
J Pathol Inform  Editor-in-Chief:
   Anil V. Parwani ,	 Liron Pantanowitz, 
   Pittsburgh, PA, USA	 Pittsburgh, PA, USA 

For entire Editorial Board visit : www.jpathinformatics.org/editorialboard.asp

OPEN ACCESS 
HTML format

Symposium - Original Research

Approaches to automatic parameter fitting in a microscopy image 
segmentation pipeline: An exploratory parameter space analysis

Christian Held, Tim Nattkemper1, Ralf Palmisano2, Thomas Wittenberg

Department for Image Processing and Biomedical Engineering, Fraunhofer Institute for Integrated Circuits, Erlangen, 1Biodata Mining Group, Faculty of Technology,  
Bielefeld University, (D‑33501 Bielefeld), 2Optical Imaging Center Erlangen, OICE, Erlangen, Germany

E‑mail: *Christian Held ‑ christian.held@iis.fraunhofer.de 
*Corresponding author

Received: 21 January 13	 Accepted: 21 January 13	 Published: 30 March 13

Abstract

Introduction: Research and diagnosis in medicine and biology often require the 
assessment of a large amount of microscopy image data. Although on the one hand, 
digital pathology and new bioimaging technologies find their way into clinical practice 
and pharmaceutical research, some general methodological issues in automated image 
analysis are still open. Methods: In this study, we address the problem of fitting 
the parameters in a microscopy image segmentation pipeline. We propose to fit the 
parameters of the pipeline’s modules with optimization algorithms, such as, genetic 
algorithms or coordinate descents, and show how visual exploration of the parameter 
space can help to identify sub‑optimal parameter settings that need to be avoided.  
Results: This is of significant help in the design of our automatic parameter fitting 
framework, which enables us to tune the pipeline for large sets of micrographs. 
Conclusion: The underlying parameter spaces pose a challenge for manual as well 
as automated parameter optimization, as the parameter spaces can show several local 
performance maxima. Hence, optimization strategies that are not able to jump out 
of local performance maxima, like the hill climbing algorithm, often result in a local 
maximum.
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INTRODUCTION

In clinical practice, pharmaceutical studies, and life science 
research, automatic analysis of large sets of microscopy 
images has received a lot more attention in the last ten years, 
because of several parallel developments. In the clinical 
domain, the digitization of pathological preparations, that 
is, digital pathology, has experienced a significant speed 
up in the last year, as more tissue sections are investigated 
and imaging and image archiving have been improved into 
integrated hardware solutions. As a consequence, large 

image collections can be recorded under almost identical 
conditions, enabling (and calling for) new software solutions 
for the automated and semi‑automated analysis of the 
data, which includes quantitative measurements  (counting 
of cell nuclei) or tissue segmentation.[1‑4] In pharmaceutical 
research and life sciences, advances in robotics, automation, 
signal processing, and staining techniques enable new 
microscopy imaging approaches, which are able to resolve 
high dimensional tissue features with multi‑staining or 
multi‑spectral images. As a consequence, algorithmic 
approaches for the analysis of such data are desperately 
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needed. The so‑called bioimage informatics has been 
developed as a new branch in the bioinformatics tree.[5] For a 
manual assessment of microscopic imagery, the commercial 
and academic sectors provide different solutions to support 
experts in data management, exploration visualization, and 
semantic annotation.[6‑9] However, it is common sense, that 
manual evaluation of large scale image data is a repetitive 
and time‑consuming task. As a result of this, fatigue or 
pressure of time can lead to erroneous or non‑reproducible 
results. The analysis of microscopy images  (e.g.,  from 
tissue sections or fluorescent data) can involve different 
steps, and it is dependent on the diagnostic or scientific 
context. In one diagnostic context, the analysis can be 
deduced by counting different types of cells in a sample. 
Another context on the same or similar image data may 
require measurement of cell size or measurement of the 
average signal intensity across a hand‑selected region 
of interest  (ROI). Using automated image analysis, 
reproducibility as well as time required for evaluation can 
be reduced for many experiments. The development of 
an automated image analysis system promises robust and 
accurate segmentation of each object  (e.g.,  nuclei) in the 
image, but poses several challenges like overlapping cells, 
low signal‑to‑noise ratios or artifacts.

To overcome these obstacles, usually pipelines or 
workflows of image processing modules are designed, 
involving modules of de‑noising, thresholding, and 
segmentation. Optimal adjustment of each module’s 
parameters is important to obtain high quality 
segmentation. Tools like the CellProfiler[10] offer a 
segmentation pipeline editor, enabling the arrangement 
and parameterization of modules. However, the design 
of the pipeline and fitting the modules parameters is 
a non‑trivial task, as an experienced image processing 
expert has to perfectly understand the aim of the 
segmentation and the image characteristics  (like tissue 
morphology, staining). Furthermore, if the expert finally 
finds a good parameter set for the chosen pipeline it is 
unclear how this pipeline will perform on the new data 
recorded in another laboratory. To ease the integration 
of medical/pathological background knowledge  (usually 
defined by manually acquired ground truth segmentation) 
into the image processing solution, artificial neural 
networks and machine learning had been already 
proposed in the mid 1990s and their application has been 
proposed.[11‑13] However, the parameter fitting problem 
remains with this approach as well. One alternative to an 
iterative manual parameter adjustment has been proposed 
just recently by Pretorious et al.,[14] describing a plugin for 
the CellProfiler[10] that computes and stores segmentation 
results for different combinations of parameters. Based on 
the selection of high‑  or low‑quality results by the user, 
optimal parameterization of the segmentation pipeline is 
determined. A  further alternative to manual parameter 
adjustment that is applicable to fluorescent image data 

is described by Wittenberg et  al.[15] This requires the 
user to manually delineate some representative cells. 
Parameterization of the segmentation pipeline is then 
adjusted toward the user input by a genetic algorithm.

In this study we investigate the problem of automatic 
parameter fitting in a segmentation pipeline. We 
introduce the segmentation pipeline developed in one 
particular project. We have chosen this example, as the 
cell shapes are very complex and the pipeline relates well 
to many other published pipelines. Next, we explain how 
the parameters are fitted automatically with different 
approaches and explain how segmentation accuracy is 
assessed. Visualization of the parameter space in relation 
to segmentation accuracy enables us to understand why 
some automatic and manual methods are likely to fail in 
finding the global optimum in the parameter space.

MATERIALS

Macrophages from C56BL/6 mice were stained with 
CD11b/APC. An additional DAPI staining enabled 
visualization of the cell nuclei. Using a Zeiss Axivert 
microscope, with a 20x objective, 20 micrographs with a 
size of 1388  ×  1040 pixels were captured  [Figure  1]. In 
order to define the solution of the segmentation task, 
each cell was manually delineated by an experienced 
biologist. Cells exceeding the image boundary or cells 
whose boundaries could not be resolved by the human 
expert were also delineated and assigned to a rejection 
class. The resulting ground truth consisted of 588 valid 
macrophages and 320  cells assigned to the rejection 
class.

METHODS

The Segmentation Pipeline
The segmentation pipeline used in this study consists 
of three modules. In the first module, preprocessing is 
applied aiming to remove the potential noise or shading 
artifacts. Next, the cells are separated from the image 
background. In the last step, the touching or overlapping 
cells are separated from each other. An illustration of the 
segmentation pipeline is provided in Figure 2.

Automated or manual adjustment of the module parameters 
correspond to optimization of a multidimensional function 
f(x1, x2., xn), where n corresponds to the full number of 
parameters of all the modules. For this study we assume 
that each parameter is discretized and can be represented 
by a finite set of ordered values.

Minimum Filter‑Based Preprocessing
In the preprocessing stage, a Gaussian smoothing filter 
with standard deviation σM ∈  {1,3.,19}  (so x1= σ, see 
above) is applied for noise reduction. Then, a difference 
imaging‑based shading correction technique is performed. 
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For shading correction, the minimum filtered background 
image is subtracted from the smoothed image. The width 
and height of the minimum filter are set to 2ε +1, with 
ε ∈  {1,2.,10}  (so x2= ε and so on) to enable efficient 
adjustment of the kernel size. As the runtime of the 
minimum filter usually increases with the radius of the 
structuring element, the implementation of Van Herk[16] 
is used, which only requires six comparisons per pixel, 
independent of the kernel size.

K‑Means Clustering Based Figure‑Ground 
Separation
For the separation of the fore‑  and background pixels, a 
method based on k‑means clustering[17] is applied. Note 
that this technique can be implemented efficiently using 
the histogram of the image.[18] Compared to alternative 

figure‑ground separation routines, this method enables 
easy adjustment of the threshold level by changing 
the number of clusters, k  ≥  2. After clustering, each 
of the clusters is assigned to the fore‑  or background 
classes. Assuming that the dynamics of the cells are 
large compared to the dynamics of the background, the 
darkest cluster can be regarded as the background. All the 
remaining clusters are interpreted as the foreground. For 
the opposite case with dynamics of the image background 
being larger than the dynamics of the image foreground, 
clustering with k  ≥ 2 results in over‑segmentation of the 
image. To enable a robust, figure‑ground separation for 
such image data, the rules for assigning each cluster to 
the fore‑  or background must be modified. Hence, only 
the brightest cluster is regarded as the foreground. All the 
remaining clusters are interpreted as the background.

For adaption to data from different fluorescence imaging 
domains, parameterization of k‑means clustering must be 
adjustable, such that, both modes for assigning clusters 
to the fore‑  and background are supported. Therefore, 
an auxiliary variable k0 is introduced, encoding the 
number of clusters k. By optimizing the parameter k0, 
the proposed k‑means clustering‑based figure‑ground 
separation method supports both modes for assigning 
clusters to the fore‑  or background. For k0  ≥  2, the 
number of clusters k is set to k  =  k0, and the cells are 
assumed to be represented by all clusters, except the 
darkest cluster. If k0 < 2, the brightest cluster is regarded 
as the foreground. As both modes result in equal results 
if clustering is performed with two clusters, k0  =  1 shall 
correspond to k‑means clustering with three clusters 
and only the brightest cluster shall be interpreted as 
the foreground. Accordingly, the number of clusters 
is set to k  =  4  −  k0 if k0  <  2. For an illustration of the 
segmentation results using varying values for k0, see 
Figure  3. The automated parameter optimization range 
of k0 is restricted to k0 ∈ {−8,−7.,12}.

Figure 3: Input image (a) Output after figure‑ground separation for varying values of k2km (b‑f)

dcb fa e

Figure 1: Micrograph depicting merged image of macrophages from 
C56BL/6 mice, stained with CD11b/APC and DAPI (left) and the 
corresponding manually created ground truth (right). Note that 
cells near the image boundary (red cells in the ground truth image) 
are assigned to a rejection class

Figure 2: Illustration of the segmentation pipeline
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Watershed and Seeded Watershed Transform
The watershed transform is a commonly used method for 
splitting of touching cells. For splitting of approximately 
round or oval cells, a distance transformed binary image 
is used as an input for the watershed transform. The 
binary image is obtained from the k‑means clustering, 
as described above. Alternatively, cells can be split by 
using the information on gradient magnitude. In our 
study, we have applied a hybrid watershed transform,[19] 
which combines the distance‑transformed image with 
information on the gradient magnitude. Denoting the 
gradient magnitude–based image as  ∇I  (x, y) and the 
distance transformed binary image as ID  (x, y), the input 
for the hybrid watershed transform IH (x, y) is defined as:

I x y I x y I x yH w D w( , ) ( ) ( , ) ( , ),= − + ∇1 a a

Where αw ∈  {0,0.1,...,1} is a weighting factor that 
allows balancing between the impact of the gradient 
magnitude–based and the distance transform–based 
components. In order to reduce over‑segmentation, a 
Gaussian smoothing filter with standard deviation σw 
∈  {1,2,...,10} is applied for smoothing IH  (x, y), thus 
reducing the over‑segmentation artifacts.

In contrary to the watershed transform, the seeded 
watershed transform is not based on local intensity 
maxima. Instead, cell nuclei that have been previously 
segmented in the DAPI channel are used as seeds. The 
seeded watershed transform works analogous to the 
watershed transform and uses parameters αws ∈ {0,0.1,...,1} 
for balancing of gradient and distance information and σws 
∈ {1,2,...,10} for smoothing of the hybrid image.

Segmentation Accuracy Assessment
A performance metric is required to determine the 
similarity between the ground truth data and the 
segmentation results. The Jaccard similarity enables 
pairwise comparison of the segmentations. Let the 
ground truth be represented by a set of pixels Sgt and the 
automatically generated segmentation by Sres. The Jaccard 
similarity OJ ∈ [0,1] is then defined as:

O
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∩
∪
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Measurement of the Jaccard similarity only takes the 
qualitative aspect overlap into account. Information on 
the number of correctly identified cells, NTP, number of 
missed cells, NFN, and number of erroneously detected 
cells, NFP, is not reflected by the performance metric. In 
order to evaluate the quantitative information, accuracy 
Oa of the segmentation can be utilized:

O
N

N N Na
TP

TP FP FN

=
+ +

.

Determining NTP, NFP, and NFN requires a mapping 
between all ground truth objects and the objects from 
the segmentation result. For this mapping, each of the 
segmented objects is assigned to the best fitting ground 
truth object. Thereby, only a single segmented object can 
be assigned to each ground truth region. Additionally, a 
rejection criterion is implemented. Regions are rejected in 
case of exceeding the image boundary. Objects assigned 
to the rejection class will be excluded from evaluation 
and not influence the performance measurement. Hence, 
a decision rule for determining if the segmented region 
of interest corresponds to a rejection ground truth object 
or to a valid segmentation result, is required. For this 
study, regions that in terms of Jaccard similarity better 
fit a rejection class region than any ground truth region 
are assigned to the rejection class and excluded from 
evaluation.

In order to combine quantitative and qualitative 
performance measurements, the combined Jaccard metric 
is defined. Denoting an optimal pair of corresponding 
regions Sgt and Sres as Ji

best  with i ∈ 1,2., NTP, the combined 

Jaccard metric OJ
C  is defined as:

O
N N N

JJ i
C

TP FP FN
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+ +

1
.

Optimization of Multidimensional Functions
Different strategies exist for the optimization of such 
multidimensional functions. Some optimization strategies 
enable efficient optimization, based on the derivative 
of f. As a derivative of f can only be estimated by finite 
differences, applicability of such functions is not discussed 
in this article. Instead, we focus on the optimization 
methods that do not require estimation of derivatives.

Hill Climbing
The basic hill climbing method is an iterative algorithm 
applicable to optimization of multidimensional functions. 
Based on an initial solution, the hill climbing algorithm 
attempts to find a better solution by increasing or 
decreasing a single parameter xi, i  =  1.., n. If the new 
solution outperforms the previous solution, the new 
solution is accepted and the search continues. This 
method is repeated until no further improvements can 
be found. Due to the local search, the hill climbing 
algorithm is sensitive to local performance maxima.

Steepest Ascent Hill Climbing
Contrary to the basic hill climbing algorithm, the 
steepest ascent hill climbing method evaluates the 
performance for all points in a local neighborhood, 
around the current solution. From these points, only the 
solution yielding the highest performance is accepted. 
Convergence of this optimization scheme is assumed if 
no further improvement can be identified. The steepest 
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ascent hill climbing algorithm is also sensitive to the 
local performance maxima.

Coordinate Descent
The coordinate descent optimization method is an 
approach for minimization of a multidimensional 
function f  (x1, x2., xn) that does not require gradient 
information. Outcome of this method depends on 
its initialization. Using the coordinate descent, each 
parameter is optimized individually by a brute force 
approach in every single iteration. Hence, for the first 
iteration, parameter x1 is varied and optimized. Next, 
parameters x2, xn are optimized. This coordinate‑wise 
optimization of all parameters is then repeated until no 
new performance maximum is determined.

Results obtained by utilizing this search method depend on 
the initialization and identification of the global optimum, 
which is not guaranteed. For details on convergence of the 
coordinate descent method see Luo et al.[20]

Genetic Algorithm
Due to its ability to jump out of local extrema and its 
capability to efficiently optimize multidimensional 
objective functions, genetic algorithms[21] are often 
used for automatic parameter optimization of complex 
multidimensional functions. Using genetic algorithms, the 
set of parameters is regarded as a genome, which consists 
of a set of alleles. Each of the alleles thereby represents 
a parameter. In this study, discrete parameters defined 
by a minimum value, a maximum value, and a step size 
are used to reduce the size of the parameter space. For 
initialization of the genome a random initializer is used.

After initialization, exploration of the parameter space is 
performed based on mutation and crossover operations. 
For this study, probability that a crossover operation 
occurs is set at pcross = 0.5 and probability that a mutation 
occurs at pmut  = 0.2. This results in a crossover operation 
for every second individual and an average amount of ≈ 1 
mutation per individual. Convergence of the genetic 
algorithm is assumed, if no better individual has been 
determined for 200 iterations. Using this convergence 
criterion in Praxis, about 1000 iterations have to be 
performed until convergence, using the described 
fluorescent macrophage data.

Manual Parameter Optimization
In the following, manual optimization strategies applied 
by expert users as well as non‑expert users are briefly 
analyzed. Non‑expert users in this context refer to users 
that do not have an understanding of the underlying image 
processing pipeline. For both user groups, initialization of 
the search space is determined by a guess, including a 
potential prior estimate. Manual parameter optimization 
for non‑expert users is often performed by systematically 
incrementing or decrementing the parameters. This 
strategy can be compared to a hill climbing algorithm. 

Contrary to this, expert users often know the parameter, 
whose modification results in the strongest increase in 
segmentation performance. Assuming that their intuition 
is right, it results in the steepest ascent hill climbing 
algorithm, otherwise, their optimization strategy is similar 
to the hill climbing algorithm.

Experimental Setup
In the following experiment, the applicability of strategies 
for manual as well as automated parameter optimization 
is discussed. The applied segmentation pipeline combines 
the described minimum, filter‑based, pre‑processing 
routine, the figure‑ground separation based on k‑means 
clustering and watershed or seeded watershed transform, 
for cell splitting. Both segmentation pipelines require 
the user to adjust a total of five parameters. To enable 
visualization, parameter spaces are investigated separately 
for each step of the segmentation engine. Therefore, 
all parameters are automatically adjusted for a set of 
images by applying a genetic algorithm, such that, the 
combined Jaccard similarity is maximized. Note that no 
cross‑validation is included because a single parameter 
set that bestrepresents the complete dataset is required. 
Assuming that the global performance maximum has 
been determined by the genetic algorithm, parameters of 
each stage are individually varied around the performance 
optimum, to enable visualization of the corresponding 
parameter spaces.

RESULTS

Based on the optimal parameterization of the segmentation 
pipeline, the parameter spaces of pre‑processing, 
figure‑ground separation, and object splitting can be 
visualized. Therefore, the combined Jaccard similarity 
is evaluated for all possible parameter combinations. 
Figure 4 shows the resulting parameter spaces using the 
watershed transform or the seeded watershed transform, 
for splitting of the cells. For the watershed transform, the 
parameter space of minimum pre-processing [Figure 4a] 
thereby shows several local performance maxima. The 
parameter space of the k-means, clustering-based, 
figure-ground separation [Figure 4b] also shows local 
performance maxima, whereas, the parameter space for 
watershed transform–based cell splitting [Figure 4c] is 
very monotonous. Using a segmentation pipeline with 
seeded watershed transform–based splitting of the cells, 
the minimum filter-based pre-processing again shows 
several local performance maxima [Figure 4d]. Contrary 
to the previous segmentation pipeline, the parameter 
space for figure-ground separation [Figure 4e] is very 
monotonous and does not show any local performance 
maxima. However, the parameter space of the seeded 
watershed transform shows several local performance 
maxima [Figure 4f].
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DISCUSSION AND CONCLUSIONS

In the presented study, a representative segmentation 
pipeline is described, which requires the adjustment of 
five parameters. Using fluorescence microscopy image 
data as an example, the parameters were automatically 
adjusted toward a manually generated ground truth, to 
obtain an optimal parameterization of the segmentation 
pipeline. By varying the parameters for pre‑processing, 
figure‑ground separation, and cell splitting, the parameter 
spaces were visualized for each of the modules. The 
depicted illustrations show that most parameter spaces 
contain several local performance maxima, which pose 
a challenge for many automated parameter optimization 
methods. The obtained results indicate that the genetic 
algorithm outperforms other approaches in solving 
our optimization problem. However, the time required 

until convergence by optimizing the ground truth 
data, consisting of 20 images, is around six hours for 
the genetic algorithm. Application of the hill climbing 
algorithm or the improved steepest ascent hill climbing 
algorithm probably results in a local performance 
minimum, depending on the initialization [Figure 5].

The convergence time for the hill climbing algorithm is 
much faster than the convergence of the genetic algorithm 
and usually lies below one hour. For the coordinate descend 
optimization method, the convergence time is about two 
hours. Based on visualization of the parameter spaces, a 
conclusion may be drawn that the coordinate descent also 
enables identification of the global performance optimum, 
nearly independent from the initialization. Hence, the 
coordinate descent can be applied as a more time‑efficient 
alternative to the genetic algorithm.

On the basis of these results, a conclusion may be drawn 
that the underlying parameter spaces pose a challenge for 
manual as well as automated parameter optimization, as 
the parameter spaces can show several local performance 
maxima. Hence, optimization strategies that are not able 
to jump out of local performance maxima, like the hill 
climbing algorithm, often result in a local maximum. In 
order to decrease the liability to the local maxima, the 
coordinate descent or genetic algorithm–based search 
strategies are recommended.
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