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DNA methylation changes in 
infants between 6 and 52 weeks
Ellen Wikenius   1,2*, Vibeke Moe3,4, Lars Smith3, Einar R. Heiervang2,5 & Anders Berglund   1

Infants undergo extensive developments during their first year of life. Although the biological 
mechanisms involved are not yet fully understood, changes in the DNA methylation in mammals are 
believed to play a key role. This study was designed to investigate changes in infant DNA methylation 
that occurs between 6 and 52 weeks. A total of 214 infant saliva samples from 6 or 52 weeks were 
assessed using principal component analyses and t-distributed stochastic neighbor-embedding 
algorithms. Between the two time points, there were clear differences in DNA methylation. To further 
investigate these findings, paired two-sided student’s t-tests were performed. Differently methylated 
regions were defined as at least two consecutive probes that showed significant differences, with a 
q-value < 0.01 and a mean difference > 0.2. After correcting for false discovery rates, changes in the 
DNA methylation levels were found in 42 genes. Of these, 36 genes showed increased and six decreased 
DNA methylation. The overall DNA methylation changes indicated decreased gene expression. This 
was surprising because infants undergo such profound developments during their first year of life. The 
results were evaluated by taking into consideration the extensive development that occurs during 
pregnancy. During the first year of life, infants have an overall three-fold increase in weight, while 
the fetus develops from a single cell into a viable infant in 9 months, with an 875-million-fold increase 
in weight. It is possible that the findings represent a biological slowing mechanism in response to 
extensive fetal development. In conclusion, our study provides evidence of DNA methylation changes 
during the first year of life, representing a possible biological slowing mechanism. We encourage future 
studies of DNA methylation changes in infants to replicate the findings by using a repeated measures 
model and less stringent criteria to see if the same genes can be found, as well as investigating whether 
other genes are involved in development during this period.

In the first year of life, profound changes take place in human physical and neurodevelopmental functioning1. 
Infants learn to sit, stand up, walk, and say their first words2. This rapid growth occurs in an orderly and reg-
ulated sequence, laying the building blocks for future growth1. Although infant developmental milestones are 
well-known2, the underlying biological mechanisms driving this development in the first year of life are not yet 
fully understood. Epigenetics is believed to play an important role in mediating the developmental changes in 
mammalian development3, but to the best of our knowledge, few studies have been published specifically on the 
epigenetic role in infant development.

Here, DNA methylation is one type of epigenetic mechanism that regulates gene expression without altering 
the DNA sequence4; it is involved in many cellular processes and is known to be relatively stable. However, DNA 
methylation might change within an individual over time5. Embryonic and pluripotent stem cell DNA methyl-
ation is close to zero6 but changes extensively from fertilization to implantation7. Children from 2 to 16 years of 
age have been found to have increased levels of the age-related gene DNA methylation, with the greatest changes 
being found early, from 2 to 10 years of age8.

Two age-specific epigenetic occurrences have been studied: epigenetic drift9 and the epigenetic clock6,10. 
Epigenetic drift relates to the changes in DNA methylation over time, which differs among individuals11. Examples 
can be found in twin DNA methylation studies that find that DNA methylation differences increase over time in 
relation to age and different lifestyles9,12. The epigenetic clock, which was conceived by Horvath6 and Hannum13, 
is a means to calculate a person’s epigenetic age based on DNA methylation calculated from age-related CpG sites. 
Studies of age-related DNA methylation changes have mainly been of older populations, which are confounded by 
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decade-long processes of environmental age-effecting exposures and aging itself; studies of younger populations 
have therefore been encouraged14.

Gene function and its epigenetic regulation are far from completely understood15, but DNA methylation has 
been associated with the regulation of gene expression16, and increases in DNA methylation have been associ-
ated with decreased gene expression17 although it depends on where the DNA methylation occurs in the gene. 
Gene DNA methylation can be loosely divided into a few different regions: the promoter regions (TSS1500 and 
TSS200), 5′ untranslated region (UTR), the 1st exon, the gene body, and 3′UTR. It is thought that the promoter 
regions initiate the transcription of a particular gene16, and it is widely recognized that the DNA methylation of 
this area is associated with decreased gene expression17.

To the best of our knowledge, there have been no epigenome-wide association studies (EWAS) of DNA meth-
ylation changes in infants during the first year of life. Hence, the objectives of the current study were three-fold: 
(1) to assess whether DNA methylation changes between 6 and 52 weeks (2), and if so, to describe the genes 
associated with these DNA methylation changes, and (3) to discuss the findings in association with infant 
development.

Materials and Methods
Ethical approval.  This study was approved by the Regional Committees for Medical and Health Research 
Ethics (REK) in Norway (REK reference number: 2011/560/REK). Informed consent was obtained for infant 
participation from all mothers. The experiments were performed in accordance with relevant guidelines and 
regulations.

Participants.  A subsample of 172 infants from the “Little in Norway” study18 was used for the current study; 
for the experiment, 274 saliva samples from infants 6 weeks old (n = 62), 52 weeks old (n = 30), or both (n = 61) 
were selected. The sociodemographic variables are shown in Table 1. The saliva samples were collected using the 
Oragene DNA assisted collection kit (OG-575) (DNA Genotek, 2018). Quality control (QC) and cell composi-
tion analyses removed 60 saliva samples, leaving 214 saliva samples from 153 infants for epigenetic analyses. The 
infants’ mothers volunteered information about their age, education level, and marital status. Data on fetal gender 
were collected from birth records.

Saliva samples and DNA methylation profiling.  The 274 infant saliva samples were collected at 6 and 
52 weeks using the OG-575 assisted collection kit. DNA methylation profiling was conducted at the Norwegian 
Sequencing Centre using the Infinium Human Methylation 450 K BeadChip array (Illumina, San Diego, 
CA, USA). DNA extraction was conducted using the Oragene prep-IT.L2P kit (DNA Genotek, Ottawa, ON, 
Canada), and the quantity was assessed using PicoGreen (Thermo Fisher, Waltham, MA, USA). The EZ-96 DNA 
Methylation-Gold Kit (Zymo Research) was used for the bisulfite conversion of 320–500 ng of the saliva DNA 
samples.

The DNA samples were randomly located on 96-well plates to minimize potential batch effects, and 
beta-mixture quantile normalization (BMIQ) was used to normalize the β-values19. During QC, 29,233 
cross-reactive probes20, 4,232 probes with single nucleotide polymorphisms (SNPs) at the CpG site, 16,819 probes 
and 13 samples with unreliable measurements (detection p-values > 0.01), 9,675 probes located on the sex chro-
mosomes, and 2,303 non-CpG probes were removed. In total, 18 samples were removed, leaving 256 for cell 
composition assessment.

Cell composition.  Because the human body consists of over 250 different cell types and the epigenome is 
highly variable between these cell types21, various analyses of infant saliva cell composition were conducted. 

At birth (N = 153) Mean (SD)

Maternal age 30 years (5 years)

Gestational age 40 weeks (1 week)

Weight 3,621 g (476 g)

Percentage

Girls 72 (47%)

Boys 81 (53%)

Maternal completed education

Primary education 2 (1%)

Secondary education 34 (22%)

College 53 (35%)

University 64 (42%)

Maternal marital status

Living with partner 97 (63%)

Married 49 (32%)

Single 5 (3%)

Other 2 (3%)

Table 1.  Sociodemographic variables
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Previous research has shown that leukocytes and epithelial cells are both found in saliva samples that come from 
the oral cavities of children (mean age = 6.7 years)22, but to the best of our knowledge, no research has been 
done on infant saliva cellularity. To assess cellular composition, a small subsample of saliva samples (n = 8) from 
6-week-old infants were examined under a microscope. The results showed platelet epithelial cells and bacteria, 
no immune cells, but as this was only a performed at 6 weeks on a small sample, leucocytes in the samples could 
not be excluded, the amount of leukocytes in all saliva samples was calculated using the leukocytes methylation 
for purity (LUMP) analysis23; the results showed that 42 of the 256 samples contained > 10% leukocytes. These 
DNA samples were excluded from the analyses. This choice of cutoff was made to exclude outliers, while keeping 
as may samples as possible. In total, 42 samples were removed, leaving 214 samples for the analyses.

Computational analyses.  Sociodemographic data analyses were performed using SPSS version 25 (IBM, 
SPSS Statistics, New York, NY, USA). The raw methylation data preprocessing was done with RnBeads v.1.2.124 
using the R programming language (http://www.r-project.org/). The methylation analysis was performed using 
MATLAB R2017B (The MathWorks Inc., Natick, MA, USA), and principal component analyses (PCA) were per-
formed using Evince (Prediktera AB, Umeå, Sweden).

All statistical tests were done using two-sided student’s t-tests, assuming unequal variance, and any false dis-
covery was corrected (q-value)25. Changes in differentially methylated regions (DMR) between 6 and 52 weeks 
were defined using the following criteria: q-value < 0.01, mean difference between groups > 0.2, and a minimum 
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Figure 1.  Sample scatter plots The sample-to-sample scatter plots display an anticipated cigar-like shape, 
indicating that the methylation levels for most probes are similar. The left two panels were generated using the 
same subject, with 6 weeks being displayed on the X-axis and 52 weeks on the Y-axis. The color indicates the 
probe density. These density plots show no large-scale methylation differences based on the time points, here 
with 6 weeks shown in blue and 52 weeks shown in red, but there is linear behavior, with most of the probes 
being located close to the diagonal. There is an increased number of probes that are differently methylated, 
that is, located far from the diagonal, indicating individual-specific methylation patterns that vary between the 
infants.
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Figure 2.  Beta value histogram The distribution of the beta values shows the expected bi-modal distribution, 
with the two peaks close to zero and one.
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of two consecutive significant probes within a gene. All statistical analysis, t-distributed stochastic neighbor 
embedding (t-SNE), beta-histograms, sample scatter plots, and gene plots were generated using MATLAB ver-
sion R2017b (The MathWorks, Inc., Natick, MA, USA). The PCA model was generated using Evince (Prediktera 
AB, Umeå, Sweden).

Results
Study population.  The current study was the first to examine changes in DNA methylation between 6 and 
52 weeks in infant saliva samples. The study population consisted of 153 Norwegian infants born mainly to moth-
ers with a higher educational status and with stable living conditions26. The characteristic features of these infants 
at birth were as expected for infants born in Norway, except for the high maternal education status, which was 
overrepresented in this population27.

Figure 3.  Unsupervised dimensionality reduction at separate time points The figure shows two different 
algorithms: (A) shows the results of the PCA, and (B) shows the t-SNE algorithm. Both show a clear separation 
between the 6-week samples (blue) and the 52-week samples (red) using all 423,315 probes.

Proposed function Gene symbol Direction Location Gene function associations
Epigenetic disease 
associations

Intracellular processes ARHGEF7 (β-PIX) + Body Cytoskeletal organization61,62

Intracellular processes CLU − TSS1500 Apoptosis inhibitor29
Alzheimer’s disease63, 
colon cancer57, and 
prostate cancer58

Intracellular processes NKX2–8 + 3′UTR, TSS1500 Increases expression of AFP64

Intracellular processes NRG2 + Body Cell growth and differentiation65 Lung cancer56

Intracellular processes NXN + Body Cell growth and differentiation66

Intracellular processes ORAOV1 − Body Cell growth and apoptosis31

Intracellular processes PAQR7 − Body Progesterone receptor 
regulator32

Intracellular processes RALB + Body Transmembrane signaling67

Intracellular processes REC8 + 1st exon, 5′UT Chromosomal maintenance68
Gastric cancer54

Thyroid cancer55

Intracellular processes XAF1 − 1st exon, 5′UTR Apoptosis inhibitor30 Lung cancer53

Long noncoding RNA C4orf19 + TSS200, 5′UTR Long noncoding RNA
Colon cancer51

Breast cancer52

Messenger RNA EIF4E3 − 3′UTR mRNA transport and 
proliferation33

Messenger RNA MIR-135B + TSS1500 Stability and translation of RNA Cervical cancer50

Table 2.  Genes associated with intracellular processes. *CpG sites that have been associated with DNA 
methylation changes in both the referred article and our research. The table shows the genes found to have DNA 
methylation changes between 6 and 52 weeks, their proposed genetic function, their direction and location, 
their gene function, and their epigenetic disease associations. The location of the DNA methylation is marked 
as + for an increase and – for a decrease and can be found in one of the following regions: the promoter regions 
(TSS1500 and TSS200), 5′ untranslated region (UTR), 1st exon, gene body, and 3′UTR.
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Infant saliva samples show homogenous DNA methylation.  The DNA methylation QC analyses 
showed that there was minimal heterogeneity in methylation among the cell types assayed and that the methyla-
tion levels were more similar for the two time points for a single infant than between infants, as shown in Fig. 1, 
indicating that the samples were well suited for DNA methylation analyses. The distribution of the beta values 
across all the samples shows a clear bi-modal distribution, as shown in Fig. 2, which indicates minimal heteroge-
neity in methylation among the cell types assayed.

Proposed function Gene symbol Direction Location Gene function associations Epigenetic disease associations

Gastrointestinal system

Esophagus and stomach 
development BARX1 + Body Transcription factor encoder69 Colon cancer49

Hematological system

Erythrocyte production EPB49 (DMTN) + 5′UTR, TSS1500 Structural role in erythrocytes70

Immune system

Immune signaling pathway AFAP1 + Body Immune response71 Barrett’s esophagus and esophageal 
adenocarcinoma48

Immune system regulation CYTH1 + Body Adhesive properties72

Lymphoid development IKZF4 + TSS1500,TSS200 Regulation of T cells73

Metabolic system

Drug metabolization and lipid 
synthesis CYP3A4 + TSS1500 Testosterone catalyst74 Liver metabolism75

Metabolism and lipid/cholesterol 
transport PLEKH8 (FAPP2) + Body Ciliary membrane formation76 Breast cancer and gliomas47

Weight PBX1 + Body Osteogenesis77,78
Birth weight (cg06750897 and 
cg18181229)*59, obesity79, and acute 
leukemia46

Weight regulation KDM2B + Body
Obesity (cg26995224 and 
cg13708645)*79,diabetes mellitus type II 
(cg13708645)*80 and colon cancer45

Musculoskeletal system

Cranio-cervical joint development MEOX1 + TSS1500, 5′UTR, 
1st exon Somite development81

Craniofacial development MN1 + 3′UTR, Body Cell proliferation82 Air pollution (cg20680669)*83

Muscle development TNNT3 + Body Calcium regulation84

Cardiac development SPEG + Body Myocyte development85 Environmental exposure (cg21117965)*86

Nervous system

Reward system MAD1L1 + Body Chromosome segregation87

Neuronal regulation of energy 
balance MCHR1 + 1st exon, Body Energy homeostasis88,89 Schizophrenia (cg21342728)*34 and 

bipolar disorder35

Cerebral development NUAK1 (ARK5) + TSS200, TSS1500 Cellular senescence and ploidy90 Suicide completers91

Cognition, behavior, and sleep 
regulation RAI1 + 5′UTR Neural tissue transcription92,93 Skeletal cancer (cg10140454)*44

Cognition S100B + 5′UTR Calcium-binding protein secretion94

Language development SEMA6D + 5′UTR Signaling ligands95

Executive function SLC1A2 + TSS1500 Glutamate clearance96 Neural function (cg25963980)*37, 
schizophrenia, and bipolar disorder36

Motor neuron and central nervous 
functions TBCD + Body Heterodimer assembly pathway97 Prenatal low glycemic diet 

(cg16538568)*98

Neural development TGM6 + TSS1500 Crosslinking of free amine group and 
glutamine99 Tic disorders (cg19391247)*100

Neural development MEIS2 + Body Olfactory bulb neurogenesis and 
supraventricular neuroblasts101 Lung cancer41 and prostate cancer42

Visual system

Eye development STRA6 + 5′UTR,1st exon, 
TSS200 Regulation of retinol uptake in cells102 Endometriosis103

Eye development TEAD1 + Body Regulation of growth and proliferation43 Colon cancer43

Table 3.  Genes associated with systemic biological functions. *CpG sites that have associated DNA methylation 
changes in both the referred article and our research. The table shows the genes found to have DNA methylation 
changes between 6 and 52 weeks, their proposed genetic function, their direction and location, their gene 
function, and their epigenetic disease associations. The location of the DNA methylation is marked as + for an 
increase and – for a decrease and can be found in one of the following regions: the promoter regions (TSS1500 
and TSS200), 5′ untranslated region (UTR), 1st exon, gene body, and 3′UTR.
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Unsupervised dimensional reduction analyses show separation between time points.  The 
DNA methylation changes in infants between 6 and 52 weeks were analyzed using two separate algorithms (PCA) 
and t-distributed stochastic neighbor embedding (t-SNE), which are both agnostic to grouping issues. PCA is 
well-known algorithm used to investigate differences in data, while t-SNE is a newer, nonlinear dimensional-
ity reduction algorithm that investigates the similarities in data28. The two different unsupervised dimensional 
reduction methods were applied to the samples using all 423,315 probes. Both algorithmic plots showed clear 
separations between the two time points, as shown in Fig. 3A,B. For PCA, the first three components showed clear 
separations between the two time points, as shown in Fig. 3A, and the algorithm gave similar results for t-SNE, as 
shown in Fig. 3B. These results indicate that there is a consistent time point difference and that this difference is 
greater than the individual differences.

Statistically significant DNA methylation changes found in 42 genes.  Stringent analytical crite-
ria were selected to avoid discovering false DNA methylation sites because this was the first time that analyses 
have been performed to investigate DNA methylation changes for this population. Statistically significant DMRs 
were found in 42 genes in a total of 101 (out of 423,315) probes. The distribution of the probes within each gene 
showed consistent increases or decreases in methylation. A total of 36 genes showed increased methylation, and 
six showed decreased methylation. See Supplementary Table S1 for a detailed description of the results.

Decreased DNA methylation was associated with only 6 genes.  In total, six genes had decreased 
DNA methylation. CLU29 and XAF130 are apoptosis inhibitors, ORAOV1 regulates the cell cycle and apoptosis31, 
PAQR7 regulates progesterone receptors32, and EIF4E3 promotes messenger RNA transport and proliferation33, 
while RTP4 has largely unknown functions.

Increased DNA methylation associated with systemic biological processes.  Change to ‘Of the 42 
genes found to have statistically significant changes in DNA methylation, 13 genes that are associated with intra-
cellular processes. The detailed results for these genes and their associated intracellular functions are presented 
in Table 2. Of the remaining genes, 24 were previously described as being associated with systemic biological 
functions 34 and all were found to have increased methylation. The genes and associated systemic functions are 
presented in Table 3’.

MCHR1.  The melanin-concentrating hormone receptor 1 (MCHR1) gene is an example of one of the genes 
with increased DNA methylation from 6 to 52 weeks. MCHR1 has nine probes on the Illumina Infinium 
HumanMethylation450 BeadChip array. In these analyses, the results showed increased DNA methylation at two 
CpG sites: the 1st exon and the body. The mean DNA methylation increase for the two sites had an Δβ value of 
0.21. DNA methylation changes in this gene have been associated with schizophrenia34 and bipolar disorder35. 
The changes in DNA methylation in the CpG site for the 1st exon, cg21342728, found in the current study, were 
described in the study of schizophrenia34. The DNA methylation changes for MCHR1 are shown in Fig. 4.

SLC1A2.  The solute carrier family 1 member 2 (SLC1A2) gene is another example of a gene with increased DNA 
methylation from 6 to 52 weeks. This gene has been found to have DNA methylation differences associated with 
schizophrenia and bipolar disorder36 and prematurity in infants 37. It has 32 probes on the Illumina Infinium 
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 CpG : Shelf Shore  Island
  Gene: TSS1500 TSS200 5UTR 1stExon Body 3UTR
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Figure 4.  Methylation pattern by time point across multiple probes for MCHR1 The graph shows the β-value 
on the X-axis across multiple probes for each gene. The left Y-axis shows the genomic coordinates for each 
probe, while the right Y-axis displays the probe Id. The CpG column to the right indicates the CpG island and 
the gene column in the gene body where the probe is from. For each probe, the methylation level is illustrated 
by a box plot, where the box is the interquartile range, and the median is the dot for the 6-week group (blue) 
and the 52-week group (red). Significant probes are shown with * for q < 0.01 and a difference > 0.2 and ** for 
q < 0.001 and difference > 0.3. The significant methylation probes for MCHR1 are located in the 1st exon and in 
the body and are not found in a known CpG island.
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HumanMethylation450 BeadChip array. The analyses showed a significant increase in methylation in the first 
three adjacent CpG sites in the promoter region (TSS1500) from 6 to 52 weeks. The mean DNA methylation 
increase of the three sites had an Δβ value of 0.29, and the largest difference was found at cg10159951, with a 
mean DNA methylation at 6 weeks of 0.12 and at 52 weeks of 0.45. The DNA methylation difference in the CpG 
site of the promoter island, cg25963980, has previously been associated with DNA methylation changes associ-
ated with infant prematurity 37. The DNA methylation changes for SLC1A2 are shown in Fig. 5.
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Figure 5.  Methylation pattern by time point across multiple probes for SLC1A2 The graph shows the β-value on 
the X-axis across multiple probes for each gene. The left Y-axis shows the genomic coordinates for each probe, 
while the right Y-axis displays the probe Id. The CpG column to the right indicates the CpG island and the gene 
column in the gene body where the probe is from. For each probe, the methylation level is illustrated by a box 
plot, where the box is the interquartile range, and the median is the dot for the 6-week group (blue) and the 52-
week group (red). Significant probes are shown with * for q < 0.01 and difference > 0.2 and ** for q < 0.001 and 
difference > 0.3. The significant methylation probes for SLC1A2 are located in the promoter area (TSS1500).
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Discussion
To the best of our knowledge, we conducted the first EWAS using Illumina450K analyses of infant saliva samples 
to study DNA methylation changes between 6 and 52 weeks of age. Two very different and unsupervised dimen-
sionality algorithms—PCA and t-SNE—were used in the current study. The results showed clear separations 
between infant DNA methylation at the two studied time points. The greatest consistent difference is the time 
point and nonindividual differences. Because both the PCA and t-SNE showed the same separation in infant 
DNA methylation between the two time points, the findings indicate that the biological mechanisms associated 
with normal infant development in the first year of life are associated with DNA methylation changes.

To better understand which genes were associated with these changes, we analyzed the DNA methylation fur-
ther and found that there were 42 genes across 101 probes with statistically significant DNA methylation changes. 
Of the 42 genes, 36 had increased DNA methylation, and six had decreased methylation levels. The effect of DNA 
methylation depends on where it occurs in the gene, and the DNA methylation changes in the current study 
occurred in different parts of the genes but most commonly were associated with decreased gene expression17.

The suggested decreased gene expression was unexpected as infants experience rapid developmental growth 
during the first year of life. However, infant development in the first year of life is relatively limited compared with 
the changes that occur during pregnancy38. The fetus develops from a single cell to a viable infant in 9 months, 
with an 875-million-fold increase in weight39,40; meanwhile, during the first year of life, the infant only experi-
ences a three-fold increase in weight2. Therefore, although our findings are limited to buccal epithelial cells, they 
suggest a biological growth-slowing mechanism post-birth after the rapid fetal growth during pregnancy.

Our study has several strengths and limitations that need to be considered when interpreting the results. One 
important limitation for DNA methylation analyses is cell composition. It would have been better if the saliva 
sample at both 6 weeks and 52 weeks had been assessed. To compensate for this, LUMP scores were calculated 
for all saliva samples, finding leucocytes in the samples and using a cutoff of 10% for the analyses. However, if 
possible, further studies should consider assessing sample cell composition from all time points included in the 
analyses. Other limitations of the current study were that the population was made up of an overrepresentation of 
mothers with a high level of education compared with the general Norwegian population, and the study did not 
compare the characteristics of the whole “Little in Norway” cohort with the sample analyzed in the current study 
to assess selection bias and understand whether the findings are generalizable to the whole population.

One of the major strengths of the current study was that the saliva samples came from two time points, but 
still, these results cannot answer the question of whether DNA methylation fluctuates over the first year or if there 
is only an overall increase in DNA methylation. Therefore, to assess this, future studies should consider collecting 
more than two saliva samples over the first year of life. Another major strength was that the current study was 
based on the methodology used in cancer research because this field is at the forefront of epigenetic research, 
and human biology is the same for both cancer and biological development. Applying cutting-edge bioinformat-
ical methods28 used in cancer research to examine biological mechanisms, 42 genes were found to have DNA 
methylation changes associated with early-life biological development. Of these, 14 had previously been found 
in different forms of cancers associated with epigenetic changes41–58, yet here, only two studies found epigenetic 
associations with development37,59. This might be because these genes are all associated with cancer, but it is just 
as likely that more cancer research is being conducted because of public and political efforts that increase cancer 
research funding.

The bioinformatic analysis of the epigenetic data commonly includes a determination of the significant dif-
ferences at a single CpG site, considering them independently of each other and adjusting for false discovery 
rates60. Because this was the first study to investigate DNA methylation changes between 6 and 52 weeks, we 
wanted to avoid false positive results; therefore, we set stricter criteria for the significance of DMRs than what has 
been commonly used. If we had used other criteria, other significant DNA methylation changes would have been 
identified, but we wanted all of the discovered CpG sites to be correct and the probability of false positive find-
ings to be small. Using this analytical model, we found 42 CpG sites with infant DNA methylation changes, but 
different analytical models for the analyses could reveal different results. Our choice of analytical method limited 
the possibility of correcting for confounders, such as gender. Future analyses should consider choosing a repeated 
measures model, so confounding variables can be adjusted for, this way confounding variables such as gender 
should be addressed. Hence, we encourage future studies of DNA methylation changes in infants to replicate the 
findings by using a repeated measures model and less stringent criteria to see if the same genes can be found, as 
well as investigating whether other genes are involved in development during this period.

Conclusion
In conclusion, the algorithmic analyses showed that infant DNA methylation displays clear differences between 
6 and 52 weeks. To investigate these differences further, two-sided student’s t-tests were performed. These anal-
yses found 42 genes associated with DNA methylation changes. Of these, 36 genes showed increased and six 
decreased DNA methylation. The methylation changes indicated an overall decrease in gene expression, which, 
in turn, might represent a slowing mechanism to reduce the extensive growth development that occurs during 
pregnancy. Future studies of DNA methylation changes in infants could use repeated measures models and less 
stringent criteria to see if the same genes can be replicated, and whether other genes are involved in development 
during this period.
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