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Simple Summary: The body‘s immune system can recognize tumors because they often contain
proteins that are either different from or more abundant than in normal cells. Here, we characterised
the immune cells of a rare tumor type called small-intestinal neuroendocrine tumors (SINET). We find
that so called tumour-infiltrating lymphocytes (TILs) can be grown in the laboratory and activated by
challenging them with digested tumor. This study provides insights into the largely unknown SINET
immune landscape and reveals the anti-tumour reactivity of TILs, which might merit adoptive T cell
transfer as a feasible treatment option for patients with SINET.

Abstract: Traditionally, immune evasion and immunotherapy have been studied in cancers with a
high mutational load such as melanoma or lung cancer. In contrast, small intestinal neuroendocrine
tumours (SINETs) present a low frequency of somatic mutations and are described as genetically
stable tumours, rendering immunotherapies largely unchartered waters for SINET patients. SINETs
frequently metastasise to the regional lymph nodes and liver at the time of diagnosis, and no curative
treatments are currently available for patients with disseminated disease. Here, we characterised
the immune landscape of SINET and demonstrated that tumour-infiltrating lymphocytes (TILs) can
be expanded and activated during autologous tumour challenge. The composition of lymphocyte
subsets was determined by immunophenotyping of the SINET microenvironment in one hepatic
and six lymph node metastases. TILs from these metastases were successfully grown out, enabling
immunophenotyping and assessment of PD-1 expression. Expansion of the TILs and exposure to
autologous tumour cells in vitro resulted in increased T lymphocyte degranulation. This study
provides insights into the largely unknown SINET immune landscape and reveals the anti-tumour
reactivity of TILs, which might merit adoptive T cell transfer as a feasible treatment option for
patients with SINET.

Keywords: small-intestinal neuroencocrine tumors; neuroendocrine tumours; patient-derived
xenografts; tumour-infiltrating lymphocytes
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1. Introduction

The immune system monitors the body for foreign antigens but can also detect cancer
cells. Mutated proteins (neoantigens) or highly overexpressed proteins (tumour-associated
antigens) give rise to peptides presented on MHC molecules on, e.g., cancer cells, which
can be recognised by antigen-specific T lymphocytes [1]. However, cancer cells utilise
several immune evasion mechanisms, most notably expression of PD-L1, the ligand of the
immune checkpoint PD-1. This is the basis of immune checkpoint inhibitor (ICI) therapy
which, along with adoptive T cell therapy (ACT), has demonstrated curative effects in
many tumour types [2,3].

Resistance to immunotherapies can occur by many different mechanisms including
expression of immune checkpoint markers and downregulation of the antigen presentation
machinery. Furthermore, some tumour types such as small intestinal neuroendocrine
tumours (SINET) do not carry a high mutational burden and hence present fewer neoanti-
gens [4,5]. Combined with a promotion of an immunosuppressive microenvironment seen
in neuroendocrine neoplasms [6] and other tumour types, this results in a poor expansion
of antigen-specific T cells and immune evasion.

Patient-derived xenograft models are mouse models generated by transplanting tu-
mour cells or tissues directly from patients most often without prior in vitro cultivation.
They are generally regarded as more accurate models than cell line-derived xenografts
since they grow slower, display a similar histopathology architecture, represent the genetic
heterogeneity of patients, respond to treatments more similarly to patients, and can even
be used as mouse models for precision oncology treatment decisions, so-called mouse
avatars [7–10]. Nevertheless, these models have a caveat in being immunocompromised,
which is a pre-requisite to grow human cells in mice. Attempts at immune humanisation of
xenograft models have been conducted so that PDX models can be used for immunother-
apy studies, but these models are rarely autologous [11,12]. We previously developed the
PDX version 2 (PDXv2) model, where melanoma tumours were grown in immunocom-
promised non-obese diabetic severe combined immunodeficiency interleukin 2 receptor
gamma knockout mice (NSG/NOG) transgenic for human interleukin 2 (hIL2-NOG) [13].
In PDXv2 mice generated from a subset of patients, eradication of autologous cancer cells
can be achieved by injecting TILs, which is accompanied by in vivo expansion of the TILs.

Currently, no genetically engineered mouse model exists for SINET, and only a few
cell lines have been described to establish xenograft mouse models [14]. In fact, some cell
lines previously assumed as SINET were in fact EBV-transformed lymphoblastoid cell
lines [15]. The aim of this study was to characterise the genetics and immune landscape
of SINET by RNA/exome sequencing and flow cytometry and develop methods to study
T cell potency and reactivity in vitro and in vivo.

2. Results
2.1. Exome and RNA Sequencing of Metastatic SINET Reveals Insight into Genetics
and Immunology

We molecularly profiled six SINET lymph node metastases and one hepatic metastasis
(Table 1) using exome and RNA sequencing. Eosin and haematoxylin staining revealed
that the specimens consisted of tumour and stroma cells which had displaced the lymph
node tissue (Supplementary Figure S1). Whole-exome and RNA sequencing revealed an
average of 25 protein-modifying mutations per tumour (range: 45–69) (Figure 1A). Of these
mutations, 14 were listed in COSMIC Cancer Gene Census (CCGC, Figure 1B), all of which
were only present in one patient. While SINETs contain relatively few somatic mutations,
they also harbour several recurrent chromosomal aberrations [16–18]. Tumours can be
sub-grouped based on chromosomal aberrations into one larger group characterised by
chromosomal losses, notably loss of chromosome 18, and a smaller group characterised
by multiple chromosomal gains, notably 4, 5, 7, and 10 [17]. Five out of seven tumours
(T1, T2, T3, T4, and T6) contained loss of chromosome 18, one tumour (T7) had gains of
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multiple characteristic chromosomes, and one tumour (T5) belonged to neither of these
groups (Figure 1C).

Table 1. Clincopathological characteristics of patients and their small intestinal neuroendocrine tumours.

Patient ID Gender Age at
Surgery Disease Stage Dead/Alive Tumour ID Tumour

Metastasis Site
Tumour Grade

(% Ki67)

P1 M 79 IIIB AWD T1 LN G1 (1.5)
P2 F 69 IIIB AWD T2 LN G1 (0.5)
P3 M 76 IV AWD T3 Hepatic G1 (2.6)

IV AWD T4 LN G2 (3.7)
P4 M 57 IV AWD T5 LN G1 (0.9)
P5 M 84 IV AWD T6 LN G1 (1.3)
P6 M 75 IV AWD T7 LN G2 (3.3)

Abbreviations: M, Male; F, Female; AWD: Alive with disease, LN: Lymph node metastasis.

Figure 1. Genomic alterations. (A) Somatic mutations in known cancer genes. (B) Total number of detected non-synonymous
somatic mutations in each sample. (C) DNA copy number changes. Blue indicates loss, while red indicates gain. The
intensity of the respective colours reflects both the number of copies gained or lost and tumour purity.

We used the CIBERSORT script on RNA sequencing data to gain insight into the
presence of immune cells in the SINETs. The major cell type in the tumours was the
“uncharacterised” tumour cells (Figure 2A). Focusing on the characterised cells, CD4+ T
cells were the most common cell type in the tumours (Figure 2B). Immune checkpoint
proteins PD-1 and TIM-3 were expressed primarily in the samples which had the most
CD8+ cells (Figure 2C). Both HLA class 1/2 and immune checkpoint ligands for TIM-3
(e.g., HMGB) and TIGIT (e.g., PVR and PVRL2) were highly expressed by most tumours
(Figure 2D). However, cytokine/chemokine expression was more variable.

2.2. Single-Cell Analyses by IHC and Flow Cytometry of Tumours and TILs Show
Immune Heterogeneity

CD3+ T lymphocytes were present in all tumours, and more than 90% were localised
to the tumour stroma and the interphase between the tumour stroma and tumour nests
(Figure 3). A minority of the CD3+ T lymphocytes had infiltrated the tumour nests and
were located intra-tumourally. The total amount of CD3+ T lymphocytes varied between
tumours of different patients, where tumours T5 and T6 had notably fewer CD3+ cells
compared to the other tumours (Figure 3). Staining of CD4+ T lymphocytes (T helper) and
CD8+ T lymphocytes (cytotoxic T cells) on serial sections revealed that the localisation
of CD4+ and CD8+ T lymphocytes frequently overlapped. CD4+ T lymphocytes and
CD8+ T lymphocytes were found in the stroma, interphase, and intra-tumourally, but
CD8+ T lymphocytes were more frequently localised intra-tumourally (Supplementary
Figure S2). Interestingly, very few NKp46+ NK cells were observed (<10 cells/full tumour
section), and all resided within the tumour stroma. In the tumours, several areas of T
lymphocyte aggregation were observed. These were not associated with any morphological
features observable by eosin and haematoxylin staining and did not express granzyme
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B to a larger extent compared to other T lymphocytes. As immune cells would normally
eliminate abnormal cells such as cancer cells, they need to adapt and, as such, circumvent
immune cell recognition and/or activation. The recently successful PD-1:PD-L1 checkpoint
inhibitors demonstrated the potency of abrogating this inhibition. Previous studies have
varied largely in methods and reported ranges investigating the PD-L1 and PD-L2 positivity
of SINETs using immunohistochemistry. Reports of PD-L1 positivity ranged between 0 and
39%, and for PD-L2, between 0 and 82% [19–21]. Here, using the FDA-approved PD-L1
staining kit, we were only able to detect weak PD-L1 expression in the T2 tumour (Figure 3).

Figure 2. Immune profiling using RNA-seq. (A) Inferred proportions of constituent cell types in bulk samples, based on
deconvolution using EPIC. (B) Same as (A), but after removing uncharacterised cells (most likely cancer cells). (C) Expression
levels of T cell markers and checkpoint receptors. (D) Expression levels of genes involved in antigen presentation, immune
checkpoint ligands, chemokines, and interleukins.

Figure 3. Localisation and distribution of immune cell subsets in small intestinal neuroendocrine tumours. CD3+ T
lymphocytes, CD4+ T lymphocytes, CD8+ T lymphocytes, NKp46+ NK cells, and expression of PD-L1 were evaluated on
seven small intestinal neuroendocrine tumours (T1−T7) using immunohistochemistry.
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To characterise and properly quantify SINET-infiltrating lymphocytes, we performed
a flow cytometry analysis of single-cell suspensions of SINET with a comprehensive lym-
phocyte panel on four patient tumours (T2, T4, T6, and T7). We were able to identify several
immune subsets, including CD4+ T cells, CD8+ T cells, regulatory T cells (Tregs), MAIT
cells, γδ T cells, CD16+ NK cells, CD16- NK cells, NKT cells, and B cells (Figure 4A). The
most abundant population within viable CD45+ immune cells was CD4+ T lymphocytes,
followed by CD8+ T lymphocytes, and B cells. CD56+ CD16- NK cells and Tregs belonged
to the minor populations, and low levels of MAIT cells, γδ T cells, and the undefined
CD4-CD8- cells were also identified. Interestingly, the proportion of various immune
subsets was strikingly similar in all four tumours. PD-1 was expressed in all immune
subsets but had a high variability between tumour samples (Figure 4B). To investigate
whether infiltrating T lymphocytes were capable of cytokine responses, we stimulated
SINET suspensions with phorbol myristate acetate (PMA) and ionomycin. This resulted
in a potent increase in interferon-γ, perforin, tumour necrosis factor α, and interleukin-2
(IL-2) in CD8+, non-CD8-positive (CD4+) T cells, and CD56+ NK cells (Figure 4C). Fur-
thermore, although most CD4+/CD8+ T lymphocytes and NK cells contained only one of
the four cytokines, polyfunctionality was still observed in a considerable proportion of T
lymphocytes and NK cells (Supplementary Figure S3). In particular, TILs from tumours T6
and T7 had higher polyfunctionality of both CD4+ and CD8+ T lymphocytes than TILs
from the T3 and T4 tumours.

Figure 4. The immune microenvironment of small intestinal neuroendocrine tumours. (A) The immune microenvironment
of four small intestinal neuroendocrine tumours was characterised using flow cytometry after staining with a lymphocyte
antibody panel. The immune microenvironment mostly contained CD4+ T lymphocytes, CD8+ T lymphocytes, and B cells,
but also many other immune subsets. (B) Most immune subsets expressed PD-1 in all four patient tumours. (C) To assess
the viability and functionality of the tumour-infiltrating lymphocytes, we stimulated them with PMA and ionomycin and
could observe a marked increase in IFNγ, perforin, TNF-α, and IL-2 in CD8+ T lymphocytes, non-CD8+ T lymphocytes,
and CD56+ NK cells. U, unstimulated; S, stimulated.

It has been shown that immunologic inhibition of TILs can be overcome by the
presence of exogenous interleukin-2 (IL-2) [22,23]. Such activated TILs can be made into
large quantities by rapid expansion, as used for ACT therapy to treat patient tumours in
the clinic [24]. After characterising unstimulated TILs with immunophenotyping and an
activation assay, we next attempted to characterise TILs generated through IL-2 stimulation
(young TILs, yTILs) and the rapid expansion protocol (REP-TILs) by immunophenotyping



Cancers 2021, 13, 4305 6 of 13

and a degranulation assay (Figure 5A). The yTILs were generated by culture of excised
tumour tissue collected from surgery in media supplemented with IL-2. TILs that left
the tumour were observed in these cultures within 24 h, and these TILs gave rise to the
yTILs harvested after 21−28 days. To generate REP-TILs, yTILs were co-cultured with
irradiated peripheral blood mononuclear cells and stimulated with anti-CD3 antibody and
exogenous IL-2 for 14 days. We successfully expanded yTILs of all tumours starting from
5 × 104 lymphocytes to an average of 6.6 × 107 lymphocytes (range 3.6 × 107–9.0 × 107).
The amount of immune cell subpopulations can be predictive for the clinical response
to ACT. For example, the number of CD8+CD27+ cells injected has been shown to be
associated with the objective response [2]. The proportions of both CD4+ T lymphocytes
and CD8+ lymphocytes within the obtained REP-TILs were altered (Figure 5B). Notably,
a large increase in CD4+ T lymphocytes was observed for tumour T4 (25.7% to 76.8%)
and in CD8+ T lymphocytes in tumours T2 (4.5% to 21.4%) and T3 (2.7% to 11.9%). The
proportion of CD4+CD8+ T lymphocytes remained largely unchanged, and the CD4-CD8-
cells decreased. The frequency of Tregs decreased in all patients, except for one patient.
Whereas the levels of MAIT cells were largely unchanged, the γδT cells decreased. Both
the proportion of CD56+CD16+ and CD56+CD16- NK cells decreased drastically. Overall,
PD-1 expression was downregulated on REP-TILs, except for the CD4-CD8- population
where PD-1 was induced instead (Figure 5C). Interestingly, PD-1 was also upregulated on
CD56+CD16- NK cells by the REP protocol.

Figure 5. Generation and characterisation of yTILs and REP-TILs. (A) In addition to immunophe-
notyping and activation assay performed on unstimulated TILs, yTILs were generated by IL-2
stimulation and REP-TILs by subsequent rapid expansion protocol. Both yTILs and REP-TILs were
immunophenotyped, and in addition, the degranulation of REP-TILs was measured in response to
autologous tumour cells. (B,C) During the expansion of yTILs to REP-TILs, the proportion of various
immune subsets changed. Notably, the proportion of MAIT cells and both CD16+ and CD16- NK
cells decreased among CD3+ lymphocytes (B). PD-1 expression decreased in most immune subsets
during TIL expansion (C,D). REP-TILs generated from SINETs degranulate in response to autologous
tumour cells, measured as increased surface positivity of the T cell granule marker CD107a. TILs and
tumour cells from a malignant melanoma patient (MM33) were used as a positive control (* p < 0.05,
Wilcoxon test).
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We cultured REP-TILs with single-cell suspensions of autologous tumour cells and
assessed T cell granulation by using anti-CD107a (LAMP1). CD107a is normally expressed
on the internal surface of lysosomes and granules and exposed when lymphocytes degran-
ulate in response to stimuli [25]. We used REP-TILs from a malignant melanoma patient
as a positive control since these TILs have previously been demonstrated to be reactive
against autologous tumour cells in vivo [13]. The REP-TILs from all SINETs degranulated
more when tumour cells were present (Figure 5D), indicating that the SINET REP-TILs
can recognise and respond to autologous tumours. The amount of degranulation differed
substantially between tumour samples. REP-TILs from tumours T1, T2, T6, and T7 de-
granulated more than REP-TILs from melanoma, while TILs from tumours T4 and T5
degranulated to a lesser degree.

2.3. SINET Cells Can Survive in Long-Term Tumour Grafts but Are Resistant to T Cell Killing
In Vivo

To establish PDX models of SINET, we transplanted a total of 38 pieces of surgically
resected tumours from 36 patients into 55 NOG mice. Since no SINET PDX has previously
been successfully established directly from patient biopsies, and the take-rate of neuroen-
docrine tumours overall seems poor [26], we tried xenografting the tumours both from
cryopreserved material and from fresh tumour tissue obtained at surgery. Both subcu-
taneous transplantation and injection of tumour cells from a hepatic metastasis into the
mouse liver were performed (Table 2). One tumour from a grade 1 liver metastasis that
was transplanted subcutaneously was successfully propagated and grown through two
passages (Supplementary Figure S4A). However, of the 54 mice transplanted, a majority
had to be sacrificed for ethical reasons, mainly due to old age, without any observed
tumour growth. Autopsy revealed no tumours in any of the sacrificed tumour-free mice.
Immunohistochemistry did, however, reveal a small amount of tumour cells expressing
SINET markers, a minority of which also expressed proliferation marker Ki67, in those
mice that had tumours that had not grown but still remained palpable after original
tumour implantation.

Table 2. Take-rate of small intestinal neuroendocrine transplanted to NOG mice.

Transplantation Site Subcutaneous Orthotopic
Patient Tumour Site Lymph Node Hepatic Hepatic

From surgery 0/15 1/4 NA
From cryofrozen 0/14 0/5 0/16

Total 0/29 1/8 0/16
Abbreviations: NA, Not available.

To further study this model, we applied our recently established protocol and trans-
planted new tumour pieces from three patients into either ordinary NOG/NSG mice or
into hIL2-NOG mice [27]. After three weeks, mice were sacrificed, and tumour biopsies
were collected for immunohistochemistry. In line with previous attempts at generating
PDX models, all the biopsies were necrotic, but a few live SINET cells were detected using
anti-synaptophysin staining (Supplementary Figure S4B). However, there was no notice-
able growth suppression in hIL2-NOG mice compared to tumours grown in NOG mice
(Supplementary Figure S4C). This was not due to a lack of T cells, as they were detected in
the tumours and blood of some hIL2-NOG mice (Supplementary Figure S4B,D). In fact, T
cell expansion probably contributed to the slightly enhanced tumour size in the hIL2-NOG
mice (Supplementary Figure S4C) akin to the phenomenon known as pseudo-progression,
which occasionally occurs in cancer patients treated with immunotherapy. The expansion
of T cells was also measurable in the blood using granzyme B ELISA (Supplementary
Figure S4E), suggesting that some of the T cells were reactive.
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3. Material and Methods
3.1. Whole-Exome Sequencing

After informed consent, snap-frozen biopsies were collected at surgery of patients
diagnosed with SINET. DNA was extracted using AllPrep DNA/RNA mini kit (Qiagen,
Hilden, Germany). Exome sequencing was performed at the GeneCore SU core facility. Raw
reads were mapped to the human genome, and mutations and copy number alterations
were assessed using the GATK and Mutect2 R packages.

3.2. Immunohistochemistry

Paraffin-embedded tissue blocks from patient tumours prepared for routine clinical
histopathology were obtained from Sahlgrenska University Hospital. Sections (3–4 µm)
from paraffin blocks were placed on glass slides and treated in Dako PT-Link using En-
Vision™ FLEX Target Retrieval Solution (high pH). The following primary antibodies
were used: anti-CD3 (Dako/Agilent Technologies, Santa Clara, CA, USA; IR503), anti-CD4
(Dako; 4B12), anti-CD8 (Dako; C8/144B), anti-NKp46 (R&D Systems, Minneapolis, MN,
USA; 195314), anti-granzyme B (Novocastra/Leica Biosystems, Wetzlar, Germany; 11F1),
anti-PD-L1 kit (Dako; PD-L1 IHC 28-8 pharmDx; according to manufacturer’s instructions),
and anti-Ki-67 (Dako; MIB-1). Immunohistochemical staining was performed in a Dako
Autostainer Link using EnVision™ FLEX according to the manufacturer’s instructions
(DakoCytomation). EnVision™ FLEX+ (LINKER) mouse was used for anti-NKp46, anti-
CD25, anti-granzyme B, and anti-Ki-67. Positive and negative controls were included in
each run. Each staining was evaluated by a board-certified pathologist (O.N.). The Ki67
index was calculated by manually counting the percentage of labelled tumour cell nuclei
on printed images [28].

3.3. Generation of Tumour-Infiltrating Immune Cells

Patient tumour tissue samples were obtained from patients undergoing surgery for
SINET disease at Sahlgrenska University Hospital, Gothenburg, Sweden. Unstimulated
TILs for characterisation and stimulation experiments were generated from 1–2 mm2

cryopreserved tumour pieces that were incubated with 2 mg/mL collagenase type I (C-0130,
Sigma-Aldrich, St. Louis, MO, USA) and >5 ng/mL deoxyribonuclease I (D-4263, Sigma-
Aldrich) at 37 ◦C in 5% CO2 for 2 h. The resulting single-cell suspension was filtered and
washed with PBS. yTILs were generated by cutting tumour tissue obtained directly from
surgery into 1–2 mm2 pieces that were placed in separate wells in a 24-well plate (Sarstedt,
Newton, NC, USA) with 2 mL of culture medium (90% RPMI 1640 (Invitrogen, Waltham,
MA, USA), 10% heat-inactivated human AB serum (HS, Sigma-Aldrich), and 6000 IU/mL
recombinant human IL-2 (Peprotech) and gentamicin (Invitrogen). Young TIL (yTIL)
cultures were obtained by pooling TILs from each fragment as previously described [29–31],
before being cryopreserved. To generate REP-TILs, yTILs were expanded using a standard
small-scale REP [31]. In short, irradiated (40 Gy) allogeneic feeder cells (5 × 106), 30 ng/mL
anti-CD3 antibody (Miltenyi, Bergisch Gladbach, Germany; OKT3), 5 mL culture medium,
5 mL REP medium (AIM-V, Invitrogen) supplemented with 10% HS, and 6000 IU/mL IL-2
and yTILs (5 × 104) were mixed in a 25 cm2 tissue culture flask. Flasks were incubated
upright at 37 ◦C in 5% CO2. On day 5, half of the medium was replaced. On day 7 and
every day thereafter, cells were split into further flasks with additional REP medium as
needed to maintain cell densities around 1–2 × 106 cells/mL. On days 10–14, cells were
harvested and cryopreserved.

3.4. Characterisation and Stimulation of Tumour-Infiltrating Immune Cells

Filtered single-cell suspensions were washed with PBS and were either stained directly
for characterisation of immune cell subsets or resuspended in complete media: RPMI 1640
GlutaMAXTM supplemented with 10% fetal calf serum, 1% HEPES, 0.1% gentamicin,
and 1% penicillin-streptomycin (Gibco) for overnight stimulation with phorbol myristate
acetate (0.01 µg) and ionomycin (0.25 µg) in presence of brefeldin A (5 µg, Sigma) at
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37 ◦C in 5% CO2. Surface markers were stained as previously described [32] with a
cocktail of fluorescent monoclonal antibodies (mAbs): anti-CD127, CD19, CD45, γδTcR,
Vα24 TcR, Vα7.2 TcR (Biolegend, San Diego, CA, USA), CD11c, CD15, CD16, CD25, CD3,
CD4, CD56, CD8, PD-1, and HLA-DR (BD). Zombie Red (Biolegend) or Aqua (Invitrogen)
fixable viability kits were used for dead cell detection. For intracellular staining, surface-
stained cells were treated with fixation/permeabilisation kit (BD) and stained with anti-
IFNγ, perforin (BD), TNFα, and IL-2 (Biolegend) mAbs. Analysis was performed using
FlowJo software v.9.9.6 (Tree Star). Polyfunctional T cell cytokine responses were assessed
using SPICE software v.5.35 (freely available and downloaded 22nd Oct. 2018 from http:
//exon.niaid.nih.gov/spice/). Statistical analysis was performed using non-parametric
paired comparison with Wilcoxon test in GraphPad Prism software (San Diego, CA, USA)
and considered significant at p* < 0.05.

3.5. Degranulation Assay

Tumour single-cell suspensions were generated by incubating tumour pieces with
2 mg/mL collagenase type I (C-0130, Sigma-Aldrich) and >5 ng/mL deoxyribonuclease
I (D-4263, Sigma-Aldrich) at 37 ◦C in 5% CO2 for 2 h. REP-TILs generated from the
patient tumours were thawed, and 3 × 105 cells were transferred to two wells on a cone-
bottomed 96-well plate (Sarstedt) in RPMI 1640 GlutaMAXTM supplemented with 10% heat-
inactivated human serum (HS, Sigma-Aldrich) and 50 ng/mL gentamicin. APC-CD107a
antibody (BD; clone H4A3) was added to both wells, and to one well, 105 autologous
cancer cells were added. After incubation at 37 ◦C in 5% CO2 for 4 h, cells were harvested
in MACS-buffer, strained, and analysed using a BD Accuri C6 Plus flow cytometer with
associated software (v.1.0.23.1).

3.6. Patient-Derived Xenografts

SINET surgical specimens were obtained from patients undergoing surgery at Sahlgren-
ska University Hospital, Gothenburg, Sweden. Tumours were xenografted to 6−15-week-
old immunocompromised, non-obese severe combined immune-deficient interleukin-2
chain receptor γ knockout mice (NOG mice; Taconic) or NOG mice transgenic for human
IL-2 (hIL2-NOG; Taconics). For subcutaneous transplantations, tumour tissue was cut into
1–2 mm2 pieces and either transplanted directly from surgery or after cryopreservation into
the flank of the mouse. Orthotopic transplantations were performed with liver metastasis
tumour pieces that had been incubated with 2 mg/mL collagenase type I (C-0130, Sigma-
Aldrich) and >5 ng/mL deoxyribonuclease I (D-4263, Sigma-Aldrich) at 37 ◦C in 5% CO2
for 2 h, before being cryopreserved. Liver metastasis single-cell suspensions were injected
into the mouse liver. When mice were sacrificed, autopsy was performed to validate any
lack of tumour growth.

3.7. Preprocessing of RNA-Seq Data

RNA-seq reads were aligned to the 1000 Genomes [33] version of the hg19 human refer-
ence genome (v.37) with STAR (v.2.7.1a) [34]. Arguments used were “–twopassMode Basic
–outFilterType BySJout –sjdbOverhang 75 –outSAMmapqUnique 60 –outSAMstrandField
intronMotif –outSAMunmapped Within –outReadsUnmapped None –chimSegmentMin
12 –chimJunctionOverhangMin 8 –chimOutJunctionFormat 1 –alignSJDBoverhangMin
10 –alignMatesGapMax 100000 –alignIntronMax 100000 –alignSJstitchMismatchNmax 5 -1 5
5 –chimMultimapScoreRange 3 –chimScoreJunctionNonGTAG -4 –chimMultimapNmax 20 –
chimNonchimScoreDropMin 10 –peOverlapNbasesMin 12 –peOverlapMMp
0.1 –alignInsertionFlush Right –alignSplicedMateMapLminOverLmate
0 –alignSplicedMateMapLmin 30”. Known splice junctions from the NCBI GRCh37.75
reference genome annotation were also provided as input. Read counts per gene were then
obtained from these alignments using htseq-count (HTSeq v. 0.11.2) [35], with the argu-
ments “-r name -q -f bam -s reverse -m intersection-strict”, relative to the NCBI GRCh37.75
reference genome annotation.

http://exon.niaid.nih.gov/spice/
http://exon.niaid.nih.gov/spice/
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3.8. Immune Cell Deconvolution

To determine cell types contributing to the composition of bulk RNA-seq samples,
RPKM normalised gene expression values were used as input to the function deconvolute
from the R package immunedeconv (v. 2.0.3), which contains wrapper functions to run a
number of different cell type deconvolution methods. The parameter “method = ‘epic’”
was used to run EPIC (v. 1.1.5) [10].

3.9. Preprocessing of Exome Sequencing Data

Exome sequencing reads were aligned to the 1000 Genomes version of the hg19 human
reference genome (v. 37) with bwa [4] (v. 0.7.17) using the arguments “mem -t 10 -M -
R”. Alignments corresponding to multiple sequencing runs of the same sample were
merged using the samtools “merge” command (v. 1.9). Duplicate reads were marked
with MarkDuplicates (GATK v. 4.1.3.0) [5] using default parameters. Base quality score
recalibration was performed with BaseRecalibrator and ApplyBQSR (GATK) in two passes
using the same reference genome as well as lists of known polymorphisms from the
GATK resource bundle (files “dbsnp_138.b37.vcf”, “1000G_phase1.indels.b37.vcf”, and
“Mills_and_1000G_gold_standard.indels.b37.vcf”).

3.10. Mutation Calling

Variant calling for exome sequencing alignments was performed with Mutect 2 [6]
(GATK v. 4.1.3.0) using the parameters “—genotype-germline-sites true —genotype-pon-
sites true —af-of-alleles-not-in-resource 0.0000025 —disable-read-filter MateOnSameCon-
tigOrNoMappedMateReadFilter”. The GnomAD [7] population variant database was
provided as a germline resource, together with the same reference genome as above.
The analysis was restricted to exome target regions corresponding to Agilent SureSe-
lect Clinical Research Exome v2. Variant qualities were further assessed using Filter-
MutectCalls (GATK). These variants were then annotated using the script vcf2maf.pl
(https://github.com/mskcc/vcf2maf, accessed on 2 May 2019), which relies on VEP, using
the v. 98 build of the VEP reference database for the GRCh37 genome. Variants were further
filtered using custom scripts to remove genes with >0.001 frequency in GnomAD, ExAC,
and genes with dbSNP identifiers, unless any of these variants were whitelisted. Variants
were whitelisted if they were either listed as oncogenes in Cancer Gene Census (CGC) and
the exact mutation was listed in COSMIC or if they were listed as tumour suppressors in
CGC. The resulting list was further filtered to remove variants that only occurred in more
than one PDX sample but not in any patient biopsy.

3.11. Copy Number Analysis

Copy number segmentation was performed with CNVkit (v. 0.9.6), by first running
the “cnvkit.py batch” command with matching tumour and normal files, exome target
regions based on Agilent SureSelect Clinical Research Exome V2, the 1000 Genomes ver-
sion of the hg19 human reference genome (v. 37), and a list of problematic regions to exclude
(http://hgdownload.cse.ucsc.edu/goldenpath/hg19/encodeDCC/wgEncodeMapability/
wgEncodeDukeMapabilityRegionsExcludable.bed.gz). The resulting output was converted
to SEG-formatted files using the commands “cnvkit.py segmetrics” (parameters: “—ci -a
0.05”) followed by “cnvkit.py call” (parameters: “—center “median” —purity 1 —filter ci”)
and “cnvkit.py export seg”.

4. Conclusions

Here, we characterised and quantified the lymphocyte subsets in the hitherto much
under-studied SINET immune microenvironment by RNA sequencing, flow cytometry,
and immunohistochemistry. We showed that TILs from SINETs can be expanded, and
the expanded REP-TILs elicit an anti-tumour response when challenged with autologous
tumour cells. The latter finding implies that expanded TILs not only can detect the tumour
cells but can also respond against them. This ability of SINET REP-TILs to recognise

https://github.com/mskcc/vcf2maf
http://hgdownload.cse.ucsc.edu/goldenpath/hg19/encodeDCC/wgEncodeMapability/wgEncodeDukeMapabilityRegionsExcludable.bed.gz
http://hgdownload.cse.ucsc.edu/goldenpath/hg19/encodeDCC/wgEncodeMapability/wgEncodeDukeMapabilityRegionsExcludable.bed.gz
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autologous tumours is in line with a previous report on circulating CD8+ T lymphocytes
of SINET patients with specificity for SINET-associated peptides [36]. The fact that T
lymphocytes directed against SINET-associated antigens when expanded could elicit an
anti-tumour response suggests that TIL expansion can activate the immune cells. This effect
is also observed when successfully treating cancer patients with expanded T lymphocytes
in ACT.

Clinical responses to ACT can be modelled using transplanted PDX tumours and
autologous T cells in human IL-2 transgenic NOG mice [13]. To evaluate whether ACT
would be relevant for SINET patients, we sought to answer whether TILs can recognise,
become activated, and eradicate tumours in vivo. Unfortunately, we were not able to
generate PDX models from more than one patient biopsy. Although immunohistology
verified the authenticity of our SINET model, serial transplantation did not result in
new PDX models. Instead, we resorted to establishing tumour explant models in NOG
or hIL2-NOG models, as previously described [27]. Our previous study on melanoma
demonstrated that tumour growth in hIL2-NOG mice and in NOG correlates with poor
survival following anti-PD1 ICI treatment of the corresponding patient. When establishing
explant modes for SINET, we observed expansion of TILs in the hIL2-NOG mice, resulting
in an expansion of the tumour size. However, only few SINET cells survived, even in
NOG mice, meaning we were not able to assess if the injected TILs had tumour reactive
capacity in vivo. Nevertheless, the ex vivo experiments do suggest that TILs from SINET
can degranulate in the presence of autologous tumour digests. It is therefore likely that
ACT with TILs might be effective in some patients with SINET. In melanoma, we found
that a large fraction of CD8+ T cells predict TIL responses in hIL2-NOG PDXv2 mice and
patients [13]. This may be a major limitation for SINET patients, since most of the T cells
present in SINET are CD4+ T cells. On the other hand, the role of cytotoxic CD4+ TILs
being able to cause durable responses in patients is being recognised [37]. Therefore, until
proven otherwise, we cannot exclude that ACT therapy would work for patients with
tumours that predominantly contain CD4+ TILs. This will be important to explore, since
SINET still remains as a disease with few therapeutic options.
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