
Since January 2020 Elsevier has created a COVID-19 resource centre with free

information in English and Mandarin on the novel coronavirus COVID-19. The

COVID-19 resource centre is hosted on Elsevier Connect, the company's public

news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research

that is available on the COVID-19 resource centre - including this research

content - immediately available in PubMed Central and other publicly funded

repositories, such as the WHO COVID database with rights for unrestricted

research re-use and analyses in any form or by any means with acknowledgement

of the original source. These permissions are granted for free by Elsevier

for as long as the COVID-19 resource centre remains active.



Cutting back on pro-protein
convertases: the latest approaches to
pharmacological inhibition
Martin Fugère and Robert Day
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The secretory pathway in cells possesses an elaborate

set of endoproteolytic enzymes that carry out a crucial

step in protein precursor maturation. This step is

proteolytic activation by cleavage at specific pairs of

basic residues. These enzymes, named pro-protein

convertases (PCs), are responsible for generating bio-

active peptides and activating several enzymes and

growth factors that are implicated in many important

physiological events. PCs have roles in several pathol-

ogies including viral infections and cancers and, thus,

are promising targets for therapeutic applications.

Recent structural and homology-modeling studies

demonstrate more similarity than expected at the

catalytic site of the seven PCs, which makes the

development of selective drugs to target individual

PCs frustrating. Based on this information, we review

the latest strategies to inhibit PCs, which might lead to

the development of specific compounds.
Box 1. The newly adopted PC nomenclature

The seven members of the PC family are classified as MEROPS clan

SB family S8 (http://merops.sanger.ac.uk). They are related to the

bacterial family of degradative subtilisins (IUBMB EC 3.4.21.62) and,

to some extent, are structurally and functionally analogous to the

yeast kexin (EC 3.4.21.61). The family of PCs has several confusing

nomenclatures. A consensus nomenclature was agreed at the

Gordon Research Conference: Pro-protein Processing, Trafficking

and Secretion (2004) and the officially adopted nomenclature of

the pro-protein convertases is now furin (EC 3.4.21.75), PC2

(EC 3.4.21.93), PC1/3 (EC 3.4.21.94), PACE4, PC4, PC5/6 and PC7.

The corresponding genes that encode these PCs are designated
Physiological functions of pro-protein convertases

The biology of pro-protein convertases (PCs) is funda-
mental to the cell infrastructure and to the proper
coordination of the entire mammalian physiology.
Through their endoproteolytic actions on inactive pre-
cursor proteins in the secretory pathway, PCs generate
essential bioactive peptides, including hormones and
neuropeptides (e.g. adrenocorticotropic hormone and
insulin), that have vital roles in homeostatic balance and
the regulation of life functions. They also activate growth
factors and differentiation factors, proteins in the extra-
cellular matrix and plasma, enzymes, receptors, viral-coat
proteins and bacterial toxins. The PC family of enzymes is
encoded by seven genes (see Box 1 and Table 1 for
nomenclature), of which the archetype furin is the most
studied (reviewed in [1,2]). Mammalian PCs are related to
the yeast kexin and bacterial subtilisins, and Figure 1
presents the structural features of PCs. PCs are Ca2C-
dependent serine proteases that were identified originally
based on their ability to cleave precursor proteins at the
peptide bond C-terminal to paired basic residues, such as
K-RYand R-RY. However, the cleavage-recognition motifs
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are now known to extend N-terminal to the cleavage
site and often include additional arginine residues
(e.g. R-x-[K/R]-RY).

During the past few years, several important pathol-
ogies have been linked with PC-like activity in the cell-
secretory pathway and at the cell membrane. The aim is to
develop inhibitors that target individual PCs because not
every PC is implicated in a given disease state. In this
article, we review the involvement of PCs in various
pathologies, which justifies their targeting for therapeutic
applications. Although increasing evidence of similarity
between the various PCs raises the issue of whether
specific compounds that target individual PCs can be
developed, fivemajor approaches that are described in this
article appear to make this possible.

PCs as pharmacological targets

There is increasing interest in PCs as novel targets for
drug design because they are proteolytically selective
enzymes, the tissue and cellular localization patterns of
which have been studied extensively [3]. In addition, they
have well-defined cellular tasks and are crucial for the
initiation and progress of many important diseases, most
prominently in several viral infections and cancers. For
example, furin and PC7 are required for the activation of
HIV-1 viral coat protein glycoprotein 160 (gp160) to gp120
and gp41 to produce virions that are effective in receptor
binding and membrane fusion during infection [4]. A
similar PC-mediated processing requirement for viral
spread and cytopathicity also occurs with the Epstein-
Barr virus gB glycoprotein [5], the hepatitis B virus e
Review TRENDS in Pharmacological Sciences Vol.26 No.6 June 2005
officially as PCSK type 1–PCSK type 7. Table 1 presents the names

attributed to each PC and the corresponding official nomenclature.
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Table 1. PC nomenclaturea

Gene designation

(human)

Enzyme Alternative enzyme

names

PCb SPC

PCSK3 Furin PACE, PC1, SPC1

PCSK2 PC2 SPC2

PCSK1 PC1/3 PC1, PC3, SPC3

PCSK6 PACE4 PACE4, SPC4

PCSK4 PC4 SPC5

PCSK5 PC5/6 PC5, PC6, SPC6

PCSK7 PC7 PC8, LPC, SPC7
aAbbreviations: LPC, lymphoma pro-protein convertase; PACE, paired basic amino

acids-converting enzyme; PCSK, pro-protein convertase subtilisin/kexin type; SPC,

subtilisin-like (or subtilase-like) pro-protein convertase.
b‘Pro-hormone convertase’ is also used in the literature but is an inadequate

appellation because pro-proteins other than pro-hormones are also matured by

PCs.
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antigen [6] and the severe acute respiratory syndrome
coronavirus spike glycoprotein [7]. These roles make
drugs that target PCs potential antiviral agents. In the
area of cancer, ongoing work is clarifying the pivotal role of
PCs in growth regulation and tumor progression by
activating cancer-promoting factors such as stromelysin-
3 [8], vascular endothelial growth factor c (VEGF-C) [9],
insulin-like growth factor 1 receptor (IGFr1) [10,11],
transforming growth factor b (TGF-b) [12] and membrane
type 1 matrix metalloproteinase (MMP-1) [13]. In
addition, PC-inhibition studies are beginning to provide
direct evidence of their roles in tumorigenesis and
invasiveness [13–15].

Evidence of the diverse roles of PCs in other pathologies
is also accumulating. Bacterial pathogens such as
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Pseudomonas aeruginosa exotoxin A and the protective
antigen of Bacillius anthracis tripartite toxin require
furin-mediated cleavage for cytotoxicity, which can be
reduced and blocked by PC inhibitors [16,17]. PCs have a
role in neurodegenerative and aging maladies such as
Alzheimer’s disease through the activation of pro-b site
amyloid-precursor-protein-cleaving enzyme (BACE1) [18]
and its novel binding partner BRI3 [19], and in arthritis
through the processing of aggrecanase-1 [20] and tumor
necrosis factor a-converting enzyme (TACE) [21]. Coordi-
nated interplay between PC2 and PC1/3 has been
uncovered recently in the production of peptides derived
from cocaine and amphetamine-regulated transcript pre-
cursor (proCART) [22], which are believed to potentiate
anorexia.

Thus, we conclude that the potential of PC inhibitors as
novel therapeutic agents is considerable and warrants
further analysis. To date, no PC-oriented therapies are
available. To achieve this goal, new insights are needed
into the molecular determinants that are responsible for
the proteolytic activities of individual PCs.

The rationale for the development of PC inhibitors

Strategically, the mainstream of PC inhibitor develop-
ment is to target their catalytic site. This is based on the
fact that PCs are highly selective proteinases that cleave
an uncommon sequence motif in proteins (e.g. R-x-K-R).
However, the most potent inhibitors known to date, which
target the catalytic site, are not significantly specific for a
single PC. Comparing inhibitors of PCs shows that many
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Figure 2. Potency and specificity of PC inhibitors. Schematic representation of the inhibitory potency of peptide and polypeptide inhibitors of PCs. Both PCs of the constitutive

secretory pathway (furin, PC5/6 and PC7) (a) and PCs of the regulated secretory pathway (PC2 and PC1/3) (b) are shown. Inhibitory potency (logarithmic scale) is represented

by the average of the Ki values determined in vitro in studies cited in this review. For example, most pro-domain peptides inhibit furin, PC1/3, PC5/6 and PC7 at mid-

nanomolar concentrations, but are ineffective at PC2. The lower the value, the higher the inhibition potency. Diagonal traces mean that inhibition potency is undetermined.
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have high potency but are not specific for one PC
(Figure 2). In addition, PCs are often coexpressed within
cells, so that all cells express a ‘cocktail’ of at least two
PCs. Thus, poorly selective PC inhibitors will affect
multiple cellular functions, and not only the pathological
processes that are targeted.

The first approaches to developing specific PC inhibi-
tors were based on our understanding of the molecular
determinants of selectivity of cleavage by PCs. The
cleavage sites of numerous furin substrates were aligned
to assess these molecular determinants [23]. However,
subsequent cleavage studies show that many substrates
are also processed by other PCs. This has been empha-
sized recently by studies in transgenic inducible-knockout
mice, which lack furin in the liver [24]. Known substrates
of furin in the liver (e.g. albumin, a5 integrin, lipoprotein-
receptor-related protein, vitronectin, a1-microglobulin
and bikunin) are either processed or partially processed
in these mice, which indicates redundancy with other PCs
in the liver. These data also underline the potential
undesirable effects of nonspecific PC inhibitors (that
inhibit several PCs), which would block the processing of
more proteins than desired if applied therapeutically.
www.sciencedirect.com
Uniquely specific PC inhibitors have the potential advan-
tage that they can be used in a combination therapy
approach, should simultaneous blocking of two PCs be
required.

Currently, the development of PC inhibitors is based
on: (i) newly acquired structural and modeling infor-
mation about PCs; (ii) peptides that are optimized by
combinatorial methods; (iii) engineering polypeptide pro-
tease inhibitors that have not co-evolved with PCs but are
used as stable scaffolds on which to graft the appropriate
modifications to specifically target PCs; (iv) endogenous,
co-evolutionary inhibitors; and (v) small non-peptidyl
compounds and derivatives. Each of these approaches is
discussed below.

The structural and molecular modeling approach

Understanding of the molecular basis of pro-protein
processing by PCs and the design of specific inhibitors
have both benefited from the recent elucidation of the
three-dimensional conformation of the kinetically trapped
furin [Protein Data Bank (PDB) (http://www.rcsb.org/pdb/)
entry 1P8J, molecule A] [25] and of the yeast homolog kexin
(PDB entry 1ot5, chain A) [26]. The crystal structure of

http://www.rcsb.org/pdb/
http://www.sciencedirect.com


Figure 3. Structure aspects of PCs. (a) Ribbon representation of the furin crystal structure complexed with the permanent inhibitor dec-RVKR-cmk showing the three-

dimensional arrangement of the catalytic and P domains, which are essential for PC activity. Dec-RVKR-cmk is shown in ball and stick rendering where green is carbon, blue is

nitrogen and red is oxygen. The catalytic triad (Asp153, His194 and Ser368) is shown in yellow. a-Helical regions are shown in red, b-sheets are shown in blue, and the two

Ca2C-binding sites are shown as purple spheres. The image is rendered using iMol 0.3 (http://www.pirx.com/iMol/). (b) Representation of the electrostatic surface potential of

the active site of furin with a modeled sequence of six residues from the C-terminal of the furin pro-domain (KRRTKR). White annotations indicate the inhibitor residues and

black annotations show the catalytic triad and the subsite residues (S1–S6). (c,d) Representation of the S1 subsite with a P1 arginine residue for furin (c) and PC7 (d). The amino

acids of the S1 subsite (furin: Asp258 and Asp306; and PC7: Asp292 and Asp340) and those in close proximity (within 3.2 Å) are shown in a ball-and-stick representation,

whereas the P1 arginine is rendered as both ball and stick and a mesh surface. This comparison demonstrates the close identity of the S1 subsites, with the exception of

Thr309 for furin and Ala343 for PC7. Similar analysis of the S1 subsite of all other PCs reveals perfect identity with furin (not shown).
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furin provides crucial information on the spatial arrange-
ment of the two domains that are implicated in PC activity:
the catalytic domain, which contains the active site that is
responsible for substrate-specific recognition and proces-
sing; and the P domain, which is responsible for enzyme
stability (Figure 3a). The crystal structure of furin in a
covalently bound complex with the suicide inhibitor decan-
oyl-RVKR-chloromethylketone (dec-RVKR-cmk) [25] has
led to the identification of the reactive amino acids that
make up the S1–S4 subsite pockets*. This structural
information permits modeling and docking analysis
[27,28], which has led to the extrapolation of further
subsites, including the S5, S6 and S1

0 subsite pockets
* The catalytic site of proteases, including PCs, is defined by subsite positions
(e.g. S3, S2 and S1), which correspond to the residues of a binding substrate or
inhibitor (P3-P2-P1). Thus, the substrate residue at position P1 binds the S1-subsite
pocket of the protease. Each subsite can be composed of several amino acids.
Substrate and inhibitor residues and subsites on the C-terminal side of the cleavage
site are defined by primes (Pn

0 and Sn
0). The processing of substrates occurs at the

P1-P1
0 peptidyl bond (e.g. Pn-P3-P2-P1YP1

0-P2
0-P3

0-Pn
0) [49].

www.sciencedirect.com
(Figure 3b, Table 2). Apart from S3 and S1
0, all subsite

pockets of the active site of furin contain several protophilic
carboxylates and carboxamides, which explains the strin-
gent preference for either arginyl or lysyl functionality
groups in substrates and inhibitors (Table 2).

Based on homology modeling, the catalytic domains of
the seven PCs are highly homologous (50–70%) [28] and
the level of identity is even greater for the residues of the
catalytic-cleft subsites (Table 2). For example, for all PCs,
the S1 subsite that interacts with the P1 arginine residue
of a substrate is composed of two acidic aspartic acid
residues (Table 2) and three residues of the catalytic triad
(aspartic acid, histidine and serine). In addition, nine
additional amino acids that provide the steric environ-
ment to the P1 lateral chain are identical in all PCs, as
illustrated by the comparison of furin and PC7
(Figure 3c,d).

The subsite identities go beyond the S1 subsite, and are
also found from S2 to S5 (Table 2). However, differences

http://www.pirx.com/iMol/
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Table 2. Important PC subsite residuesa

PC S6 S5 S4 S3 S2 S1 Triad S1
0

Furin E230, D233 E257, D264 E236, D264 L227, T254 D154, D191 D258, D306 D153, H194, S368 R193, R197, H364

PC2 P245, D249 T273, D280 E252, D280 L242, W270 D169, F206 D274, D321 D168, H209, S385 S208, R212, H381

PC1/3 I244, D247 N271, E278 E250, E278 L241, W268 D168, E205 D272, D320 D167, H208, S382 K207, R211, H378

PACE4 D283, D286 D310, D317 E289, D317 L280, W307 D207, D244 D311, D359 D206, H247, S421 K256, R250, H417

PC4 A233, D236 E260, D267 E239, D267 L220, W257 D157, D193 D271, D309 D156, H197, S371 R196, R200, H367

PC5/6 D249, D252 D276, D283 E255, D283 L246, W273 D173, E210 D277, D325 D172, H213, S385 K212, R216, H381

PC7 P264, D267 D291, D298 E270, D298 L261, W288 D188, G225 D292, D340 D187, H228, S406 H227, R231, H402

aNumbering of the amino acids starts at the first amino acid (methionine) of the signal peptide sequence. Triad residues and S1–S4 subsites residues are deduced from the

crystal structure of furin complexed with dec-RVKR-cmk. S5, S6 and S1
0 are extrapolated by sequence-alignment analysis and confirmed by homology modeling. Residues in

bold and underlined contrast with the active site of furin. Refer to the footnote for subsite nomenclature.
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increase away from the catalytic triad, at the S6 subsite
pocket and beyond. These observations lower expectations
for the possible development of short peptide inhibitors of
PCs (four–five residues) that are specific for individual
PCs. However, the differences observed at the S6 subsite
indicate that specific, short-peptide inhibitors require at
least six residues.

Beyond the S6 subsite, further differences might be
exploited to design specific inhibitors. As yet, these
differences are not well identified but some attempts
have been made. For example, a recent study demon-
strates that exploiting the catalytic-site proximity of so-
called ‘adventitious contacts’ can lead to more-specific
inhibitors [29]. The mapping of proximal sites is also aided
by solution-structure studies of the PC1/3 pro-domain [30]
and subsequent docking analysis with PCs. Unlike
dec-RVKR-cmk, which maps only four subsite positions
[28], pro-domain-docking analysis demonstrates distinc-
tions between furin and the other PCs at the S5-subsite
and S6-subsite pockets (Table 2). Further structural
studies of the crystallization of furin and other PCs
complexed with different inhibitors are needed to provide
a better understanding of the catalytic site of PCs.
The combinatorial approach

The inhibitory properties of a small-peptide inhibitor can
be optimized in vitro using positional scanning of
synthetic peptide combinatorial libraries (PS-SPCLs)
[31,32]. An optimal sequence, determined by screening
PS-SPCLs can then be embedded into polypeptides to
achieved higher specificity and potency. Such combinator-
ial libraries of degenerate mixtures of small-peptide
inhibitors have been used successfully to compile the
most potent sequence for inhibiting furin (nona-arginine)
[33], and to identify a previously unknown sequence,
LLRVKR, which potently inhibits PC1/3 [31,34]. This
latter sequence was identified in a novel, endogenous
protein precursor, proSAAS, that has a tissue-distribution
pattern that resembles closely that of PC1/3 [35,36]. The
development of nona-arginine and LLRVKR as PC
inhibitors demonstrates the strength of PS-SPCLs in
identifying potent inhibitory peptide sequences.

In the case of the polyarginine sequence, peptides
ranging from four to nine residues are potent inhibitors of
furin in both enantiomeric configurations [33]. The most
potent polyarginine peptide is D-nona-arginine (KiZ1 nM)
[27]. Interestingly, all L- and D-polyarginine peptides are
also potent inhibitors of PC5/6 and PC7 (M. Fugère et al.,
unpublished), which highlights the difficulty in achieving
www.sciencedirect.com
substantial specificity using the active site exclusively.
From a therapeutic perspective, D-polyarginines are
interesting as lead compounds because they cannot be
cleaved by PCs and are thus more stable. D-Peptide
therapeutics are also less prone to other proteolytic
activities such as carboxypeptidases. D-hexa-arginine
blocks the activation of P. aeruginosa exotoxin A [16]
and D-nona-arginine partially protects macrophages and
mice against anthrax toxemia [17,27]. L-Hexa-arginine is
an efficient inhibitor of the processing of gp160 (env) at the
REKR551 sequence in vitro and ex vivo, and effectively
suppresses HIV-1 infection of T cells and macrophages [4].
Both furin and PC7, the two principal PCs that are
expressed by HIV-host cells, are the best candidates for
processing the precursor of HIV-1 gp160 [37]. If poly-
arginine peptides do not exhibit undesirable interactions
with other biological processes they might become key
components for a combined therapy that targets furin,
PC5/6 and PC7 simultaneously. Conversely, introducing
these polyarginine peptide sequences into engineered
polypeptides might achieve greater specificity while
retaining high potency.
The protein-bioengineering approach

Astute bioengineering of protease inhibitors that did not
co-evolve with PCs has also led to the development of
potent PC inhibitors. The first successful example is
a1-antitrypsin, which has been transformed into a potent
furin inhibitor by the insertion of a furin-like recognition
sequence (Arg355-Ile-Pro-Arg358) into its reactive-site
loop. This bioengineered protein, named antitrypsin-
portland (a1-AT-PDX), inhibits furin and PC5/6 without
altering its serpin-like mechanism of inhibition (reviewed
in [32]). The potential therapeutic value of a1-AT-PDX is
demonstrated by its ability, following exogenous appli-
cation, to prevent processing of HIV type 1 gp160 and
maturation ex vivo of pro-gB, the precursor of human
cytomegalovirus envelope glycoprotein of b-herpesviridae.
More recently, a1-AT-PDX has been tested in cancer-
related applications. Whereas overexpression of furin and
other PCs is associated with a significant increase in
metastatic spreading potential and tumor-cell prolifer-
ation [8,38], a1-AT-PDX decreases the invasiveness of
head and neck squamous-cell carcinoma by 50% in vitro,
and by up to 80% when inoculated in tracheal xenotrans-
plants [15]. Expression of a1-AT-PDX from a DNA vector
in transfectant tumor xenotransplants of astrocytoma
cells also suppresses efficiently tumorigenicity and inva-
siveness [13]. Although a1-AT-PDX represents a strong

http://www.sciencedirect.com
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case for targeting PCs in pathophysiological processes, the
large size of this protein (45 kDa) limits its practical
application. Nonetheless, a1-AT-PDX might be used
effectively to block processing events that occur at the
outer surface of the cell membrane.

A second example of a successful bioengineering
approach has been achieved using eglin c, a potent
inhibitor of elastase, cathepsin G and degradative sub-
tilisins. Initially, arginine residues were inserted into the
reactive site loop of eglin c to target furin and kexin [39].
Then, randomization of strategic eglin c residues that
make contact with PC residues outside the catalytic cleft,
namely ‘adventitious contacts’, proved extremely efficient
in designing two variants of eglin c that target either furin
or PC7 with significant specificity [29]. These two
variants, Val33-Arg42-Arg45-Asp49-eglin c (KiZ270 pM
for furin and 11 nM for PC7) and Arg42-Arg45-Trp49-
eglin c (KiZ10 nM for furin and 470 pM for PC7)
demonstrate that optimizing flanking contacts by
in vitromolecular evolution provides a powerful technique
to generate specific inhibitors for each PC. These two
derivatives of eglin c show that differences outside but
near the active site of PCs favor both binding affinity and
specificity of the inhibitor. These eglin c variants might
serve as biotechnological tools to dissect the functions of
furin and PC7 in the cell and at the membrane, for co-
crystalization processes, and as lead compounds to design
potent, specific and smaller therapeutic drugs.

The endogenous approach

Endogenous molecules that inhibit PCs in vivo represent a
major lead for designing pharmacological inhibitors of
PCs. Although some are large polypeptides, core inhibi-
tory domains can be identified and used as lead
compounds. Examples of endogenous inhibitors are PC
pro-domains, the neuroendocrine 7B2 protein, the pro-
SAAS precursor and the proteinase inhibitor 8 (reviewed
in [32]). Each contains a PC-recognition sequence and
they act as substrate analogs, real substrates or ‘false
baits’ for PCs. Recently, the inhibitory effects on PCs of two
new candidate endogenous inhibitors, the cystatin-related
epididymal spermatogenic (CRES) protein [40] and the
serine-protease inhibitor 4 SPN4A/4.1 [41–43], have been
described.

PC pro-domains are autoprocessed in cis by their
cognate PC, but remain bound to the active site through
their C-terminal PC-recognition sequence until the com-
plex reaches the compartment of zymogen activation.
Thus, pro-domains are dual-function molecules, being the
first substrate and first inhibitor encountered by PCs in
cells. Evaluation in vitro of the inhibitory capacity of the
seven complete pro-domains and of derived, short C-term-
inal dodecapeptides demonstrates their nanomolar
potency and some specificity [44]. However, none is a
specific inhibitor of a unique PC. The lack of pro-domain
specificity is also observed in inhibition experiments in cell
culture. Recently, overexpression in trans in Chinese
hamster ovary (CHO) cells of the wild-type PC5/6 pro-
domain and a selection of key residue mutants efficiently
inhibited the processing of an overexpressed substrate,
proVEGF-C [45]. However, maturation of proVEGF-C is
www.sciencedirect.com
also decreased significantly by expression of the pro-
domains of furin, PACE4 and PC7 in CHO cells. To date,
there is no indication that specificity of inhibition can be
achieved without significant structural modification of
pro-domains. Nevertheless, because pro-domains have
multiple interactions with PCs outside the catalytic site,
bioengineering might result in more specific pro-domains.
Co-crystalization of a pro-domain–PC complex might
provide the information required to map these
interactions.

Another endogenous candidate is CRES, a protein that
has divergent functions. CRES is related to the family 2
cystatins, a family of cysteine-protease inhibitors of the
larger cystatin superfamily. The inability of CRES to
inhibit C1-type cysteine proteases and the presence of two
accessible paired Lys-Lys basic-residue sites has prompted
the assumption that CRES might inhibit PC2. Assays
in vitro demonstrate that CRES inhibits PC2 but not furin
and PC1/3 [40]. Inhibition of PC2 occurs at low nanomolar
concentrations and is competitive, which indicates inter-
action with the catalytic site.

Last, the Spn4 gene in Drosophila melanogaster
encodes the serpin SPN4A/4.1. SPN4A/4.1 has a consen-
sus serpin sequence for the hinge region of the reactive-
site loop (RSL), which indicates that it functions as a
serpin, and includes a natural PC-recognition sequence
(ArgP4-Arg-Lys-ArgP1Y) in its RSL. In vitro, SPN4A/4.1
inactivates human furin (KiZ13 pM) and PC2 (KiZ
0.92 nM) by a slow-binding mechanism and the formation
of a SDS-stable acyl–enzyme complex [41]. This kinetic
trapping is typical of the serpin clade. That SPN4A/4.1
exerts potent inhibition on both furin and PC2 indicates a
profound lack of selectivity between PCs in general.
However, the removal of one amino acid in the RSL
(AlaP6) generates a reduction of inhibition potency against
PC2 (i.e. ID50 is 27-fold greater) but has no effect on furin.
This change in specificity indicates that the RSL of
SPN4A/4.1 is more amendable to modifications than
other serpins such as a1-AT-PDX.

The chemical approach

Small non-peptidyl compounds represent a poorly
explored area of PC inhibition. Because the activity of
PCs is affected by metal ions, the first inhibitory chemical
compounds investigated were 4 0-(p-tolyl)-2,2 0;6 0,2 00-terpyr-
idine (TTP)-chelated metal salts such as Zn(TTP)Cl2 and
Cu(TTP)Cl2. These bind slowly and competitively, and are
irreversible inhibitors with low micromolar inhibition
constants (IC50Z5–10 mM), possibly by a chelate-coordi-
nated interaction of the metal with the catalytic histidine
of PCs [46] and Kex2 [47]. Although the free chelate alone
is not inhibitory, the chelated metal salts are more potent
than the solvated metal ions. Thus, the chelation of metal-
based inhibitors to generate a prodrug serves to coordi-
nate the delivery of the drug (either Zn2C or Cu2C) to the
active site of PCs. Modification and adjustment of the
chelate might lead to greater inhibitory affinity and
specificity for PCs. Also, as suggested by the authors,
these metallodrugs might be developed further as wide-
spectrum PC blockers for rapid intervention in aggressive
viral infections and/or for bacterial detoxification.
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Improving the specificity of inhibition of small chemical
molecules that target the active site might prove difficult
given the highly conserved amino acids of PC subsites.
However, small chemical molecules, possibly obtained
through library screening, might lead to the identification
of compounds that can induce allosteric conformational
changes that selectively affect PC activity. Presently, the
only known PC allosteric sites are Ca2C-binding sites, but
these appear to be unlikely sites for the design of specific
PC inhibitors.

Allosteric inhibition of PCs might be a future avenue of
research. It is mostly unexplored because of the difficulty
in mapping allosteric sites and identifying ligands that
cause conformational changes. However, screening large
libraries of thiol-containing compounds has identified a
regulatory site away from the active site for caspase-3 and
caspase-7 that immobilizes the enzyme conformation
when it forms a reversible disulfide bond with an
accessible cysteine [48]. The link between this outer site
and the active site is such that binding of the specific
compounds blocks the interaction with substrates. We
suggest that such strategies are also possible for inhibition
of PCs.
Future perspectives

The design of unique, specific PC inhibitors represents a
major challenge in light of the homology between the
active sites of each family member. PC inhibitors have the
potential to become important therapeutic agents, par-
ticularly in viral diseases and, possibly, in cancer.
Additionally, studies to design specific PC inhibitors
should: (i) identify the molecular determinants of selec-
tivity between PCs; (ii) provide new pharmacological tools
to probe normal PC functions; and (iii) define the true
nature of compensating functions between PCs. The
challenge is to identify small, but significant, differences
away from the core active site and to exploit these through
innovative and classical pharmacological drug design.
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