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Abstract: In visual tracking, the tracking model must be updated online, which often leads to
undesired inclusion of corrupted training samples, and hence inducing tracking failure. We present
a locality preserving correlation filter (LPCF) integrating a novel and generic decontamination
approach, which mitigates the model drift problem. Our decontamination approach maintains the
local neighborhood feature points structures of the bounding box center. This proposed tracking-result
validation approach models not only the spatial neighborhood relationship but also the topological
structures of the bounding box center. Additionally, a closed-form solution to our approach is derived,
which makes the tracking-result validation process could be accomplished in only milliseconds.
Moreover, a dimensionality reduction strategy is introduced to improve the real-time performance
of our translation estimation component. Comprehensive experiments are performed on OTB-2015,
LASOT, TrackingNet. The experimental results show that our decontamination approach remarkably
improves the overall performance by 6.2%, 12.6%, and 3%, meanwhile, our complete algorithm
improves the baseline by 27.8%, 34.8%, and 15%. Finally, our tracker achieves the best performance
among most existing decontamination trackers under the real-time requirement.

Keywords: object tracking; correlation filter; decontamination; model drift; locality preserving

1. Introduction

Visual tracking, in general, refers to the task of estimating locations and sizes of an arbitrary target
in image sequences with only its initial states. Although great progress [1-9] has been acquired in this
field over the past decades, yet it remains to be particularly challenging due to partial or complete
occlusions, severe variations in scale, cluttered backgrounds, complex object motion, and real-time
processing requirements.

Recently, deep learning-based methods [7-11] have dominated this filed and achieved very
promising performances, as well as very fast speed (e.g., DaSiamRPN [12] 160FPS). Nevertheless,
most deep learning-based methods rely on training on expensive GPUs with gigantic quantities of
data. Therefore, it is still challenging and meaningful to explore efficient non-deep-learning methods.
Among most non-deep-learning methods, there exist two main methods to deal with visual tracking,
namely generative and discriminative methods. Generative trackers [13-15] handled the problem
by finding the most matched regions of the target model. Templates are mostly utilized in those
methods. Discriminative approaches [2,3,16] took tracking as differentiating the object from the
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background, which refers to a classification problem. Thanks to the development of several large
benchmark datasets, especially OTB-2015 [17], TrackingNet [18], and LASOT [19], the research on this
specific computer vision problem has gained great progress. Over those improvements, discriminative
approaches, particularly the correlation filter (CF) based trackers have exhibited very promising
performance with high computational efficiency.

The main inspiration of the correlation filter conceives in the Convolution Theorem, proving the
fact that the correlation computation in the time domain is equivalent to an element-wise multiplication
in the Fourier domain. The correlation filter was first introduced into visual tracking in 2010 by
Bolme, who proposed learning a Minimum Output Sum of Squared Error (MOSSE [1]) filter updated
frame-by-frame to represent the objective appearance and accomplish the tracking task on gray images.
MOSSE profited from the superior computational efficiency of the correlation filter to achieve a speed
of hundreds of frames per second. Furthermore, Henriques et al. [2] explored a dense sampling
strategy by approximating the sample window displacement as cyclic shifts, effectively promoting the
tracker’s discriminative power. This strategy, along with the Fast Fourier Transform constitutes the
foundation of CF-based trackers. Thereafter, powerful handcrafted features like Histogram of Oriented
Gradient (HOG [3]) and deep features [8] were integrated into the correlation filter framework and
further promoted its performance. Moreover, Danelljan et al. [20] proved that the correlation filter also
performs superior in addressing the scale variations besides translation estimation.

To adjust to unpredictable variations in the appearance of the objective during the tracking
process with little prior knowledge, both generative and discriminative trackers must update their
model online, so does the CF-based trackers. However, when encountering with blurred appearance,
inaccurate predictions, and out-of-plane rotation that cause training samples to be in misalignment,
most trackers [8,15,21] ignored this problem and updated their model continually. As a consequence,
the model drifted, eventually inducing tracking failure. Also, occlusions containing background
information, were indiscriminately updated as positive training samples and thus deteriorated the
discriminative power of the model. In visual tracking, this problem is the so-called training set
decontamination [22] or model drift.

Recently, although trackers generally neglected the decontamination problem, several works had
investigated the model drift problem in the model update phase. Bolme et al. [1] developed MOSSE to
determine whether new samples should be rejected or not based on the Peak-to-Sidelobe Ratio (PSR)
criterion. Kala et al. proposed PN [23] and defined tracking confidence as Normalized Cross Correlation
(NCC) between the tracked patch and the initial patch. Zhong et al. proposed SCM [24] and announced
an invalid tracking result if the occlusion condition of the tracking result in the new frame was bigger
than a pre-defined one. Kala et al. proposed TLD [25] and declared a failure of the tracker if the median
distance was larger than a pre-defined threshold. In similar, Supancic et al. [26] used the formalism
of self-paced curriculum learning to automatically select the correct frames and retraining the model
with these frames. Tu et al. [13] took both reconstruction confidence and occlusion into account and
proposed a multi-memory weight allocation strategy for template updating. Zhang et al. proposed
the Multi-Expert Entropy Minimization (MEEM [27]) algorithm combining multiple experts (a tracker
and its historical snapshots) and activating the restore scheme based on a designed entropy criterion.
Gao et al. tackled the problem by considering distances between all pairs of samples. Ma et al. [28]
used the naive correlation response maximum to activate the re-detection scheme, where they trained a
random fern classifier to re-detect objects. Wang et al. [29] proposed a novel criterion called average
peak-to-correlation energy (APCE) and rejected deteriorated samples if the APCE and the maximum
response of the current frame are both larger than their corresponding historical mean with pre-defined
ratios. The APCE represents the fluctuated level of correlation response maps. Similar to our method,
Hong et al. proposed Muster [30] and developed a keypoint-based method maintaining a database
to ascertain occlusions. Different from trackers adopting an explicit training sample management
component, Danelljan et al. proposed a unified formulation by minimizing a single loss over both the
target appearance and the sample quality weights to down weight corrupted samples [22].
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In summary, Since CF-based trackers all calculate the correlation response map between two
consecutive frames, it is intuitionistic to utilize this nature. Therefore these CF-based trackers either
employed the naive correlation response maximum [28] alone, a custom-designed criterion using the
response [1] or a combination [29]. Other different approaches either took advantage of a combination
of experts [23,27], or validated the tracking results under physic constraints [24,25,30].

In this work, we investigate the problem mentioned above and propose a real-time scale-adaptive
and robust tracker called locality preserving correlation filter (LPCF) to tackle this problem. Similar to
the work in Reference [30], our tracking results validation algorithm also based on feature points.
Nevertheless, our approach is different from the Muster [30], which only took the number of
matched features points between the current frame and maintained database as a tracking failure
clue. We preserve the locality containing spatial neighborhood relationships and topological structures
of the tracking bounding box center. A closed-form solution of our locality preserving approach is
derived and discussed in detail in Section 3.

The main contributions of this work could be concluded as follows.

e We extend the translation estimation component with a generic scale estimation approach,
which has shown to obtain excellent performance for addressing visual tracking scale variation.

o  We resample the feature in different sizes. Furthermore, PCA is introduced to reduce the
computational cost of the translation estimation approach and to antagonize minor disturbance.
This PCA method increases the real-time performance of the translation estimation approach
without sacrificing its robustness.

e  We derive a linearithmic complexity solution of locality-preserving tracking validation and adjust
it for the practical tracking process.

o Extensive experiments on challenging large datasets OTB-2015, TrackingNet, and LASOT are
performed. The results demonstrate that the presented decontamination method is effective
and it increases the baseline remarkably in the AUC score on all three datasets. What’s more,
the experimental results also show that the complete tracker performs approvingly against other
decontamination trackers and state-of-the-art methods.

2. Materials and Methods

In this section, our algorithm is described in detail. Firstly, we describe the kernelized correlation
filter (KCF [3]). After that, we discuss the dimensionality reduction strategy to decrease the
computational cost of standard KCF. Finally, we present an online tracking result validation scheme to
accomplish the decontamination task, as well as to prevent model drift. Figure 1 shows an overview
flowchart of our algorithm.
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Figure 1. Overview of the proposed algorithm The tracking task is decomposed into three parts,
namely translation, scale estimation, and decontamination. The position p; is infered from the
correlation response map using translation model X} ;,4}_;, and the scale s; is predicted using
scale model A;_1, B;_1. After both position and scale are estimated, the proposed keypoint-based
decontamination approach is used to choose the reliable frame to update model.
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2.1. Revisist of Kernelized Correlation Filter

Generally, the kernelized correlation filter trains a classifier from the initial frame using a single
sample z of the target appearance. Here, the sample z corresponds to features extracted from a
rectangular image patch centered around the target. In order to generate dense samples from a single
sample z, cyclic shifts are employed to approximate the search window displacement. Due to the
cyclic property, the patch wraps around on boundary positions, causing some distortion compared to
the true displacement. However, appropriate padding and windowing can mitigate this undesirable
property [3]. Thus the sample patch size is usually twice larger than the target size. The objective of
correlation filter is to learn w, attained by minimizing the L2 errors of the correlation response over
the expectable same size Gaussian function label y,

min [|w'z — y|3 + A w|?, 1)

where the non-negative constant A is the regularization parameter. Using “kernel trick” allows more
powerful, non-linear regression function. Here KCF [3] uses Gaussian kernel. According to Representer
Theorem, the alternative representation « is said to be in the dual space, as opposed to the primal
space w, Equation (1) can be written as

n
n}xm|| Y ik (z,%) — y|3 + Aa"Ka, ()
i=1

where k(z, x;) is the kernel function of testing sample z between all training examples x; and K is the
positive semi-definite kernel matrix with K;; = k(x;, xj) as its elements.

Equation (2) can be solved efficiently using Discrete Fourier Transform (DFT) to transfer into the
Fourier domain. The closed-form desired filter « is given by

p=—7 3)
kx + A
where the hat denotes the DFT result, K** denotes kernel function of training examples x between itself.
In the tracking step, the position estimation is achieved on the same size sample z in a fresh frame by
calculating the response map as

R=F"1 (k ® &*) ) 4

where © denotes the elementwise product and x*, a* is the learned target model. The translation
vector from last frame to current frame is then estimated using the index of the maximum value of
response scores. The model is updated by linear combination in the Fourier domain

%= (1-0)%_q + 0% ©
&F = (1—0)a}_ + Oay.

2.2. Proposed Approaches

2.2.1. Dimensionality Reduction Strategy

Standard KCF only estimated the displacement of the target between two consecutive frames.
However, scale variations are such a common circumstance over visual tracking. We incorporate
scale estimation with standard KCF by adopting a scale search strategy proposed by Reference [20].
However, the scale-estimation extension although handles scale variations robustly but still sacrifices
some real-time performances. Thereafter, inspired by the work of Reference [20], we extend the same
sub-grid responses interpolation and feature dimensionality reduction scheme for standard KCF.
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According to Danejjan [20], the computational cost of the CF-based trackers is determined by
the number of FFT computations. Thus, to reduce the required number of FFT operations, we extend
standard KCF with the standard PCA. Similar to Reference [20], we update the target template using
uy = (1 —0)us_q1 + x4, then use this compressed sample to generate the projection matrix P; by
minimizing the reconstruction error of the target template u;.

’ut(n) —PtTPtut(n)Hz. (6)

Then the filter is updated as
XF = F{Pix}, (7)

where F denotes the FFT operation. In our kernelized case, we update the art using (4) and (5).

2.2.2. Decontamination

The absolute Euclidean distance between two feature points extracted from the same target
can vary significantly under viewpoint changes or non-rigid deformations in two adjacent frames
of one tracking target. Nevertheless, according to the consecutive nature (only restricted change
occurred between continuous frames) of visual tracking, the spatial neighborhood relationship among
feature points is generally well preserved due to physical constraints. The right bounding box
center represents the physic center of the tracking target, which naturally keeps consistent in two
adjacent frames. Therefore, we consider that the pair of putative center correspondence between two
consecutive frames is also a ‘virtual” feature pair.

Since we consider the pair of centers is also a ‘virtual” feature pair, inspired by the LPM [31],
we can verify whether the centers pair is an outlier or not. Considering Z = {x;,y;}, C = {c1,¢c2},
S = {I, C } where ¢4, ¢ and x;, y; are 2D vectors containing coordinates of centers and feature points.
Because the spatial neighborhood relationship is preserved, so if the C is a unknown pair, and the Z is
the correct feature correspondences. The optimal solution is

I*,C* — argn‘gnC(I;C;S/W)/ (8)

with the cost function C defined as

1
CTCSM=5p | L @lex)—dleay)’ + Y (d(ax)-d(ey))
i‘XiGNcl i‘YieNCZ

)
+Y0 Y [@ox) —dyy)® + X (d0ax) —d(yiy))) | +n(N=IZ] - c]),

i€l jlx;eNx; jly;j €Ny,

where J\/X,Ny denotes the neighborhood contains K nearest Euclidean neighbors of point x,y,
respectively. The first term uses 1/2K to normalize the contribution of each element in the
neighborhood, and the second term discourages the outliers. Then use the positive coefficient %
to balance the two terms.

When we consider the 7 is all inlier sets, which means we suppose the feature points extracted
from two frames matched perfectly. Thanks to the outstanding work of RANSAC [32], it is easy to get
a refined feature correspondence set Z. Therefore (9) can be simplified as

C(I;C;S/W)—;K< Y. (@d(exi) —d(ey) + ) (d(clrxi)_d(CZ/Yi))z)+77(1_|C|)~ (10)

i\x,E/\/cl l"y,Ech
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We associate the putative centers pair with a label p, where p € {0,1} represents tracking correctness.
Inspired by the LPM [31], we also make a binarization operation as:

0, i Nc 0, i Nc
d(clrxi) = { 1 ); Z Nl 7 d(CZIYi) = { 1 z ZNZ (11)
7N C1 r X1 Co-

So with this definition in (11), we consider
Y. (d(ci,x;) —d(cayi))’ = Y d(ca,y:)? + Y. d(c2,y:)?
ixeNe, ilxi€Ne, yieNc, iIx;€Nc, yitNc,
= 0+ number(i | x; € N¢,,yi € Ng,)
= K —number(i | x; € N¢,,yi € Ng,)

:K—Tli: 2 d(Cl,Xl‘)Z
ilyieNc,

(12)

where number(.) indicates element numbers, and #; refers to the number of same elements in two
neighborhoods N, and N, .
So the cost function in (10) can be simplfied as follows using (12).

Cp:sm =% ¥ dleay)’+11-p). 13)
i|xi€./\/c1

The cost function derived above only models the distance yet ignores the topological structure.
So we design another cost term to ulteriorly utilize the consistency of the neighborhood topology.
Because the putative center correspondence c;, ¢; is a virtual feature match and thus does not share the
same motion with other true feature matches, especially in a rotation case. So when encountering with
tracking failure validation, we model the relative vectors v;, between the center ¢ and the feature points
f; rather than the corresponding displacement vector between a putative match (x;, y;) employed by
the LPM.

Let vy;, vp; denote the relative vectors of ¢1, x; and ¢, y; respectively. We specify the consistency
of neighborhood topology using the length ratio and the angle between vy; and vy; .

min {d (c1,x;) ,d (e2,yi) } (v1i, v2i)
s (v, Vo) = . , 14
(Vi vai) max {d (c1,%;),d (c2,y;)} d(c1, %) d(c2,y;) (14)
also we quantize the distance into two levels to adapt to the scale variation and orientation.
4 (viiv) = 0,5 (Vii,v2i) > T (15)
Lir i 1,s (Vli/ VZi) <T.

With the above definition, the cost function in (13) can be renew as:
C(p;S,n,7) = % Y d(eyi) + Y d(vii,voi) | +7(1=p). (16)
i|X,‘€NC1 i|xi€NC1rYiENC2

Using a fixed K is not a solution for the general tracking failure detection problem. So we obtain a
set of neighbors size K = {K;, }M_,. And the (16) becomes

M

1
) o Y d(cyi) + Y d(vi,vai) | +1(1—p), (17)
i\x,-eNCl i‘X,ENcl,in./\fcz
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where 1/ M normalizes the effort of each level of the neighborhood. To optimize the final objective
function (17), we replace the complex form derivation with a simple form and obtain:

% .
C =
=1 MK,

Y, d(cy) + Y d (V1i, v2i) (18)
ilxi€Nc, ilx;€Ng, yi€Nc,

and therefore, the final objective function should be:
Clp:S, A1) =plc—A)+1. (19)

The cost value c can be calculated in advance, and hence the solution of this objective function is

1, c<y
p— 2
p {0, =y (20)

and so far, the tracking failure is determined by the p value.

In real tracking practice, we evaluate the confidence c;, c;;, of fi_5, f;_1 between f; respectively.
Then fuse them using ¢ = Bc; + (1 — B)c where B denotes weight. Thus the tracking failure is
determined by the ¢ > B. The proposed method overview is summarized in Algorithm 1.

Algorithm 1 Proposed tracking algorithm

Input
Image f;, Previous target state (p;_1, 5;—1).
Translation Model X}_;,&}_;, Scale Model A; 1, B;_;.
Output
Estimated state (p;, st), Translation Model X}, &7, Scale Model A, B;.
repeat
// Translation estimation
Extract sample z; from f; at p;_1 and s;_.
Do feature dimensionality reduction.
Compute response map R; and estimate p; using (4).
// Scale estimation
Estimate s; according to Reference [20].
// Decontamination
Extract SURF feature points set S; from f; at p; and s;.
Compute the tracking derivation ¢ using S, S¢_1, S¢—s.
// Model update
Extract sample z; from f; at p; and s;.
Do feature dimensionality reduction.

if c > 7T then
Update the translation model X}, &} using (5)—(7).
end if

Update the scale model Ay, By [20]
until (the sequence ends)

3. Results and Discussion

3.1. Implemental Details

We implement the developed algorithm by primal MATLAB without any optimization. All the
experiments are conducted on an Intel 17-7700HQ CPU@2.89GHZ with 16GB RAM. The learning rate



Sensors 2020, 20, 6853 8 of 18

0 of the update scale model and appearance model is set to 0.01. The padding, Gaussian variance o
and regularization parameter A is set to 2, 0.1 and 0.01 respectively. The parameter 7, #, K, § used in
tracking validation is set as 0.9/0.8, 0.8, [4, 6, 8], 0.6 respectively. Similar to Fast Discriminative Scale
Space Tracker (FDSST [20]), 33 number of scales with a scale factor of 1.02 is used in the scale model.
The HOG cell size is 4 x 4, and the orientation bin number of HOG is 9.

For OTB-2015 results, We report our approach performance under the OTB-2015 protocol with
OPE (one-pass evaluation), TRE (temporal robustness evaluation), and SRE (spatial robustness
evaluation). For further information, we recommend the paper of OTB-2015. We also report our
approach performance under the LASOT and TrackingNet protocol.

3.2. Baseline Experiments

In this work, we accomplish the simple integration of standard KCF and FDSST at first.
Then we investigate the feature dimensionality reduction strategy using Principle Component
Analysis (PCA). Additionally, we further extend the tracker with the proposed locality preserving
the tracking validation component. We name the three stages of our tracker as KCF+FDSST,
PKCF+FDSST, and LPCE, respectively. Then we report the results on OTB-2015 (100 sequences)
and LASOT (280 sequences), using the area-under-the-curve (AUC) denoting the overall performance
in Figure 2. For more detail analysis, we also report the tracking performance on OTB-2015 using
frame-per-second(FPS), distance precision at 20 pixels and mean overlap precision computed as the
percentage of frames where the intersection-over-union (IOU) overlap with the ground-truth exceeds a
threshold of 0.5, in Table 1.

Table 1. Comaprison with basline trackers in distance precision (DP) at a threshold of 20 pixels,
mean overlap precision (OP) at a threshold 0.5 of OPE evaluation, and mean frame-per-second (FPS) of
100 sequences. The best results and second highest values are highlighted by bold and underline.

Name KCF [3] FDSST [20] KCF+FDSST RKCF+FDSST PKCF+FDSST LPCF (Ours)

OP (%) 54.6 67.2 60.5 63.5 70.2 75.3
DP (pixel) 68.8 72.5 66.9 71.2 753 78.9
Speed (FPS) 154.6 52.7 53.7 445 59.4 30.3

Table 1 shows that although the simple integration of standard KCF and FDSST improves
performance in the OP term with a gain of 3.9%, compared to standard KCEF, but it sacrifices precision
and real-time performance with a decrease of 1.9% and 66%. KCF only uses the initial padded size
to extract features, hence the naive incorporation of a scale estimation component will not achieve
competitive performances. Therefore, we implement a resize KCF with FDSST, named RKCF+FDDST,
which resizes the image patch of the newly estimated size into the initial size. And this strategy is
inspired by the work of SAMF [33].

Figure 2 shows that the resize strategy improves the KCF+FDSST significantly with a gain of
3% and 4.3% in the OP and DP terms, while improves the overall performance with a gain of 2.4%
on OTB-2015 and 0.2% on LASOT. However, the resize strategy further increases the computational
burden leading to a 20% decrease of FPS. And it inevitably induces distortion of images for resizing
all of them into the same initial size, especially when encountering large scale variations. Therefore,
we investigate the PCA approach not only to enhance the computational efficiency but also to extract
the principal component to mitigate the distortion problem. The figure proves that this strategy is
effective and efficient. Besides, the strategy achieves a gain of 7.1%, 1.7% against KCF+FDSST and 4.7%,
1.5% against RKCF+FDSST in the AUC score on two datasets. What's more, our final tracker (LPCF)
equipped with training sets management component, achieves an overall performance gain of 3.6% and
2.7%, contrasted to the baseline tracker without this component. Benefiting from our well-established
closed-form derivation along with the PCA approach mentioned above, our tracker still achieves
real-time (30.63 FPS), while still suffers from the high computational burden of feature extraction.
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Figure 2. The success plots of OPE on OTB-2015 (Left) and LASOT (Right). The numbers in the legend
indicate the area-under-the-curve (AUC) score. The code of KCF and FDSST is provided by the original
authors. The LASOT pre-computed results of KCF and FDSST are provided by the LASOT authors.
We recommend checking this figure in color.

TrackingNet [18] contains 511 videos collected from the YouTube website. The evaluation results
of our baseline trackers are shown in Table 2. Our approach remarkably improves the AUC score
(success in Table 2) with a gain of 7.2% against KCF, which demonstrates the generalization ability and
effectiveness of our approach.

Table 2. Comparison with baseline trackers on the test set of TrackingNet (511 sequences) in terms of
precision, normalized precision and success (AUC). The best results and second highest values are
highlighted by bold and underline.

Name KCF FDSST KCF+FDSST RKCF+FDSST PKCF+FDSST LPCF (Ours)
Precision (%) 42.14 42.64 40.09 41.32 42.14 46.25
Norm. Precision (%) 55.13 54.57 52.67 53.66 56.13 58.80
Success 45.24 49.69 47.69 48.45 50.67 52.44

3.3. Comparison with Other Decontamination Trackers

We performed a comprehensive comparison with 8 decontamination trackers: MOSSE [1],
SCM [24], TLD [25], MEEM [27], LMCEF [29], LCT [28], Muster [30], SRDCFDecon [22], LCT+ [34].
Other three trackers PN [23], TCMA [13] and SPLTT [26] mentioned above are not accessible to their
source code or OTB-2015 results, so we do not present them in this comparison. Although Ma et al.
further extended LCT [28] into LCT+ [34] by integrating more features but keep its re-detection scheme,
so we also compared our approach with it.

A comparison with decontamination trackers on the OTB-2015 is shown in Figure 3. For details,
we recommend checking the figure in color. Among the compared tracking algorithms, SRDCFDecon,
LMCEF, and Muster provide the best results with AUC scores of 62.7%, 58.0%, and 57.5%, respectively.
Our algorithm performs the second results with an AUC score of 61.0%. Nevertheless, our method
performs superior in speed and can run at 30.63 FPS, which meets the real-time requirements,
whereas SRDCFdecon can only run at 2.7 FPS. And our training sets management method significantly
improves our baseline tracker with an increase of 3.6% AUC score, yet SRDCFdecon only improves its
baseline tracker with an increment in 1.1% AUC score.

To demonstrate the robustness of our tracker, we follow the protocol of OTB-2015. The robustness
is evaluated using SRE and TRE. The first criterion SRE shifts the bounding boxes to initialize the
tracker at different locations. TRE splits a video into several fragments to initialize the tracker at
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different frames. We present the success plots for SRE and TRE in Figure 3. In both cases, our algorithm
achieves robustness. It leads to a coincident performance promotion in both cases.
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Figure 3. The success plots of OPE, TRE, SRE on OTB-2015. Decontamination trackers are presented at
this figure. The numbers in the legend denotes the average AUC scores for success plots. The FPS is
also shown in the legend.

3.3.1. Comparison with State-of-the-Art Trackers

Results on OTB-2015: For further illustrate performances of our tracker, we compare our
tracker to 17 SOTA trackers on OTB-2015: LCT+ [34], LMCF [29], KCF [3], FDSST [20], SRDCF [5],
staple [21], LCT [28], Muster [30], MEEM [27], CNN-SVM [35], DLSSVM [36], SCT [37], SAMF [33],
CFNet [8], SiamFC-3s [6], ACFN [38]. Among these trackers, CNN-SVM, CFNET, SiamFC-3s,
ACEN are deep-learning-based trackers. The comparison results are shown in Figure 4. Furthermore,
a speed-accuracy plot (Figure 5) is also presented for further illustrate performances of our tracker.

Figures 4 and 5 demonstrate the performance of LPCF with 17 SOTA trackers. Although presented
LPCF scores the second following the SRDCFDecon tracker on the AUC score, the tracking speed is
ten times faster than SRDCFDecon from its reported results at about 2.4 FPS, which severely restricts
its application. Muster is the most related approach to LPCF due to a similar keypoints-based method.
But LPCF performs superior of it on both overall and real-time performance because of our effective
method of evaluating tracking failure and mitigating the distortion of resizing. Moreover, LPCF only
utilizes a handcrafted feature HOG, whereas still performs favorably in both evaluations against SAME,
LCT+, and SRDCF fusing several features. Additionally, CENet, SiamFC-3s, and ACFN exploiting
deep features or designing deep structure also cannot compete with our tracker.

Success plots of OPE
1 T T T T T

SRDCFdeoon [0.627]
LPCF (Qurs) [0.610]
= SRDCF [0.598]

— CFNet [0.586]
SiamFC-3s [0.582]
LMCF [0.580]

staple [0.578]

Muster [0.575]

ACFN [0.573]

LCT+ [0.562]

04t CNN-SVM [0.554]
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0.1} LCT [0.527]

==  =KCF [0.477]

0.9
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07
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o " " " L " T
o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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Figure 4. The success plots of OPE on OTB-2015. The numbers in the legend indicate the AUC scores.
Our approach LPCF (marked as green square) shows its competitive performances against other
state-of-the-art trackers with 61.0% score.
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Results on LASOT: We also compare our tracker to 47 SOTA trackers on LASOT. The 47 SOTA
trackers are DiMP [10], GlobalTrack [39], DasiamRPN [40], ATOM [9], SiamRPN++ [41], SiamMask [42],
C-RPN [43], SPLT [44], MDNet [45], VITAL [46], GFSDCF [11], SlamDW [47], D-STRCF [48], STRCF [48],
ASRCEF [49], SiamFC [6], StructSiam [50], DSiam [12], ECO [7], ECO_HC [7], CENet [8], BACF [51],
TRACA [52], MEEM [27], HCFT [53], PTAV [54], SRDCEF [5], CSRDCF [55], Staple [21], Staple_CA [56],
SAMF [33], LCT [28], Struck [57], TLD [25], DSST [4], FDSST [20], ASLA [58], SCT4 [37], KCF [3],
CN [59], CT [60], LIAPG [61], CSK [2], MIL [62], STC [63], IVT [64]. Among the 47 trackers, 8 same
trackers (KCF, LCT, FDSST, SRDCEF, Staple, MEEM, SAMF, CFNet) are reported for comparison of two
different datasets. The total comparison results are shown in Figure 6. We also report comparison
results with 26 non-deep-learning trackers in Figure 7 and several state-of-the-art deep learning-based
trackers in Table 3.

Speed-Accuracy for each tracker on OTB-2015
T T T

T
=e=SRDCFdecon

LPCF (Ours)
A m——SRDCF

Ours = CFNet
==SiamFC-3s
. LMCF H
=4=staple
° =he=\uster
A ACFN
=»=LCT+
=€=CNN-SVM
=#=FDSST
SAMF

* * * == DLSSVM
e MEEM
“h=SCT

LCT
05— real time *KCF

AUC Score
A

Speed FPS

Figure 5. Speed and accuracy plot of state-of-the-art visual trackers on OTB-2015. The proposed LPCF
algorithm achieves the best accuracy among all real-time (faster than 25 FPS) trackers.

Table 3. Comparison with deep learning-based trackers on the test set of LASOT (280 sequences) in
terms of speed and success (AUC). The best results and second highest values are highlighted by bold
and underline.

Name LPCF (Ours) Dsiam MDNet SiamRPN++ HCFT ATOM SiamMask VITAL ECO

Speed (FPS) 30 18 <1 21 10 30 22 <1 7
AUC (%) 249 33.3 39.7 49.5 25.0 49.9 46.7 39.0 324

Figure 6 shows that our proposed tracker achieves a 24.9% AUC score. Figure 7 illustrates
that our tracker achieves the second accuracy among all listed state-of-the-art real-time trackers.
What’s more, Table 3 shows some comparison results of our tracker and some state-of-the-art deep
learning-based tracker. Our tracker runs at 30 FPS, while HCFT, MDNet, VITAL, and ECO all suffer
from the high computational burden leading to no real-time speed. It is worth emphasizing that most
deep learning-based trackers require expensive GPUs (e.g., RTX1080Ti) to train their models. However,
not all researchers could afford this type of equipment, so our approach that uses an affordable CPU to
run is still meaningful.
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Success plots of OPE on LaSOT Testing Set
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Figure 6. The success plots of OPE on LASOT. The numbers in the legend indicate the AUC scores.
Our approach LPCF achieves 24.9% in terms of AUC score.
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Figure 7. Comparison with 26 non-deep-learning trackers. Our proposed tracker LPCF (marked as red

circle) achieves the second accuracy among all real-time (faster than 25 FPS) trackers.

Results on TrackingNet: We evaluate our tracker on TrackingNet and report results on Table 4.
The results show that our tracker achieves a 52.4% AUC score, which is comparable with some deep

learning-based trackers (ECO 55.4% and CFNet 57.8%).

Table 4. Comparison with state-of-the-art trackers on the test set of TrackingNet (511 sequences) in

terms of precision, normalized precision and success (AUC). The best results and second highest values

are highlighted by bold and underline.

Name LPCF (Ours) CFNet MDNet ECO DaSiamRPN SiamRPN++
Precision (%) 46.3 53.3 56.5 49.2 59.1 69.4
Norm. Precision (%) 58.8 65.4 70.5 61.8 733 80.0
Success 524 57.8 60.6 55.4 63.8 73.3
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3.3.2. Qualitative Evaluation

Figure 8 shows a qualitative comparison with the baseline KCF [3] and several state-of-the-art
trackers SRDCF-decon [22], LMCF [29], LCT+ [34], ACEN [38], Muster [30] on eight challenging
sequences. Among these eight videos, most main challenges present. The detail of challenges of
these sequences are conducted in Table 2, and contain: scale variations (SV), occlusions (OCC),
background clutter (BC), low resolution (LR), out-of-plane rotation (OPR), in-plane rotation (IPR),
deformation (DEF) and out-of-view (OV). We also report the length of each sequence (L) in Table 5.

. Ours s [CT+ s KCF e Muster C——1 LMCF s ACFN B SRDCFdecon

Figure 8. Tracking screenshoots of six state-of-the-art trackers and our tracking algorithm on 8
challenging sequences from OTB-2015 (from left to right and top to down are Box, Carl, ClifBar,
Couple, Freeman4, Jogging_2, Lemming and Panda, respectively). The number in top left corner
denotes frame index. Our algorithm is marked as red, we recommend checking this figure in color and
amplification mode.

Table 5. Challenges of the experimental sequences.

Name SV OCC BC LR OPR DEF IPR OV L

Bx v v v v - v v/ 1a
Carl J - v - - - - 1020
ClifBar Vv Vv v < - - - Vv v, 472
Couple v V4 - V4 Vv - - - 140
Freeman4 / V4 - - Vv - V4 - 283
Jogging 2 -/ - -V V- - 307
Lemming +/ Vv - - Vv - - v 1136
Panda 4 vV - Vv vV 4 Vv v/ 1000

The baseline KCF only estimates the translation of the objective between the current frame and
the previous frame yet keeps the scale all the same during the whole tracking process. Although KCF
(marked as blue) has achieved some promising performances in normal situations such as the first
500 frames of Carl (Top right corner in Figure 8), yet finally loses its objective due to no scale adaption
scheme. In contrast to KCE, our method (marked as red) presents a much favorable performance when
encountering with huge scale variations in a particular sequence (Car1) as well as other challenging
videos (Couple, ClifBar). Additionally, occlusions, one of the most difficult issues of visual tracking,
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always appear in the real-world, and presents a great challenge for all trackers. For example, seven of
eight videos in this evaluation contains occlusions, particularly Jogging 2, Box, and Lemming where
nearly the whole target are blocked in frames 50-58, 459-480 and 335-376, respectively. However,
after the complete occlusion occurrence, our algorithm (LPCF) successfully differentiates the target
from the clutter background, which can be seen in frames 60, 484, and 376, respectively. It deserves
stressing that KCF updates the model frame-by-frame, inducing undesired inclusion of occlusions
information. As a consequence, KCF loses its discriminative power and tracks the wrong target,
occlusions instead.

The attentive reader may notice that ACFN (marked as gray) can distinguish the objective after
occlusions without any decontamination approaches. ACEN, benefiting from its deep attentional
network that selects a bunch of associated correlation filters, detects the target more frequently and
robustly. Besides, other trackers listed in this evaluation all employe a scheme selecting training
sample sets, which helps to improve their abilities against occlusions, background clutter, and other
competitive attributes. Furthermore, SRDCFdecon achieves better overall performance (62.7%
AUC score) than ours (61.0% AUC score), shown in Figure 4. The superiority of SRDCFdecon is
demonstrated in most videos listed in Figure 8. This is because SRDCFdecon is developed based on
SRDCF that integrates a spatial regularization component to alleviate the boundary effect. Although the
spatial regularization scheme increases the discriminative power of the learned model but can not
handle the out-of-plane rotation problem, shown in ClifBar 164th frame and Panda 200-900th frames.
Compared to SRDCF and SRDCFdecon, our method LPCF utilizes the proposed tracking results
validation scheme to reject those samples corrupting the discriminative power of our model more
effectively and train our model using principal components of extracted samples that promotes the
abilities against subtle disturbance, therefore successfully keeps tracking the objective (Panda).

In summary, our method performs favorably could be attributed to three reasons. (1) the tracking
results validation scheme selects corrupted samples effectively; (2) the PCA strategy employed in
our algorithm extracts the principal component of the training sample and significantly improves the
abilities against subtle disturbance; (3) the scale estimation framework integrated with PCA strategy
handles scale variations robustly.

4. Conclusions

In this paper, we offer a real-time, scale-adaptive, and robust tracker for visual tracking.
To adapt to scale variations, we employ a generic scale estimation approach. Then we introduce
a dimensionality reduction strategy to improve real-time performance and antagonize minor
disturbance. Moreover, for the sake of preventing model drift induced by corrupted training samples,
a locality preserving tracking validation method is proposed to ensure updating with proper training
samples. Extensive experimental results on three large-sacle datasets demonstrate that the proposed
decontamination method is effective, and the complete tracker performs favorably against some
state-of-the-art methods and most existing decontamination trackers. Furthermore, it is worth
emphasizing that the presented tracker not only performs favorably but also runs at a 30.63 FPS
speed, which is sufficient for real-time applications.
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