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The V-Akt Murine Thymoma Viral Oncogene Homolog 3 (AKT3) gene is of the serine/threonine-protein kinase family and
influences the production of milk fats and cholesterol by acting on the sterol administrative area restricting protein (SREBP).
The AKT3 gene is highly preserved in animals, and during lactation in cattle, its expression increases. The AKT3 gene is
expressed in the digestive system, mammary gland, and immune cells. A phylogenetic investigation was performed to clarify the
evolutionary role of AKT3, by maximum probability. The AKT3 gene sequence data of various mammalian species was evident
even with animals undergoing breeding selection. From 39 mammalian species studied, there was a signal of positive
diversifying selection with Hominidae at 13Q, 16G, 23R, 24P, 121P, 294K, 327V, 376L, 397K, 445T, and 471F among other
codon sites of the AKT3 gene. These sites were codes for amino acids such as arginine, proline, lysine, and leucine indicating
major roles for the function of immunological proteins, and in particular, the study highlighted the importance of changes in
gene expression of AKT3 on immunity.
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1. Introduction

An evolutionary study provides an understanding of the
genetic development occurring across species. Often a soli-
tary ancestor is responsible for the initiation genetic variation
within a population. Speciation, common descent, and natu-
ral selection are the main features of evolutionary process.
This is understood and explained by various branches of
biological sciences including genetics, paleontology, and
ecology. Recently, research has become more focused on
understanding the evolutionary process of life during the var-
ious phases of evolution. In particular, the research is con-
cerned with evaluating genetic diversity, understanding the
heritability of important traits, reasons for the molecular evo-
lution, and the ability of genes to contribute through breed-
ing selection, biogeography, and genetic drift.

The field of evolutionary research stimulates research
into the evolution of cooperation, ageing evolvability [1], spe-
ciation [2], and sexual reproduction [3]. Evolutionary biol-
ogy helps us to understand gene function and the processes
of genetic variation and gene transfer including the study of
point mutations, gene and genomic duplication, heritability
rates, probability, and genome-wide associations [4]. The
focus of molecular evolution is to consider those genes
that are associated with advantageous traits and their abil-
ity to be disseminated through a population via selective
breeding [5].

The AKT family of genes has a role in mammary gland
growth, lactation, and mammary degradation, and their iso-
forms are candidate genes for milk production [6]. The
AKT gene family is involved in a diversity of genetic pro-
cesses including cell propagation, differentiation, angiogene-
sis, apoptosis, tumor genesis, metabolism, cell endurance,
development, glycogen synthesis, and glucose uptake [7, 8].

Mammalian cells contain three genes that encode for
three isoforms of AKT, namely, AKT1 (PKBα), AKT2
(PKBβ), and AKT3 (PKBγ). All Akt isoforms contain a N-
terminal administrative pleckstrin homology (PH) area, a
focal kinase domain with serine/threonine explicitness, and
a C-terminal hydrophobic space [9]. The AKT3 gene is a
constituent of the serine/threonine protein kinase family
and has a function in controlling fat and cholesterol compo-
sition in the milk by modifying the action of the sterol
administrative component restricting protein. The expres-
sion of AKT3 is highly variable in mammals. The AKT3 is
highly expressed in the digestive system followed by the
mammary organ and is also expressed in immune cells. It is
associated with the TLR pathways as adequately as proin-
flammatory cytokines [10]. AKT3 is highly expressed in
immune cells and contributes to immunity processes [11].
During lactation in cattle, the expression levels of AKT3 were
increased [6].

The expression of AKT3 is found in low levels all through
the human body [12], but AKT3 is the least measured iso-
form. However, the AKT3 gene has a putative oncogenic
function given that is overexpressed when there is high enzy-
matic action in the endoplasmic reticulum of malignant
breast cells [13]. The ongoing recognizable proof of somatic
mutations of AKT3 including MAGI3-Akt3 and Akt3E17K

in various malignancies likewise focuses on the significant
role of this isoform in tumorigenesis [14]. AKT3 was the
most enhanced isoform in numerous malignant growths,
cancer, including GBM, ovarian, melanoma, endometrial,
and breast cancer (O’Hurley et al., 2014; [13]).

Positive selection produces variation in phenotypes
among animals and is a mechanism for disseminating favor-
able genes in a population. The goal of this study was to
investigate and determine selection markers utilizing a max-
imum likelihood probability approach for the distinction of
molecular genetics of AKT3 among mammalian species
and provide information regarding the applicability of
marker assist selection in the diverse species.

2. Material and Methods

2.1. Dataset Preparation and Sequence Analysis. Publically
available gene banks such as Ensembl (http://useast
.ensembl.org/index.html), NCBI (http://www.ncbi.nlm.nih
.gov/genbank), and UniProt (http://www.uniprot.org) were
considered, but the NCBI database was used for coding the
nucleotide and amino acid sequence of AKT3 for recovery
and data analysis. The alignment of the sequences was per-
formed with the help of Clustal Omega, in the MEGA 6.0
program [15]. Maximum likelihood methods were used to
devise the phylogenetic tree within MEGA 6.0 for the AKT3
gene. Bootstrapping provided 1000 replicates for the cluster-
ing of taxa. The log likelihood of the topology and branch
length indicated the number of substitutions per site [16,
17]. The species were identified by their accession number
and their mRNA and protein accession numbers as listed in
Table 1. The NCBI gene bank accession numbers for the
mammalian gene AKT3 datasets were used for testing our
hypothesis to construct various datasets.

2.2. Analysis on the Bases of Codon Core Positive Selection.
The present study was designed to study and investigate the
molecular basis of evolution and the effect of positive selec-
tion of AKT3 by analyzing the codon and sequence of
AKT3 and comparing the dN/dS ratio of ω for twomaximum
likelihood approaches [18, 19]. Software tools utilised were
DATAMONKEY (http://www.datamonkey.org/) in con-
junction with the HyPhy package [20].

The analyses are completed in two steps. The 1st step was
to find out the maximum likelihood ratio test for positive
selection, where ω > 1 indicates the sites of expression. Two
models were represented in each analysis by comparing its
different sites with ω > 1 are (null), while the other is discrete
general [16, 21] where the distribution of X2 compared with
DF = 4 is the likelihood log (2Δ1). When the M7model (null)
is used, the interval is assumed to be between 0 and 1 with ω
restricted and a β distribution. The alternative was a M8
model where the ω value is greater than 1 and obtained from
the dataset. The rates of synonymous and nonsynonymous
variation were used to calculate and identify positive selec-
tion of the AKT3 gene. Using the fixed effect tests of different
likelihood of sequences aligned for each site, Ahmad et al.
[21] reported the various likelihood programs as random
effect likelihood (REL), single likelihood ancestor counting
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methods (SLAC), and FEL likelihood, to approximately
investigate the values globally of ω. Only those sites common
in all tools were selected. The REL used 95% confidence
interval for positive site selections perceived and used Bayes
factor values > 20. The other analysis measured values of sig-
nificance was p values < 0.05. Many sites were identified at
p < 0:05 in different genes by the various software platforms.

The second step was to use likelihood tests to confirm the
amino acid availability. Bielawski and Yang [22] reported
that ω for different classes were used to estimate and investi-

gate for each site of the posterior probabilities inferred by
using Bayes theorem. The amino acid residues considered
as being under selective pressure had a higher value and
probabilities of ω > 1. Kelley and Sternberg [23] reported
the Phyre and Swiss models (http://www.sbg.bio.ic.ac.uk/
phyre2/html and http://swissmodel.expasy.org), and positive
selection was assessed by amino acid location using crystal-
line structure. Glaser et al. [24] reported the bioinformatics
tools that were used to predict and find out the protein in
which the conserved evolutionary amino acid/nucleic acid

Table 1: List of species and accession number of the NCBI gene bank database, which was used for the hypothesis testing.

S. No. Species Accession number mRNA accession number Protein accession number

1 Human NM_005465.4 NM_006642.5 NP_859029.1

2 House mouse NM_001357390.1 XM_030253917.1 XP_030109770.1

3 Norway rat XM_006250322.3 XM_006250321.3 XP_006250383.1

4 Chimpanzee XM_016934876.1 XM_016935457.2 XP_016791361.1

5 White-tufted-ear marmoset XM_017966707.1 XM_008985727.2 XP_008983976.1

6 Cattle NM_001191309.1 XM_024975966.1 XP_024831736.1

7 Painted turtle XM_008170470.2 XM_008170470.2 XP_008168692.1

8 Sheep XM_012187897.2 XM_027975583.1 XP_027831384.1

9 Rhesus monkey NM_001266640.1 XM_028845179.1 XP_028701012.1

10 Damara mole-rat XM_010642598.2 XM_010642597.2 XP_010640900.1

11 Chinese tree shrew XM_014591111.1 XM_006157219.3 XP_014446597.1

12 Water buffalo XM_006045843.1 XM_025285185.1 XP_006045905.1

13 Domestic ferret XM_004756776.2 XM_004756776.2 XP_012913885.1

14 Chinese hamster XM_003508130.3 XM_003508130.4 XP_016833997.1

15 Miniopterus natalensis XM_016201398.1 XM_016201398.1 XP_016056884.1

16 Egyptian rousette XM_016151253.1 XM_016151251.1 XP_016006738.1

17 Sooty mangabey XM_012036298.1 XM_012036296.1 XP_011891692.1

18 Chinese soft-shelled turtle XM_006135202.2 XM_014579588.2 XP_014435074.1

19 Cheetah XM_015072881.1 XM_027046229.1 XP_026902031.1

20 Domestic cat XM_023247428.1 XM_011290838.3 XP_023103194.1

21 Giant panda XM_011223567.2 XM_011223567.2 XP_011221869.1

22 Green monkey XM_007989961.1 XM_007989964.1 XP_007988151.1

23 Gray short-tailed opossum XM_016429466.1 XM_016429466.1 XP_007481609.1

24 Long-tailed chinchilla XM_005374760.2 XM_005374760.2 XP_005374816.1

25 Naked mole-rat XM_004853513.3 XM_021265539.1 XP_004853570.1

26 Northern white-cheeked gibbon XM_012506588.1 XM_030812582.1 XP_030668452.1

27 Przewalski horse XM_023632779.1 XM_008526929.1 XP_008525153.1

28 Prairie vole XM_005369606.2 XM_026779836.1 XP_013202436.1

29 Pacific walrus XM_012562385.1 XM_004400462.2 XP_012417839.1

30 Pig-tailed macaque XM_011729484.1 XM_011729486.1 XP_011727791.1

31 Sumatran orangutan XM_009248019.1 XM_002809243.4 XP_024089808.1

32 Wild Bactrian camel XM_014559995.1 XM_006185561.2 XP_006185623.1

33 Western European hedgehog XM_007534664.1 XM_007534656.2 XP_007534733.1

34 Weddell seal XM_006740006.1 XM_031035272.1 XP_006740067.1

35 American beaver XM_020163460.1 XM_020163460.1 XP_020019049.1

36 Australian saltwater crocodile XM_019549778.1 XM_019549778.1 XP_019405323.1

37 Koala XM_020982080.1 XM_020982083.1 XP_020837737.1

38 Olive baboon XM_017958504.2 XM_003893690.3 XP_017813935.1

39 Zebra fish NM_001197201.2 XM_001923419.7 XP_001923454.3
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level and position are found and on which the sequence phy-
logenetic relationships were based. Also, the ConSurf server
link (http://consurftest.tau.ac.il) was used to predict and find
the proteins in which amino acids and nucleic acids had been
conserved through evolution (reference). The selection pres-
sure was used to identify important codon sites. The Selec-
tion version 2.2 (http://selecton.tau.ac.il/) was used for
sequence codon alignment of AKT3. Yang et al. [25] reported
that Bayesian inference methods supported by maximum
likelihood test were used accurately to measure the ω ratios
of various codon-aligned sequence shifting.

2.3. Analysis of Protein-Protein Interaction Network. Analysis
of the protein-protein interaction network is also crucial for
further understanding of the AKT3molecular function. Gene
interactions with AKT3 were predicted using the special link-
age analysis of STRING (version 9.1, http://www.string-db
.org/) [26]. The web server data bank of biological interac-
tions was used for the identification and identification of
interactions of proteins. The cutoff standard value was used
as the pooled score < 0:4. The highly connected and essential
biological function proteins were indicated in the middle
nodes. These were identified, documented, and estimated

�e selection scale:

Positive selection Purifying selection
1 2 3 4 5 6 7

Figure 1: The selection tool model of mechanistic empirical combination (MEC) was used for selection pressure of mammal AKT3 gene
sequences. Positive selection was represented by yellow and brown highlights purifying selection; neutral selection was represented by gray
and white highlights, while negative selections on codons were represented by purple color highlights.

Table 2: Sites found under positive selection at AKT3 gene.

REL MEME FUBAR
Positive selection sites dN-dS Bayes factor Positive selection sites p Positive selection sites

25 94.3064 1566.25 250 0.0697201 25

30 94.3515 1630.81 278 0.0129066 30

63 94.3704 1662.42 658 0.001775 63

86 94.1194 1335.47 661 0.00839722 86

662 0.0755305 250

664 0.00586727 278

692 0.00717898 658

702 0.00524112 661

714 0.0505746 662

716 0.0540275 664

692

702

714

716
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by the number of line connections between proteins of each
node and using the resemblance value. Various software and
tools were used for protein- protein interaction. The STRING
andCytoscape software tools were used for network construc-
tion and visualization of proteins and interactions [27].

2.4. Phylogenetic Tree of AKT3. The phylogenetic tree for the
AKT3 gene was constructed for thirty-nine species. The
nucleotides of these various species were downloaded from
the public database of NCBI for construction of phylogenetic
tree. We have used MEGA 6 for phylogenetic tree construc-
tion after aligning the sequence of these species in Clustal w.

2.5. Domain Sites for AKT3. The candidate gene for mastitis-
associated AKT3 is a family member of the serine/threonine
protein kinase family. Milk fat synthesis and cholesterol is
the main function, regulated by sterol regulatory element
binding protein (SREBP). We have searched the domains
with InterPro Scan in EBI [28]. In our present integrated
study of the evolution of the AKT3 gene, a further approach
is to search and find out the domains in mammals with Inter-
Pro Scan [28] using the search tool.

3. Results and Discussion

The present advances in the crucial record of genetic contrast
have anticipated account recommendations for investigation
of the positive selection objectives, which in the end would be
significant to illuminate the hereditary suggest and choice
work in evolutionary components. In addition, positive
choice marks hinder the genomic areas that assume notewor-
thy jobs. Therefore, investigating such areas will give exten-
sive help to recognizable proof of hereditary deviations,
which would encourage the interruption of these utilitarian
districts and movement in phenotypic combinations. The
enlightenments of the hereditary bases of various characteris-
tics in many species have been premeditated by competitor
gene methodology. The recognizable proof of these candidate
genes assumes a significant role in phenotypic variety in
domesticated animals’ populace and gives new development
in the evolutionary procedure and positive choice (Brown
et al., 2013).

The AKT3 lineage was <1 for the average ω across the site
ratio (dN/dS). This indicates that, based on the similarities
between sequences on the phylogenic relationship, there
was many conserved amino acid even though positive selec-
tion had occurred. The indicators of selection were masked
by the large number of conserved amino acids; however,
many amino acids were found to be positively selected. Selec-
tion results are shown with color scales in Figure 1. From the
likelihood approaches used in this study, there were 14 codon
AKT3 sites amenable to positive selection. Codon position of
the positive selection sites for AKT3 was detected using REL
which discovered four sites, FUBAR identified fourteen sites,
and MEME exposed ten sites (Table 2). The number of pos-
itive selection sites for AKT3, using REL, FUBAR, MEME,
and IFEL, was 33, 418, 20, and 1, respectively.

3.1. Position of Amino Acid and Positive Selection. The struc-
ture and function of protein is important for its continuity.

Consequently, the sites that were detected as being positively
selected may instruct and clarify the AKT3 gene function.
Using the crystalline structure of bovine AKT3 as a reference,
the positively selected sites were elucidated. The high-
probability sites were expected to be important for positive
selection with ω > 1. The location, positive selection sites,
and amino acid position were shown in Figure 2. The collec-
tive performance of identified codon locations was plotted
(Figure 3), and the collective performance of ambiguous, syn-
onymous, and nonsynonymous codon deviations with evolu-
tionary time unit was represented. For the number of starting
codons, the collective performance of the synonym mutation
is decreasing and then amplified with the evolution of
codons, while the performance of nonsynonymous codons
is increasing with the passage of evolutionary time unit
according to codon position, but it is lower in the position
initially and then gradually increases. The ambiguous
codons’ performance increases by starting codons’ position
and then becomes constant.

3.2. CodonModel Selection.We further analyzed the selection
pattern derived by the evolutionary selection forces on amino
acid sites in AKT3 proteins. We used different codon models
available in DATAMONKEY web server. We found that
there was adaptive evolution in basic amino acid sites in these

Figure 2: The AKT3 gene sites of positive selected amino acids and
location. The Phyre tool (http://www.sbg.bio.ic.ac.uk/phyre2/html)
was used to construct the crystal structure of the positive selected
sites. The crystal structure of bovine AKT3 as a reference;
positively selected sites were drawn onto the crystal structure. All
the residues which fall in the domain of the binding ligand sites,
identified as under the positive selection. Both types of the site as
ligand binding and signal sequence. The ligand binding sites were
defined as those which fall in the region, while another cluster
immediately following the signal sequence in the region.
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proteins with different substitution ratios during evolution.
The maximum substitution rate was 0.17 for the different
ratio classes, and the minimum was 0.04 among various
amino acid sites in AKT3 genes (Figure 4).

The nucleotide and amino acid substitution in the codon
model was used to identify the synonymous and nonsynon-
ymous substitutions [29], and the substitution model was
used to confirm the significant change rate in nucleotides
over amino acid position [30, 31]. The codon model of evolu-
tion using the genetic algorithm was used to identify the evo-
lutionary fingerprinting in the coding sites of AKT3 genes.
The codon model of evolution [20, 32, 33] used phylogenetic
Markov model that includes substitution rates, character fre-
quencies [34], amino acid substitution rate clustering [35,
36], and branch lengths through maximum likelihood esti-
mation method. This resulted in 8245 models that were used
in codon model selection based on the likelihood log and
modified Bayesian Information Criterion (mBIC).

The selective effects associated with an exchangeable
preference for particular amino acids were found in the
AKT3 genes with a model that used the combined empirical
codon and transition/transversion-related physicochemical
parameters [37, 38]. The model with log (L) value -12865.8

for AKT3 was considered the best for amino acid substitution
analysis. We have observed the mBIC values 27550.74 two
class rates for the distribution of amino acids in different clas-
ses (Figure 4) with an estimation of single rate dN/dS substi-
tution (Table 3). The genetic algorithm multirate model was
used to analyze the class rates to calculate the substitution
rate at the amino acid level during the evolutionary time scale
(Figure 4). The substitution rate in each class was calculated
through genetic algorithm models by using the Stanfel class
parameters [36]. The substitution rate distributed the amino
acids into three classes through the evolutionary rate cluster
and the substitution pair FWY andHKR have <50% substitu-
tion, DENQ has 50% substitution, and ACGILMPSTV has
substitution rate 90%.

3.3. Network of Protein-Protein Interaction.We have used the
STRING data bank to search the encoded protein of AKT3
and found numerous PPI pairs. The PPI predicted network
had 31 nodes (denoted by AKT3 encoded proteins) and 308
edges (the line networks between nodes) as shown in
Figure 5. The value of the average local clustering coefficient
is 0.887. The p value of PPI enrichment is 5.33e-11. Ten genes
that are coexpressed genes in the PPI network and showing

Table 3: Codon model selection based on modified Bayesian Information Criterion (mBIC) of AKT3 genes.

Classes Models Credible mBIC ΔmBIC dN/dS (rates in class)

1 1 0 27660.8 0.08/75

2 7399 2505 27550.7 110.08 0.04/50 0.17/25

3 845 0 27566.0 -15.26 0.03/21 0.06/29 0.17/25

N : number of rate classes included in models; Models: genetic algorithmmodels; Credible: all the models evaluated by genetic algorithm within 9.21 mBIC unit
(the best model has credible values 0.01 or >1); mBIC: modified Bayesian Information Criterion; ΔmBIC: mBIC for N rate classes compared to N − 1 rate
classes; dN/dS: maximum likelihood estimates for each rate class.

AKT3

GSK3B

PDPK1

PPP2CA

HSP90AA1
PHLPP2

PHLPP1

FOXO3

PIK3CA

RICTOR
TSC2

Figure 5: The protein-protein interaction (PPI) network was built by STRING database for AKT3 genes. Gray and red circles characterize
downregulated and upregulated genes, respectively. Line thickness indicates the strength of the interaction. Dash and solid edges mean
negative and positive correlation coefficient. Network nodes denote proteins’ posttranscriptional modifications or splice isoforms, and
each node represents all the proteins produced by a single, protein-coding gene locus.
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an interaction with AKT3 are as follows: RICTOR, TSC2,
GSK3B, PDPK1, PPP2CA, HSP90AA1, PHLPP2, PHLPP1,
FOXO3, and PIK3CA (Figure 5). The Human AKT3
sequence was used as a reference for the PPI network analy-
sis. These genes may be involved in biological signaling path-
ways due to the upregulation of AKT3 [39].

3.4. Phylogenetic Tree of AKT3. The NCBI database was used
to download the coding sequence and protein sequences for
construction of the phylogenetic tree. Using the MEGA 6
Clustal W [15] for aligned sequences, a phylogenetic tree
was constructed as shown in Figure 6. In the tree, it is shown
that the genes which are evolutionally close form groups with
various species with less significant relationships making up
different groups.

We have also applied the Ramachandran plot to predict
for the AKT3 using http://vadar.wishartlab.com/. A Rama-
chandran plot is used to visualize energetically allowed
regions for a polypeptide backbone torsion angle psi (ψ)

against phi (φ) of amino acid residues present in a protein
structure. The main chain N-Calpha and Calpha-C bond of
the polypeptide of the Ramachandran plot has free rotation.
The relative rotational angle of torsion was represented by
phi and psi, respectively. In nature, the peptide bond is rigid
and planar. To understand the Ramachandran, it is impor-
tant to have knowledge of peptide bond structure. The anal-
ysis of the protein structure and the key role played by some
amino acids and close contacts of the atoms in protein is
shown in Figure 7.

3.5. Domains for the AKT3. The visualization domain results
are shown in Figure 8, and each domain information was
given in Table 4, as domain table number.

AKT3 inadequacy did not influence macrophage apopto-
sis; however, it advanced macrophage cholesterol collection,
lipoprotein uptake, and foam cell development in vitro,
through balancing out Acetyl-Coenzyme A acetyltransfer-
ase 1 (ACAT1) [40]. Another investigation found that
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Figure 6: Phylogenetic tree constructed using the AKT3 gene full length proteins of various 39 species. The neighbor-joining method was
used for the multiple alignments with the help of MEGA 6.0 software.
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knockdown of AKT3 prompted diminished bad phosphor-
ylation and expanded caspase-9 and caspase-3 action, indi-
cating that these isoforms are significant for cell suitability

through guideline of mitochondrial layer potential [41].
The AKT3 gene showed an interesting phenotype of pro-
viding anchorage haven independent development and
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Figure 7: Ramachandran plot prediction to examine the structure of a protein, the conformation of the amino acid present in the protein, and
close associates between the atoms.
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Figure 8: The AKT3 visualization domain results in Bos taurus. (a) The domain hits were by profiles of the AKT3 in Bos taurus. (b) The
domain presentation hits by patterns in AKT3 of Bos taurus.
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invasion [42]. The AKT3 signaling pathway is constitu-
tively dynamic in ~70% of advanced-phase organize mela-
nomas, and segments of this pathway correspond to
potential therapeutic targets since it assumes a significant
function in melanoma development, to a limited extent,
by suppressing the cell bond particle E-cadherin [43].
While AKT3 substrates associated with mediating its effect
on proliferation, apoptosis, and chemoresistance in mela-
noma have been distinguished, their observation is the first
to uncover an immediate substrate concerned with AKT3-
induced melanoma relocation [44].

AKT3 oversees glioma succession and restorative resis-
tance by means of initiating DNA twofold strand break fixa-
tion. AKT3 is dominating in the core of glioma cells, and the
mark genes related with AKT3-driven tumors are concerned
with the DNA fix pathway (HR: homologous recombination;
NHEJ: nonhomologous end joining) [45]. The AKT3 signal-
ing pathway assumes a basic function in melanoma arrange-
ment and invasion, and segments of this signaling cascade
are along these lines deserving of focus for the treatment of
harmful melanoma [44]. They have distinguished the AKT3
target site at serine residue 720 in the TBX3 protein and show
that this site is phosphorylated in vivo. This discovery
involves AKT3 as a positive controller of TBX3 protein secu-
rity. AKT3 phosphorylates TBX3 at serine 720 (S720) and
improves TBX3 protein solidity (Jade Peres et al., 2014).
Phosphorylation by AKT3 advances TBX3 atomic confine-
ment and transcriptional restraint of E-cadherin [44]. Sus-
ceptibility to experimentally induced autoimmune system
encephalomyelitis was found to be controlled and regulated
by AKT3 via the central sensory nervous system and insus-
ceptibility framework. This is because the appropriate func-
tion of CNS cells and the management and regulation of T
cell capacity require the presence of AKT3.

The past investigations demonstrate that the isoform
AKT3 of the AKT family is associated with assorted function-
ality. She [46] reported the gene evolution, phylogenetical
branch length, and positive selection analysis study on
AKT3, and they used the 39 nucleotide coding sequences of
various species of mammalian species to investigate the selec-
tion pressure experienced. To perform these evaluations
using the proregion from AKT3, mature and complete
sequences were used. In these mammalian clades, we have
found the positive selection codon sites, by study of the phy-

logenetic tree. We identified 32 positive selection sites with
REL, 414+4 sites with FUBAR, 20 sites with MEME, and 1
site with IFEL and selected those which are common to all
analyses. We have measured the adaptive selection pressure
at codons of the AKT3 sequence and used the mechanistic
empirical combination (MEC) model in selection serving to
promote positive selection. Axelsson et al. [47] reported that
the dN/dS ratio might increase through conversion of genes
with GC nucleotide pairings. Analyses using Empirical Bayes
investigated the position of amino acids for the AKT3 gene.
The positive selection signals were found at multiple codon
positions, and it showed that the selection that will take place
on these positions across decades on these selected sites will
play key role in signaling. Auclair et al. [48] reported and
detected selection positive signals among 24 mammalian spe-
cies in the human BMP15. Hence, under positive selection,
amino acids sites are important for protein specialty function
[49]. They further [49] reported that BMP15 evolved and
allowed positive selection faster in TGF family members in
mammalian clade. In this study, we found the positive selec-
tion was in AKT3 gene with ω > 1. The result showed synon-
ymous and nonsynonymous (dN) sites and indicated the
quicker and more evolved sites of nonsynonymous and new
variants favored by and following in the balancing/purifying
selection influenced by positive selection [50]. The protein
structure validation and alteration allow identification of
changes that affect the signaling pathway [51]. The common
lineage divergence discrete result might be the species across
substitution amino acid changes and settles with anterior
submission. Scannell et al. [52] reported that the evolutionary
routes from common ancestors differ for recent orthologs,
which on homologous sites in selected lines may have
resulted in genetic deviation. Therefore, for understanding
mammalian genomes, the study of selection might stimulate
potential exploration areas in the future.

4. Conclusion

In summary, we have found the selection pressure in mam-
malian species clade that AKT3 has evolved swiftly. We have
used a series of analysis for evolution study in AKT3 using 39
various species coding sequences. We have found various
positive selections sites in the gene under study. These posi-
tive sites of selection will be important for further study for

Table 4: List of predicted domains and feature description in AKT3 of Bos taurus.

S. No. Hits by profiles AA Scores Predicted features

1 PS50003 PH_Domain 5-107 14.7 DOMAIN 5 107 PH

2 PS50011 PROTEIN_KINASE_DOM 148-405 49.4 DOMAIN 148 405 Protein kinase

NB_BIND 154 162 ATP

BINDING 177 ATP

ACT_SITE 271 Proton acceptor

3 PS51285 AGC_KINASE_CTER 406-479 15.8

Hits by patterns Predicted features

1 PS00107 Protein_Kinase_ATP 154-187

2 PS00108 Protein_Kinase_ST 267-279 ACT_SITE Proton acceptor
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their role in protein function. This AKT3 gene selection anal-
yses will help and assist in the development of breeding strat-
egies to emphasize advantageous traits.
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