanced Enhanced Delayed [14]

P 25 g whey protein 30 min
before C

65 g mashed
potato/20 g glucose/1

egg yolk
22 Suppressed Enhanced Enhanced Enhanced Enhanced ND Delayed [20]

Mixed
50 g cheese/one

small-size boiled egg
(C 2 g; P 23 g; F 17 g)

30 min
before C 75 g glucose (C 75 g) 10 Suppressed NC Enhanced Enhanced Enhanced ND ND [21]

Mixed
100 g steamed

mackerel (C 0g; P
15.1 g; F 17.7 g)

15 min
before C

150 g rice (C 53.4 g; P
3.5 g; F 0.6g) 12 Suppressed Enhanced Enhanced Enhanced Enhanced ND Delayed [19]

Mixed
79 g grilled beef (C

0.2 g; P 16.4 g; F
17.1 g)

15 min
before C

150 g rice (C 53.4 g; P
3.5 g; F 0.6g) 12 Suppressed Enhanced Enhanced Enhanced Enhanced* ND Delayed [19]

Mixed

Protein enriched,
dietary fiber fortified
bar (C 0.4 g; P 10.7 g;
F 0.3 g; Fiber 12.7 g)

30 min
before C

286 g Bagle/70 g
Cream cheese/95g

Orange juice (C
79.5 g; P 15.5 g; F

50.5g)

15 Suppressed Suppressed ND Enhanced NC ND ND [16]

Mixed
50 g cheese/one

small-size boiled egg
(C 2 g; P 23 g; F 17 g)

30 min
before C 75 g glucose (C 75 g) 9 Suppressed NC Enhanced Enhanced Enhanced ND ND [22]

Published results on preloading fat, protein, and their mixture with and without dietary fibers before carbohydrate in individuals with type 2 diabetes are summarized. C, carbohydrate;
CCK, cholecystokinin; F, fat; GE, gastric emptying; GLP-1, glucagon-like polypeptide-1; GIP, glucose-dependent insulinotropic polypeptide; P, protein; NC, no change; ND, not determined.
*, enhancement of GIP secretion was greater with preloading grilled meat compared to preloading steamed mackerel.
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Interestingly, in a comparison between meat and fish dishes, a significant difference in secretion
of another incretin, glucose-dependent insulinotropic polypeptide (GIP) was observed, although the
energy content, nutrient ratio, and amino acid compositions were similar (Figure 1). Fish dishes
contain more polyunsaturated fatty acids, eicosapentaenoic acid, and docosahexaenoic acid, while
meat dishes contain more saturated fatty acids. The difference in fatty acids may underlie the difference
in GIP secretion. It is known that saturated and monounsaturated fats can enhance GIP secretion in
humans [23,24]. When a meal rich in saturated fatty acids is consumed, large amounts of GIP are
secreted, which promotes energy storage in the adipose tissue [9]. Therefore, preloading meats, which
are rich in saturated fatty acids, even if postprandial hyperglycemia is suppressed in the short term,
may lead to weight gain in the long term.

4. Preloading Dietary Fiber before Carbohydrates

The effects of preloading dietary fiber before carbohydrate intake has also been discussed
intensively. Dietary fiber is a generic term for components that are not digested and absorbed in
the body. It has been shown that fiber has an effect on lifestyle-related diseases such as diabetes
and obesity, through inhibition of carbohydrate and lipid absorption in the short term and through
effects on gut microbiota in the long term [25]. It is believed that dietary fiber swells in the stomach,
increasing the viscosity of the food mass and delaying the time of gastric emptying [26]; however, in our
study, no obvious delay in gastric emptying time or increase in GLP-1 secretion when vegetables were
ingested before rice was observed (S.K., H.K., and D.Y. unpublished observation). Sun et al. reports a
similar effect under normal glucose tolerance, in which GLP-1 secretion shows no significant difference
between eating vegetables before “meat and rice” and eating “vegetable, meat, and rice” together;
however, glucose excursion was significantly ameliorated by eating vegetables before “meat and rice”.
They found that ingesting vegetables first and meat afterward before rice was most ameliorative of
postprandial glycemic excursion [27]. These results suggest that preloading protein or fat and dietary
fiber before carbohydrate may have different mechanisms of effect on postprandial hyperglycemia
and weight loss, and that the combination is expected to have additive effects. In addition, Jae Hyun
Bae et al. reported the postprandial glucose-lowering effect of a premeal protein-enriched, dietary
fiber-fortified bar containing a moderate amount of protein in individuals with T2D or normal glucose
tolerance. The bar contained 0.4 g of carbohydrate, 9.3 g of whey protein, 1.4 g of soy protein, 0.3 g of
fat, and 12.7 g of dietary fiber. The study showed a significantly decreased glucose elevation with a
small amount of mixed protein and fiber [16].

5. Long-Term Effects of Preload-Based Dietary Strategies

A few reports have examined the long-term effects of preload-based dietary strategies. Toriko et
al. studied 17 patients with type 2 diabetes divided into two groups: those who consumed protein and
fat before carbohydrate and those who did not sequence meal components for 8 weeks. A significant
decrease in HbA1c in the group that consumed protein and fat before carbohydrate was noted [28]. Imai
et al. reported that Japanese T2D patients who were instructed to consume fiber-rich vegetables before
carbohydrate showed a significant improvement in HbA1c and a trend toward decreased BMI [29].
Recently, the effects of dietary instructions focusing on meal sequence versus nutritional balance in
individuals with prediabetes in the Japanese national health check-up and guidance program were
recently evaluated. In this study, effects of health guidance with dietary instructions focusing on
meal sequence were compared to conventional health guidance and health guidance with dietary
instructions focusing on nutritional balance (Figure 3). It was found that health guidance with dietary
instructions focusing on meal sequence reduced body weight compared to that with dietary instructions
focusing on nutritional balance [30].
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Figure 3. Dietary intervention focusing on meal sequence suppressed energy intake and reduced body
weight in individuals with prediabetes. Effects of dietary instruction focusing on meal sequence (Meal
sequence, n = 18) were compared to conventional dietary instruction (Conventional, n = 11) and dietary
instruction focusing on nutritional balance (Nutrition balance, n = 13) using SMART Washoku® (Kao
Corporation, Tokyo, Japan), which can help individuals consume a more nutritionally balanced diet,
in an exploratory, cluster-randomized, prospective, open-label, clinical trial [30]. Each participant
reported adherence to their goals for diet and healthy exercise every month using a scale of 1–5, where
1 indicated “seldom adhered” and 5 indicated “fully adhered”. The group receiving dietary instruction
focusing on meal sequence exhibited similar adherence and greater reduction in body weight than the
group receiving conventional health guidance, while the group receiving dietary instructions focusing
on nutritional balance failed to show significant body weight reduction, partly due to poor adherence.
Mean±SEM; *, p < 0.05 versus conventional and p < 0.05 versus meal sequence.

6. Conclusive Remarks and Future Perspectives

Many studies have found that preloading nutrients such as protein, fat, and fiber before
carbohydrate can ameliorate postprandial glucose elevation. Preloading the various non-carbohydrate
nutrients before carbohydrate intake engages distinct mechanisms but has a consistent effect on
amelioration of elevated postprandial glucose. Interventions on the order of eating may be more
readily followed than interventions on the nutritional balance of meals. Indeed, it has been reported
that adherence to a meal sequence program is better than that to a nutritional balance program [30].
Interventions focusing on meal sequence facilitate secretion of GLP-1, which has the property of
inhibiting appetite, suggesting that long-term interventions on meal sequence may lead to prevention
or improvement of obesity. However, precise mechanisms underlying effects of meal sequence remains
largely unknown. For example, it is unknown why consumption of protein and/fat before carbohydrate,
but not after carbohydrate, enhances GLP-1 secretion. It is unknown whether other factors such as
cholecystokinin and/or glucagon as well as the vagus nerve system that also regulates gastric emptying
contribute to effects of gastric emptying. Experiments investigating mechanisms underlying meal
sequence are underway. Meanwhile, currently available reports strongly support that meal sequence
dietary therapy is beneficial in controlling postprandial glucose excursion and bodyweight to better
prevent and manage diabetes and obesity.
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