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Objective: To screen lung adenocarcinoma (LUAC)-specific cell-cycle-related genes
(CCRGs) and develop a prognostic signature for patients with LUAC.

Methods: The GSE68465, GSE42127, and GSE30219 data sets were downloaded
from the GEO database. Single-sample gene set enrichment analysis was used to
calculate the cell cycle enrichment of each sample in GSE68465 to identify CCRGs in
LUAC. The differential CCRGs compared with LUAC data from The Cancer Genome
Atlas were determined. The genetic data from GSE68465 were divided into an
internal training group and a test group at a ratio of 1:1, and GSE42127 and
GSE30219 were defined as external test groups. In addition, we combined LASSO
(least absolute shrinkage and selection operator) and Cox regression analysis with the
clinical information of the internal training group to construct a CCRG risk scoring
model. Samples were divided into high- and low-risk groups according to the resulting
risk values, and internal and external test sets were used to prove the validity of the
signature. A nomogram evaluation model was used to predict prognosis. The CPTAC
and HPA databases were chosen to verify the protein expression of CCRGs.

Results: We identified 10 LUAC-specific CCRGs (PKMYT1, ETF1, ECT2, BUB1B,
RECQL4, TFRC, COCH, TUBB2B, PITX1, and CDC6) and constructed a model using
the internal training group. Based on this model, LUAC patients were divided into
high- and low-risk groups for further validation. Time-dependent receiver operating
characteristic and Cox regression analyses suggested that the signature could precisely
predict the prognosis of LUAC patients. Results obtained with CPTAC, HPA, and IHC
supported significant dysregulation of these CCRGs in LUAC tissues.

Conclusion: This prognostic prediction signature based on CCRGs could help to
evaluate the prognosis of LUAC patients. The 10 LUAC-specific CCRGs could be used
as prognostic markers of LUAC.

Keywords: lung adenocarcinoma, cell cycle-related genes, prognostic signature, overall survival, GEO

Abbreviations: CCRGs, cell-cycle-related genes; NSCLC, non-small-cell lung cancer; LC, lung cancer; LUAC, lung
adenocarcinoma; LUSC, lung squamous cell carcinoma; ssGSEA, single-sample gene set enrichment analysis; LASSO,
least absolute shrinkage and selection operator; PKMYT1, protein kinase, membrane associated tyrosine/threonine 1;
ETF1, eukaryotic translation termination factor 1; ECT2, epithelial cell transforming 2; BUB1B, BUB1 mitotic checkpoint
serine/threonine kinase B; RECQL4, RecQ like helicase 4; TFRC, transferrin receptor; COCH, cochlin; TUBB2B, tubulin beta
2B class IIb; PITX1, paired like homeodomain 1; CDC6, cell division cycle 6.
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INTRODUCTION

Lung cancer (LC) remains one of the most common malignancies
and is a major contributor to cancer-related deaths worldwide,
accounting for 11.6% of cancers and 18.4% of deaths, respectively
(Bray et al., 2018). In China, the burden of LC remains
the highest of all cancers, with mortality and incidence rates
1.5 times those worldwide in 2017 (Liu et al., 2020). Non-
small-cell LC (NSCLC) is the predominant type (approximately
85%) of LC; it includes lung adenocarcinoma (LUAC) and
lung squamous cell carcinoma (LUSC), of which LUAC is
the most prevalent type (Peng et al., 2017; Herbst et al.,
2018). LUAC originates in the distal airway and has less
correlation with chronic inflammation and smoking than LUSC
(Peng et al., 2017).

Currently, anatomical surgical resection and mediastinal
lymph node dissection are the most effective methods for
treatment of early stage LUAC patients, and the main
surgical procedures are lobectomy and sub-lobectomy (Lin
et al., 2020; Yu et al., 2020). Advanced-stage LUAC covers a
variety of disease manifestations and has an equally complex
range of multimodal treatment options, including systemic
and local therapies (chemotherapy, radiation therapy, etc.)
for remote and local symptom control, respectively (Evison,
2020). With the application of biomarker-directed therapies
targeting molecular changes (such as EGFR and BRAF V600E
mutations, or ALK and ROS1 rearrangements), these therapies
can prolong the survival of LC patients (Arbour and Riely,
2019). In the past few years, with the application of high-
throughput sequencing (Illumina HiSeq, Illumina MiSeq, Ion
PGMTM, etc.), increasing numbers of rare molecular changes
in oncogenic drivers (including HER2, MET, and RET) have
been identified (Yu et al., 2018). Specific tyrosine kinase
inhibitors targeting these genomic changes have shown improved
patient survival and satisfactory biological activity, mostly in
phase III clinical trials, which has led the US Food and
Drug Administration to accelerate the approval of some of
these drugs (Lamberti et al., 2020). However, the 5 year
survival rate has only increased by 5% in the past 20 years
(Johnson et al., 2014).

Increasing numbers of studies show that the cell cycle
is tightly bound to the growth and proliferation of LUAC
cells, with certain genes potentially functioning as cycle
regulators. For example, knockdown of GINS2 induced cell
cycle arrest and apoptosis in A549 cells (Sun et al., 2021),
and MITF could inhibit NSCLC progression by controlling
the cell cycle (Hsiao et al., 2020). However, the results of
such studies are difficult to translate into clinical practice.
This is mainly because tumor occurrence and development are
pathological processes driven by multiple genes and cannot
adequately be explained by the abnormal expression of a
single gene. Although changes in a certain gene may lead
to differences in the prognosis of patients, the sensitivity
and specificity of clinical tests for the gene in question are
often not satisfactory. Thus, there is a need to develop more
accurate methods for diagnosis and prediction of prognosis
of LUAC patients.

MATERIALS AND METHODS

Sources of Research Data
The GSE68465 (Shedden et al., 2008), GSE42127 (Hight
et al., 2020), and GSE30219 (Rousseaux et al., 2013) data
sets (containing data from 443, 133, and 148 LUAC patients,
respectively) were downloaded from the Gene Expression
Omnibus database (Edgar et al., 2002). GSE68465 was defined
as an internal group, and the other data sets were combined as
an external group (test group). The batch effect was balanced
using the “SVA” package in R (version 4.0.2) (Irizarry et al., 2003).
When more than one probe was mapped to one gene ID, we
took their average value for further analysis. In addition, mRNA
expression profiles and corresponding clinical information of
LUAC patients were obtained from The Cancer Genome Atlas
(TCGA) database (Chang et al., 2015).

Identification of LUAC-Specific
Cell-Cycle-Related Genes (CCRGs)
Single-sample gene set enrichment analysis (ssGSEA) was
implemented using the “GSVA” R package (Barbie et al., 2009).
The reference gene sets were from the MSigDB2 database
(Liberzon et al., 2011): “KEGG_CELL_CYCLE” (Kanehisa,
2002) and “GO_CELL_CYCLE” (Mi et al., 2019). Spearman
correlations were calculated between pairs of enrichment scores
and each gene. Next, genes that met both of the following criteria
were defined as LUAC-related CCRGs: absolute correlation > 0.3
and P < 0.01. The analysis of differentially expressed genes used
the “limma” package. | Log2 fold change| > 1 and P < 0.05 were
the criteria for determining differentially expressed genes. Finally,
LUAC-specific CCRGs were screened out.

Construction and Verification of
Prognostic Model
The samples from GSE68465 were divided into two groups at
a ratio of 1:1 at random to form an internal training group
and a test group. Univariate Cox regression analysis, LASSO
regression, and multiple Cox regression analysis were used to
investigate the prognostic value of CCRGs in predicting the
overall survival (OS) of LUAC patients, and to construct a
model. On the basis of the median value of the risk score, all
samples in the training group were divided into low- and high-
risk groups. Kaplan–Meier survival curves and time-dependent
receiver operating characteristic curves for OS evaluation of the
two groups were plotted to evaluate the accuracy of the signature
in the internal training group. The results were further confirmed
in the internal and external test groups. To demonstrate that the
model represents an independent risk factor, the combination of
the signature and clinical factors was further validated through
univariate and multivariate Cox regression analysis. P < 0.05 was
regarded as statistically significant.

Establishment of Prognostic Prediction
Model Line Graph
To predict 1, 3, and 5 years OS, we established a nomogram and
plotted its calibration curve based on all independent prognostic
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factors determined by multivariate analysis. Cox regression
analysis was conducted with the R software to observe the
relationship between the predicted probabilities and the actual
occurrence rates.

Identification and Survival Rate Analysis
of Subtypes
With the R package “ConsensusClusterPlus,” the gene expression
matrix contained in the model was used to identify molecular
subtypes in LUAC. Then, survival rate analysis was performed
and displayed for single subtypes.

Verification of Prognosis-Related CCRG
Expression
Data from the Clinical Proteomic Tumor Analysis Consortium
(CTPAC) (Rudnick et al., 2016) and the Human Protein Atlas
(HPA) (Pontén et al., 2008) were chosen to verify the protein
expression of LUAC-specific CCRGs in tumor tissues and normal
tissues, and to determine whether the expression differences
were consistent with the previous mRNA results from TCGA.
Differences were considered notable if P < 0.05.

Immunohistochemistry
After obtaining the consent of 3 LUAC patients, tissue sections
were obtained from the pathology department of our hospital.
After blocking with endogenous peroxide and protein, the
sections were then incubated with diluted specific anti-ECT2 or
anti-BUB1B at 4◦C overnight. The next day, the sections were
incubated with the secondary antibody at 37◦C for 1 h. The
sections were stained with 3,3-diaminobenzidine solution for
3 min and counterstained with hematoxylin. The slices are finally
observed and photographed under a microscope.

RESULTS

Screening for LUAC-Specific CCRGs
The workflow of the study is shown in Figure 1. On
the basis of the mRNA data and clinical features from
GSE68465, we conducted ssGSEA and used the CCRG sets as
a reference, identifying 1,029 genes as LUAC-related CCRGs.
Then, univariate Cox analysis was performed to screen out
CCRGs that were significantly related to survival, resulting in
801 genes (Supplementary Table 1). By comparison with mRNA
expression in the TCGA LUAC data set, we screened out 148
differentially expressed CCRGs (Supplementary Table 2) as
LUAC-specific CCRGs (Figure 2A).

Construction and Verification of
Prognostic Model
First, the internal group (GSE68465) was randomly divided into
two groups, which were used as an internal training group
and a test group. Then, LASSO regression was used, and
cross-validation was performed in the internal training group
(Figure 2B). The preliminary signature included 21 CCRGs:
ETF1, TFRC, RRM2, MYBL2, CDC6, RECQL4, BUB1B, ECT2,

PITX1, TRIP13, RPL39L, PKMYT1, CKS1B, KIF23, MCM10,
TUBB2B, COCH, DTL, CENPE, BLM, and DHRS2 (Figure 2C).
Then, multivariate Cox regression was performed to build
prognostic signatures on the basis of these CCRGs. Finally,
a signature of 10 CCRGs was selected, and risk scores were
calculated as follows: risk score = (−0.655 ∗ exp of ETF1)+ (0.106
∗ exp of TFRC) + (0.122 ∗ exp of CDC6) + (0.099 ∗

exp of RECQL4) + (0.178 ∗ exp of BUB1B) + (0.22 ∗ exp
of ECT2) + (0.094 ∗ exp of PITX1) + (−0.212 ∗ exp of
PKMYT1) + (−0.119 ∗ exp of TUBB2B) + (0.042 ∗ exp of
COCH). After calculating the risk scores of individual patients,
1.0145 was chosen as the cutoff value to distinguish the high-
and low-risk groups (Figure 2D). The survival analysis showed
striking differences between the two groups (Figure 2E). The
mRNA expression of the 10 LUAC-specific CCRGs in each
sample is shown in Figure 2F. The accuracy was evaluated by
the area under the curve (AUC) of the ROC curve; as shown in
Figure 2G, the AUC values were 0.76 at 1 year, 0.751 at 3 years,
and 0.698 at 5 years.

The internal and external test groups were used to verify
the accuracy of the model. Risk score analysis, survival analysis,
and ROC analysis were performed repeatedly for each group
(Figures 3A–D). The model could distinguish the high-risk
group from the low-risk group efficiently. Survival analysis
proved that the critical value remained valid. The AUC of the
ROC curve in different groups further proved the robustness of
the signature. The AUC values at 1, 3, and 5 years were 0.611,
0.665, and 0.679, respectively, for the internal test group; 0.664,
0.711, and 0.688 for the entire internal group; 0.768, 0.735, and
0.753 for the external validation group; and, finally, 0.674, 0.686,
and 0.675 for all samples.

Risk Score Is an Independent Prognostic
Indicator of LUAC
In order to analyze the efficiency of the signature in different
situations, patients were divided into different groups on the
basis of different clinical characteristics (age, gender, lymph node
metastasis, whether they received adjuvant radiotherapy, and
whether they relapsed). Figures 4A–E shows the results of ROC
and survival analysis for each group under different conditions;
the OS rate of the high-risk group was significantly lower than
that of the low-risk group. These results showed that the signature
was highly efficient and stable in different situations. In addition,
we used univariate and multivariate Cox regression in GSE68465,
GSE42127, and GSE30219 to analyze the prognostic value of
the risk score in specimens with different clinicopathological
factors (Figures 5A–C).

Construction of the Nomogram Model
In order to integrate multiple predictors, show the relationship
between the variables in the predictive model, we used the gender,
age, relapse, T, M, N, and risk score to build a nomogram model
(Figure 6A). The calibration curve was close to the ideal curve,
indicating that the signature produced results consistent with the
actual results (Figure 6B).
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FIGURE 1 | Flow chart of the entire research.

Identification of Molecular Subtypes
We further verified whether the 10 CCRGs could divide patients
into different molecular subgroups. The subgroup effect was
most significant with a k-value of 4. OS analysis of different
molecular subtypes confirmed the prognostic significance of
molecular subtype classification methods for clinical patients
(Figures 6C,D). These findings suggest that the 10 CCRGs
are potential LUAC biomarkers that could have a vital role in
clinical treatment.

Protein Verification of Prognostic Genes
According to the CPTAC data, the protein expression of
PKMYT1, ETF1, ECT2, BUB1B, and RECQL4 in tumor tissues
was significantly increased, while the expression of TFRC
was significantly reduced, and the expression of COCH and
TUBB2B did not change significantly (PITX1 and CDC6
were not included) (Figure 7A). In the HPA data, compared
with normal tissues, the expression of PKMYT1, ETF1,
RECQL4, TUBB2B, and CDC6 in tumor tissues was remarkably
upregulated, while the expression of TFRC and PITX1 was
significantly downregulated (,ECT2, BUBB1B, and COCH were
not included) (Figure 7B). In addition, through IHC, we found
that ECT2 and BUBB1B are highly expressed in LUAC tissues
(Figure 7C). The verification results basically coincided with the
previous results.

DISCUSSION

LC is the most common type of cancer and a major contributor
to cancer-related deaths worldwide. It accounts for 11.6% of all
cancers, and there were approximately 2.1 million new cases in
2018 (Bray et al., 2018). In addition to the prevalence of LC,
the prognosis of most LC patients is very poor, with a 5 years
predicted survival rate of about 17.8% (Zappa and Mousa, 2016).
LUAC is the main type of LC. Therefore, there is an urgent need to
find a more accurate way to diagnose LUAC patients and predict
their prognosis.

Recent research has confirmed that genes changes can
regulate the cell cycle in cancer. Precise regulation of the cell
cycle is a basic requirement for eukaryotic cell homeostasis.
The progression of the cell cycle consists of five consecutive
phases: G0, G1, S, G2, and M (Schafer, 1998). A complex
balance of different cyclin-dependent kinases (CDKs) and cyclins
determines whether a cell enters the G1 phase of the cell
cycle (Wood and Endicott, 2018). In addition, the G1 and G2
cell cycle checkpoints are considered to be an important part
of regulating the cell cycle and are regulated by a variety of
molecules (Afshari and Barrett, 1993). An extensive regulatory
network composed of CCRGs is indispensable for the progression
of the cell cycle. Understanding the expression levels of these
factors and their combined regulatory modes is essential to
predicting patient outcomes and prognosis. The development
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FIGURE 2 | Prognostic model of the training cohort and risk signature with the 10 CCRGs. (A) LUAC-specific CCRGs were screened out. (B) The association
between deviance and log(λ). (C) The association between coefficients of genes and log(λ). (D) Risk score of the high and low groups. (E) Survival analysis of the
high and low groups. (F) Heatmap of the expression of 10 CCRGs. (G) The AUC of the ROC.

of drugs targeting one or more CCRGs may be the general
trend of LUAC treatment in the future. At present, there
is no research specifically analyzing which genes in CCRGs
have an impact on the prognosis of LUAC patients. Therefore,
it is of great significance to screen out these genes that
play an important role in the progression of LUAC and the
prognosis of patients.

In this work, we aimed to develop a prognostic signature
related to the cell cycle. LUAC samples were divided into an
internal training group, internal test group, and external test
group. We used the internal training group to establish a
prognostic model through Cox and LASSO regression analysis,
and used the internal test group and external test group to verify
the model. PKMYT1, ETF1, ECT2, BUB1B, RECQL4, TFRC,
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FIGURE 3 | Validation of the signature. Risk score and survival analysis of the high and low groups, heatmap of the expression of 10 CCRGs, and the AUC of the
ROC in (A) internal test group, (B) internal group, (C) external test group and (D) all samples.

COCH, TUBB2B, PITX1, and CDC6 were screened out. We
also studied some clinical features that may affect the survival
of LUAC patients and constructed a nomogram to prove that
the model can be better translated into clinical applications.
Although new CCRGs are discovered every day, the use of

genetic signatures can highlight the most vital markers for
clinical applications.

In addition, we used the expression of these 10 CCRGs to
classify LUAC patients into four different molecular subtypes.
These four groups showed differences in prognosis, suggesting
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FIGURE 4 | The AUC of the ROC that was computed by the signature under diverse situations. Survival analysis of the high and low groups and the AUC of the
ROC in (A) gender, (B) age, (C) status of node metastasis, (D) whether they received adjuvant radiotherapy, and (E) whether relapsed.

that these 10 genes have potential applications in LUAC diagnosis
and treatment. The CPTAC and HPA databases were used
to verify the differential expression of these genes. PKMYT1
is a membrane-associated kinase that can negatively regulate
the G2/M transition of the cell cycle by phosphorylation and

inactivation of CDK1 (Schmidt et al., 2017). In the cytoplasm,
PKMYT1 can also promote the cytoplasmic separation of
CDK1, thereby promoting the activation of mitosis-promoting
factor and accelerating the cycle process (Lolli and Johnson,
2005). ETF1 is dysregulated in various types of cancer
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FIGURE 5 | Univariate and multivariate Cox analysis of the signature combined clinical features. Univariate and multivariate Cox analysis in (A) GSE68465
(B) GSE42127 (C) GSE30219.

FIGURE 6 | Construction and validation of the nomogram. (A) Details of the nomogram, (B) Calibration analysis based on the nomogram. (C) Molecular subgrouping
based on 10 CCRGs: Elbow and gap plot for different numbers of subgroups; Consensus heatmap of the clusters. (D) Survival analysis of the four subgroups.
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FIGURE 7 | Protein level of CCRGs in LUAC tumor tissues and normal tissues. (A) CPTAC database. (B) HPA database. (C) IHC *P < 0.05, **P < 0.01,
***P < 0.001.

(Dubourg et al., 2002). ECT2 is a necessary link between the cell
cycle machinery and Rho signaling pathways involved in the
regulation of cell division, and its exchange function relies on
its phosphorylation during the G2 and M phases (Tatsumoto
et al., 1999). Expression of the BUB1B gene cannot be detected
in G1 but reaches a peak in G2/M, and its absence can cause
genome instability and the progression of LC (Myslinski et al.,
2007). RecQL4 can protect chromosome stability by coordinating
and regulating cell proliferation and cell cycle progression (Fang
et al., 2018). TFRC accelerates cell proliferation and metastasis
by upregulating AXIN2 in epithelial ovarian cancer (Huang
et al., 2020). Methylation levels of COCH are elevated in
the plasma of NSCLC patients with lymph node metastasis
(Chen et al., 2020). Upregulation of TUBB2B may contribute
to the development of neuroblastoma (Liu and Li, 2019). The
p53 gene is the direct transcriptional target of PITX1 (Liu
and Lobie, 2007). The synergistic effects of CDC6 and cyclin
E induce DNA replication in resting cells when CDC6 and
CDT1 are ectopically expressed (Borlado and Méndez, 2008).
Our signature was constructed and verified in a comprehensive
cohort and could be used in clinical practice with a large
number of genes.

However, our research had some limitations. Our results
based on data from TCGA, CPTAC, and HPA partially proved
that 10 CCRGs are dysregulated in LUAC, suggesting that they
may have vital roles in the occurrence and development of

LUAC. Functional experiments are needed to further uncover the
possible molecular regulatory mechanisms of these CCRGs.

CONCLUSION

The current study shows that the cell cycle pathway is mainly
responsible for the occurrence and development of LUAC.
A prognostic signature was constructed based on LUAC-specific
CCRGs, which could be used for prognostic evaluation of LUAC
patients. In addition, the specific CCRGs screened out could be
used as new targets for the treatment of LUAC.
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