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Introduction. It has well established that metabolic syndrome (MetS) can predict the risk of type 2 diabetes mellitus (T2DM) in
some population groups. However, limited evidence is available regarding the predictive effect of MetS for incident T2DM in
mainland Chinese population. Methods. A 3-year cohort study was performed for 9735 Chinese without diabetes at baseline.
MetS and its components were assessed by multivariable analysis using Cox regression. Prediction models were developed.
Discrimination was assessed with area under the receiver operating characteristic curves (AUCs), and performance was assessed
by a calibration curve. Results. The 3-year cumulative incidence of T2DM was 11.29%. Baseline MetS was associated with an
increased risk of T2DM after adjusting for age (HR= 2.68, 95% CI, 2.27–3.17 in males; HR= 2.59, 95% CI, 1.83–3.65 in
females). Baseline MetS exhibited relatively high specificity (88% in males, 94% in females) and high negative predictive value
(90% in males, 94% in females) but low sensitivity (36% in males, 23% in females) and low positive predictive value (31% in
males and females) for predicting the 3-year risk of T2DM. AUCs, including age and components of MetS, for the prediction
model were 0.779 (95% CI: 0.759–0.799) in males and 0.860 (95% CI: 0.836–0.883) in females. Calibration curves revealed good
agreement between prediction and observation results in males; however, the model could overestimate the risk when the
predicted probability is >40% in females. Conclusions. MetS predicts the risk of T2DM. The quantitative MetS-based prediction
model for T2DM risk may improve preventive strategies for T2DM and present considerable public health benefits for the
people in mainland China.

1. Introduction

Type 2 diabetes mellitus (T2DM) is one of the most common
noncommunicable diseases worldwide. The International
Diabetes Federation reported that 425 million adults suffer
from diabetes worldwide, and this number will increase to
552 million by 2030 [1]. Rapid socioeconomic development
and demographic changes, along with rapid westernization
of diet and lifestyle [2], have led to the explosive increase in
the prevalence of T2DM in China over the past few decades

[3]. T2DM has become a major public health problem in
China with a number of complications, such as heart disease,
stroke, and diabetic nephropathy. Given the growing burden
of this disease, early identification of individuals at high risk
can help prevent, delay, and manage T2DM at an early stage.
Prediction of T2DM can help guide interventions and health
policy development.

Metabolic syndrome (MetS) is characterized by cluster-
ing factors, including overweight, raised blood pressure
and blood glucose, and dyslipidemia. These factors are also
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potentially involved in the pathophysiology of T2DM [4–7].
Although the clinical application and practicality of MetS
are still debatable [8], it has been proposed as a clinical tool
to identify individuals predisposed to T2DM [9]. However,
to date, only two studies in northern and eastern China have
reported the predictive ability of MetS for T2DM based on
relatively limited populations [10, 11].

In this study, we aimed to evaluate the performance
of MetS and its components in predicting the risk of T2DM
and to develop a quantitative MetS-based prediction model
for the risk of T2DM in a mainland population from
central China.

2. Methods

2.1. Study Population. The participants were community-
dwelling residents who visited Wuhan Union Hospital for
their annual health check-up between January 1, 2010 and
July 30, 2010. Exclusion criteria were as follows: (1) subjects
with baseline incomplete blood data, (2) individuals who
was already with known diabetes mellitus, and (3) patients
with previous clinical cardiovascular disease, stroke, or can-
cer. A total of 10,688 participants were enrolled in this
cohort study.

2.2. Follow-Up Evaluations.We collected the health check-up
data until October 31, 2013 by using the same baseline proce-
dures. During follow-up, 953 individuals died, failed to
follow-up, or showed missing pivotal data. A total of 9735
participants who completed at least 1 year of follow-up were
included in the final analysis. Participants who developed
T2DM during follow-up were considered incident T2DM
cases, and the follow-up time for incident cases was calcu-
lated as the difference between the baseline and the examina-
tion when incident T2DM was initially identified. For
participants who did not develop T2DM, the follow-up time
was calculated as the difference between baseline and last
known follow-up examination. A flow diagram illustrating
patient selection is described in Figure 1.

The collection of health check-up data in Wuhan Union
Hospital from January 1, 2010 to October 31, 2013 was
approved by the ethics committee of Tongji Medical Col-
lege, Huazhong University of Science and Technology,
and complied with the Declaration of Helsinki of 2008.
We verbally informed the participants that the data will be
used anonymously for medical study. No informed consent
was signed because the study was observational, and the data
were anonymized.

2.3. Measurement of Variables. Trained investigators obtained
demographic characteristics and previous medical histories
through a standard questionnaire. Subjects underwent a brief
physical examination that includes the measurement of
height and weight. Height was measured to the nearest
0.5 cm and weight to the nearest 0.1 kg (Detecto Instrument,
Webb City, MO). Body mass index (BMI) was calculated as
weight in kilograms divided by the square of height in centi-
meters [12]. After a rest period of at least 5min, the blood
pressure of the subjects in the sitting position was measured
by using a mercury sphygmomanometer according to a stan-
dardized protocol.

Blood samples were collected in the morning after an
overnight fast and were processed within 2 h. After 75 g oral
glucose tolerance test was administered, a second blood sam-
ple was drawn for glucose measurement. Automated chemis-
try analyzer (Beckman Coulter chemistry analyzer AU5800
series, Tokyo, Japan) was used for laboratory measurements,
including the levels of plasma glucose, total cholesterol (TC),
high-density lipoprotein cholesterol (HDLc), low-density
lipoprotein cholesterol (LDLc), and triglycerides (TG).

2.4. Definition of Incident T2DM. Incident T2DM was
defined as the presence of any of the following criteria at
follow-up evaluation: (1) receiving oral hypoglycemic agents
or insulin treatment, (2) fasting plasma glucose (FPG)≥
7.0mmol/L (126mg/dL), or (3) with plasma glucose≥
11.1mmol/L (200mg/dL) as evaluated by glucose tolerance
test 2 hours after the oral dose.

Excluded:
Died or lost to follow-up during follow–up (n = 796) 
Missing data of blood glucose (n = 157) 

Baseline data collection
n = 13469

Excluded:
(i)

(ii)

(i)
(ii)

(iii)

Baseline incomplete blood data (n = 582) 
Baseline with known diabetes (n = 1640)
Previous clinical cardiovascular disease, stroke or
cancer (n = 559) 

Free of diabetes at baseline
n = 10688

Included in analysis
n = 9735

3-year follow-up

Figure 1: Flow chart of the 3-year cohort study.
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2.5. Definitions of MetS. Asians are thought to have higher
body fat percentage and cardiovascular risks than Caucasians
at a given BMI [12]; therefore, the ATP III criteria for HDL
cholesterol and waist circumference may not be appropriate
for Asian populations. MetS was diagnosed in accordance
with the diagnostic standard of Chinese Medical Association
(CMA) Diabetes Branch. The participants were consid-
ered to exhibit MetS if they met three or more of the follow-
ing criteria: (1) overweight: BMI≥ 25.0 kg/m2; (2) impaired
fasting glucose (IFG): FPG≥ 6.1mmol/L or impaired glu-
cose tolerance (IGT): 2 hour postprandial plasma glucose
(2hPG)≥ 7.8mmol/L or diagnosed diabetes; (3) hyperten-
sion: systolic/diastolic blood pressure≥ 140/90mmHg or
taking antihypertensive agents; and (4) dyslipidemia: fast-
ing triglycerides≥ 1.7mmol/L or fasting HDL-C< 0.9 and
< 1.0mmol/L in males and females, respectively.

2.6. Statistical Analysis. Summary statistics of the baseline
characteristics of all patients and stratification by incidence

of T2DM were expressed as means and standard deviations
(SD) or medians and interquartile ranges for continuous
variables and frequencies and proportions for categorical
variables. Differences among groups were analyzed using
one-way ANOVA, Kruskal-Wallis test, and chi-square test
for normally distributed continuous, skewed continuous,
and categorical variables, respectively (Table 1).

Multivariate Cox proportional hazard regression was
used to estimate the age-adjusted hazard ratios (HRs) and
95% CI for the development of T2DM associated with MetS
and its components (Table 2). Predictors of T2DM included
MetS and its components. Sensitivities, specificities, and pos-
itive and negative predictive values (PPV and NPV) were
also evaluated (Table 3).

Multivariable logistic regression analysis for the pre-
diction model was performed. The following three kinds of
prediction models were built: (1) full model, which includes
age and all of the MetS components; (2) stepwise model, a
backward step-down selection process that uses a threshold

Table 1: Baseline characteristics of participants included in the follow-up study according to the presence of incident T2DM.

Characteristic∗
Incident T2DM at 3-year follow-up

No (n = 8636) Yes (n = 1099) P value

Age (years) 43.21± 13.23 52.78± 12.72 <0.001
Gender, no. (%) <0.001

Male 5087 (58.90%) 801 (72.88%)

Female 3549 (41.10%) 298 (27.12%)

BMI (kg/m2) 23.45± 3.16 25.33± 3.11 <0.001
Plasma glucose

FBG (mmol/L) 4.92± 0.50 5.29± 0.68 <0.001
PG2h (mmol/L) 6.51± 1.25 7.68± 1.37 <0.001

Blood pressure

Systolic (mm Hg) 116.33± 15.70 125.33± 16.97 <0.001
Diastolic (mm Hg) 77.52± 10.13 81.70± 10.56 <0.001
Pulse pressure (mm Hg) 38.81± 10.73 43.63± 12.66 <0.001

Lipid profile (mmol/L)

Total cholesterol 4.77± 0.82 5.23± 0.92 <0.001
HDL cholesterol 1.54± 0.36 1.46± 0.36 <0.001
LDL cholesterol 2.47± 0.65 2.74± 0.71 <0.001
Triglycerides 1.22 (0.86–1.78) 1.91 (1.35–2.73) <0.001

Metabolic syndrome, no. (%) 429 (5.6) 457 (29.3) <0.001
Overweight 2231 (29.95%) 483 (50.47%) <0.001
IGR 1551 (17.96%) 625 (56.87%) <0.001
FBG≥ 6.1mmol/L 212 (2.48%) 163 (14.87%) <0.001
PG2h≥ 7.8mmol/L 1452 (16.81%) 598 (54.41%) <0.001

Hypertension 1876 (23.45%) 490 (47.90%) <0.001
Dyslipidemia 2556 (29.98%) 591 (54.07%) <0.001
TG≥ 1.7mmol/L 2361 (27.70%) 655 (59.93%) <0.001
Low HDLc 297 (3.76%) 63 (6.46%) <0.001

Data are shown as means ± SD, median (interquartile range), or no (%). T2DM: type 2 diabetes mellitus; IGR: impaired glucose regulation; FBG: fasting blood
glucose; PG2h: 2-hour postprandial plasma glucose; TG: triglycerides; HDLc: high-density lipoprotein cholesterol. Overweight: defined as BMI greater than
25.0 kg/m2; hypertension: defined as systolic/diastolic blood pressure ≥ 140/90mmHg or taking antihypertensive agents; low HDL cholesterol: defined as
fasting HDL-C < 0.9 or <1.0 mmol/L in males and females, respectively. ∗The number of participants for each category varies slightly due to occasional
missing values.
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of P < 0 05 and excludes some factors without clinical signif-
icance (according to the Akaike information criterion); and
(3) multivariable fractional polynomials (MFP) model [13],
which performs nonlinear risk relationships between contin-
uous variables and the outcome (Table 4). The receiver oper-
ating characteristic (ROC) curves of the three models were
constructed using bootstrap resampling (times = 500) and
are presented in Figure 2. By C statistics and DeLong algo-
rithm [14], we found no significance between the three
models in the capability to discriminate participants with
and without incident T2DM (data not shown), so we chose
the easiest “stepwise model” for the nomogram (Figure 3).
The predictive accuracy of the nomogram was also measured
by bootstrap (500 resample) method. Calibration curves [15,
16] were plotted to assess nomogram validation (Figure 4).
The predicted probability of recurrence versus actual recur-
rence on the entire sample was compared using 500 boot-
strap resamples to reduce over fit bias.

Score sheets to estimate absolute risk for the outcome
were derived from the nomogram of the stepwise model
(Table 5). The nomogram and calibration curves of full and

MFP models are also presented in Supplementary Materials
(Figures S1–S4).

All analyses were performed using statistical packages R
(R Foundation; http://www.r-project.org; version 3.4.3) and
EmpowerStats (http://www.empowerstats.com; X&Y Solu-
tions Inc.). A value of P < 0 05 (two sided) was considered
statistically significant.

3. Results

3.1. Baseline Characteristics and T2DM Incidence. Among
the 9735 participants (aged 17–96 years) included in the final
analysis, 60.48% were males, the mean (standard deviation)
age of the cohort was 44.29 (13.52) years, and the baseline
prevalence of MetS was 11.85% (1154). After an average
observation period of 1.74 years, 11.29% (1099) of the partic-
ipants developed T2DM. Table 1 compares the baseline
demographic and biochemical characteristics of individuals
according to the presence or absence of T2DM incidence.
Significant differences were observed among the groups.

Table 2: Multivariate analysis of incident T2DM according to MetS and its components∗.

Variable
Male Female

HR (95% CI) ∗ P value HR (95% CI) ∗ P value

Metabolic syndrome 2.68 (2.27, 3.17) <0.001 2.59 (1.83, 3.65) <0.001
Overweight 1.76 (1.52, 2.04) <0.001 1.94 (1.49, 2.52) <0.001
IGR 3.87 (3.36, 4.46) <0.001 3.61 (2.87, 4.55) <0.001

FBG≥ 6.1mmol/L 3.12 (2.56, 3.79) <0.001 3.05 (2.12, 4.38) <0.001
PG2h≥ 7.8mmol/L 3.81 (3.32, 4.39) <0.001 3.61 (2.87, 4.54) <0.001

Hypertension 1.63 (1.40, 1.90) <0.001 1.53 (1.15, 2.02) 0.0030

Dyslipidemia 2.38 (2.07, 2.75) <0.001 2.18 (1.73, 2.75) <0.001
TG≥ 1.7mmol/L 3.09 (2.66, 3.57) <0.001 2.98 (2.36, 3.76) <0.001
Low HDLc 1.19 (0.67, 2.11) 0.5452 1.74 (0.97, 3.10) 0.0619

Data are hazard ratio (95% CI), P value. T2DM: type 2 diabetes mellitus; MetS: metabolic syndrome; IGR: impaired glucose regulation; FBG: fasting blood
glucose; PG2h: 2-hour postprandial plasma glucose; TG: triglycerides; HDLc: high-density lipoprotein cholesterol. Overweight: defined as BMI greater than
25.0 kg/m2; hypertension: defined as systolic/diastolic blood pressure ≥ 140/90mmHg or taking antihypertensive agents; low HDL cholesterol: defined as
fasting HDL-C < 0.9 or< 1.0 mmol/L in males and females, respectively. ∗Adjusted for age.

Table 3: Predictive value of baseline MetS and its components in predicting risk of T2DM at 3-year follow-up∗.

Variable
Male Female

Sensitivity (%) Specificity (%) PPV (%) NPV (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%)

Metabolic syndrome 36 88 31 90 23 96 31 94

Overweight 54 61 18 89 39 83 16 94

IGR 59 80 31 92 52 85 23 95

FBG≥ 6.1mmol/L 16 97 48 88 11 98 33 93

PG2h≥ 7.8mmol/L 56 81 32 92 50 86 23 95

Hypertension 50 70 21 90 42 86 19 95

Dyslipidemia 58 63 20 90 43 80 15 94

TG≥ 1.7mmol/L 64 63 22 92 48 85 21 95

Low HDLc 2 99 15 87 4 97 11 92

MetS: metabolic syndrome; T2DM: type 2 diabetes mellitus; PPV: positive predictive value; NPV: negative predictive value; IGR: impaired glucose regulation;
FBG: fasting blood glucose; PG2h: 2-hour postprandial plasma glucose; TG: triglycerides; HDLc: high-density lipoprotein cholesterol. Overweight: defined as
BMI greater than 25.0 kg/m2; hypertension: defined as systolic/diastolic blood pressure ≥ 140/90mmHg or taking antihypertensive agents; lowHDL cholesterol:
defined as fasting HDL-C < 0.9 or< 1.0 mmol/L in males and females, respectively. ∗Using bootstrap resampling (times = 500).

4 International Journal of Endocrinology

http://www.r-project.org
http://www.empowerstats.com


T2DM incidence rates were 3.33% (321/9735), 4.01%
(359/8949), and 6.65% (419/6300) in 2011, 2012, and 2013,
respectively. This value also increased with age: 1.56% (22/
1410) among the participants aged 17–29 years, 5.72%
(138/2414) among those aged 30–39 years, 10.45% (303/
2899) among those aged 40–49 years, 19.68% (356/1809)
among those aged 50–59 years, 21.89% (141/644) among
those aged 60–69 years, and 24.87% (139/559) among those
aged >70 years.

3.2. Multivariate Analysis of Incident T2DM according to
MetS and Its Components. Table 2 shows the results of the
multivariate Cox proportional hazard models for T2DM pre-
diction according to MetS and its individual components.

After age adjustment, baseline MetS and its components
(except Low HDLc) were all significantly positively associ-
ated with the risk of T2DM both in males and females. By
contrast, low HDLc level (fasting HDL-C< 0.9 or< 1.0
mmol/L in males and females, respectively) at baseline exhib-
ited no significant age adjusted association with T2DM inci-
dent (HR=1.19, 95% CI, 0.67–2.11, P = 0 545 in males;
HR=1.74, 95% CI, 0.97–3.10, P = 0 0619 in females) but
the associations still exhibited positively correlated trends.

3.3. Predictive Performance of MetS and Its Components for
Risk of T2DM. Table 3 shows the predictive performance of
MetS and its individual components at baseline in predicting
the 3-year incidence of T2DM. We found that, both in males
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1 − specificity 1 − specificity

Se
ns

iti
vi

ty

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

AUC

mfp:0.781
Full:0.779
Stepwise:0.779

Female
Se

ns
iti

vi
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

AUC

mfp:0.861
Full:0.861
Stepwise:0.860

Figure 2: ROC curves of the components of MetS at baseline in predicting T2DM in man and woman (bootstrap resampling times = 500).
AUC confidence interval and significance tests using bootstrap resampling. ROC: receiver operating characteristic curves; AUC: area
under curve.

Table 4: Three prediction models for T2DM using components of MetS∗.

Model AUC (95% CI) Cut-off value Sensitivity (%) Specificity (%) PPV (%) NPV (%)

Male

MFP 0.781 (0.762, 0.800) −2.038 73 68 26 94

Full 0.779 (0.760, 0.799) −2.071 74 67 26 94

Stepwise 0.779 (0.759, 0.799) −2.064 74 67 26 94

Female

MFP 0.861 (0.837, 0.885) −2.925 91 69 18 99

Full 0.861 (0.838, 0.885) −3.050 90 70 18 99

Stepwise 0.860 (0.836, 0.883) −3.067 88 69 18 99

For males: MFP model: −1.92837-0.17487∗(age/100)−2 + 1.17798∗(PG2h ≥ 7.8 = 1) + 0.90866∗(T ≥ 1.7 = 1) + 0.97866∗(FBG ≥ 6.1 = 1) + 0.26414∗(hyperten-
sion = 1). Full model: −4.63421 + 0.03516∗age e + 0.23344∗(hypertension = 1) + 0.10789∗(overweight = 1) + 1.20251∗(PG2h ≥ 7.8 = 1) + 0.96130∗(FBG ≥ 6.1 =
1) + 0.95317∗(TG ≥ 1.7 = 1) + 0.00978∗(HDLc < 0.9 = 1). Stepwise model: −4.57730 + 0.03431∗age + 0.28763∗(hypertension = 1) + 1.20539∗(PG2h ≥ 7.8 =
1) + 0.96970∗(FBG ≥ 6.1 = 1) + 0.98210∗(TG ≥ 1.7 = 1). For females: MFP model: 0.98518–1.94843∗(age/100)−1 + 1.12166∗(PG2h ≥ 7.8 = 1) + 1.01383∗

(TG ≥ 1.7 = 1) + 0.82966∗(FBG ≥ 6.1 = 1). Full model: −6.82459 + 0.07260∗age −0.07548∗(hypertension = 1) + 0.21320∗(overweight = 1) + 0.82601∗(FBG ≥
6.1 = 1) + 1.14685∗(PG2h ≥ 7.8 = 1) −0.38866∗(HDLc<1.0 = 1) + 1.09116∗(TG ≥ 1.7 = 1). Stepwise model: −6.81323+ 0.07236∗age + 0.90655∗(FBG≥ 6.1 = 1) +
1.17439∗(PG2h≥ 7.8 = 1) + 1.12417∗(TG≥ 1.7 = 1). AUC: area under curve. ∗Using bootstrap resampling (times = 500).
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(a) Male

Female
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Figure 3: Nomogram to estimate the risk of T2DM using part of the components of MetS (stepwise model, bootstrap resampling
times = 500). To use the nomogram, find the position of each variable on the corresponding axis, draw a line to the points axis for the
number of points, add the points from all of the variables, and draw a line from the total point axis to determine the T2DM probabilities
in 3 years at the lower line of the nomogram.
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and females, almost all of the variables exhibited a relatively
high specificity and a high negative predictive value but
exhibited a low sensitivity and low positive predictive value.
These results suggest that the absence of the MetS and its
components at baseline may correctly identify the individuals
free of incident T2DM.

3.4. The MetS-Based Prediction Model and Nomogram. Age
and individual components of MetS were considered candi-
date variables for the prediction model. Three models that
incorporated the above independent predictors were devel-
oped (bootstrap resampling times = 500). Full model includes
age and all of the MetS components, stepwise model selects
part of the candidate variables, andMFPmodel use fractional
polynomials to model continuous risk variables, such as age.
The formula and predictive performance of the three models
both in males and in females are presented in Table 4. The
AUCs for the three models in males and females were with-
out exception >0.75, which indicated reasonable capabilities
to discriminate participants with and without incident
T2DM. The ROC curve (bootstrap resampling times = 500)
of the three models both in males and in females are pre-
sented in Figure 2.

To provide a measurable tool for predicting individual
probability of T2DM, we chose the most convenient “step-
wise model” for the nomogram (Figure 3). The calibra-
tion curve of the nomogram for the probability of T2DM
demonstrated good agreement between prediction and
observation in males. As for woman, when the predicted
probability> 40%, the predicted probability> observation
probability, to be specific, when the predicted probabil-
ity> 40% in woman, this nomogram is likely to overestimate
the risk (Figure 4). The nomogram and calibration curves
of full and MFP models are presented in Supplementary
Materials (Figures S1–S4).

For increased convenience and facility, we further devel-
oped a point score system to estimate T2DM risk, this
approach allows manual estimation of the 3-year risk of
T2DM, as shown in Table 5. Ages younger than 50 and 55
years were considered referent categories in males and
females, respectively. Other items are part of the components
of MetS. Each item points to appropriate scores; after calcu-
lating the total item score, the risk of T2DM in males (A)
and females (B) is shown in the unshaded area.

4. Discussion

In this population-based cohort study, MetS and its indi-
vidual components (overweight, IFG, IGT, hypertension,
TG≥ 1.7mmol/L, and low HDL) at baseline exhibited rela-
tively high specificity and high negative predictive value for
correctly identifying an individual with low T2DM risk. In
addition, we developed a quantitative and easy-to-use prog-
nostic nomogram integrating the MetS components and
age at baseline to predict incident T2DM in 3 years. The
nomogram showed relatively good predictive discrimination
after internal validation.

Some studies have revealed the correlation between
MetS and risk of T2DM. The Framingham study [17] in
2005 reported that MetS trait count was highly related to
an increased risk in developing T2DM over 8 years of
follow-up. The National Cholesterol Education Program
of USA [9] reported that MetS can independently predict
diabetes. Similarly, Ley et al. [18] and Hajat et al. [19]
confirmed the value of MetS to identify individuals at risk
of T2DM in aboriginal Canadians and Abu Dhabi, respec-
tively. The prediction influence of MetS for diabetes was
also identified among pediatric population [20] and the
elderly [21]. Our findings are consistent with the previous
studies. We further offered the prognostic nomogram and
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Figure 4: Calibration curves of the stepwise model nomogram (bootstrap resampling times = 500). On the calibration curve, x-axis is
nomogram-predicted probability of incident T2DM in 3 years, and y-axis is observed incident T2DM in 3 years. The red line represents a
perfect prediction by an ideal model. The black line represents the performance of the nomogram, which is a closer fit to the diagonal
dotted line, representing improved prediction. The pink area is the 95% CI of the calibration curve.
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point score system prediction models to estimate T2DM
risk based on the MetS components. This system is of par-
ticular interest for mainland Chinese communities with a
high prevalence of T2DM.

In our study, we observed the baseline prevalence of MetS
was 11.85%, and the 3-year cumulative incidence of T2DM
was 11.29%. After age adjustment, MetS and its components
(except low HDLc) at baseline were all significantly associ-
ated with an increased risk of T2DM in males and females.
The high specificity and negative predictive values of MetS
and its individual components at baseline in predicting
T2DM incidence in our study are consistent with those in
the study of Ley et al. [18] for correctly identifying disease-
free individuals at follow-up. These findings suggest that
individuals without MetS and its individual components pos-
sess low chance for developing future T2DM.

To provide a measurable tool that predicts the individual
probability of T2DM, we calculated the prediction model by
three methods and conducted a comprehensive assessment.
Finally, we selected the stepwise model to develop the nomo-
gram. We also found that this nomogram will overestimate
the risk when the predicted probability is >40% in females.
Calibration curves can help provide a relative real value.
For instance, when a female is calculated at risk of 60% by
this nomogram, her realistic risk should be approximately
50% according to the calibration curves. These efforts
increase the credibility and practical value of our study.

Our study exhibits several strengths. First, the sample
size was relatively large, and the health check-up partici-
pants were representative. Second, the quantitative predic-
tion model is of greater clinical and social value than
previous similar studies. Third, the comprehensive assess-
ment of the three methods helps in selecting the most effec-
tive and easiest model.

Several limitations in this study are present. First, we were
unable to collect interim data to analyze the time to onset of
T2DM. Second, some participants missed follow-up, and
some data were missing. Nevertheless, we still retained a high
3-year follow-up rate of 91.08% (9735/10688).

5. Conclusion

In summary, MetS is a simple method that can be used to
predict the risk of T2DM. The quantitative MetS-based pre-
dictionmodel developed in this study can provide an individ-
ualized assessment for T2DM risk in the next 3 years. MetS
can contribute to advanced intervention strategies to slow
down T2DM progression and exhibits a certain degree of
public health benefits in mainland China.
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Table 5: Algorithm for estimating risk of T2DM using part of the
components of MetS (stepwise model).

(a) Prediction model for man

Item Item score

(1) Age≥ 50 years 44

(2) Hypertension 8

(3) 2-hour postprandial plasma glucose
(2hPG)≥ 7.8mmol/L

37

(4) Fasting plasma glucose level≥ 6.1mmol/L 30

(5) Triglyceride≥ 1.7mmol/L 30

Total item score
3-year risk
of T2DM

0~65 <10%
66~92 10%~20%
93~108 20%~30%
109~122 30%~40%
123~135 40%~50%
136~141 50%~60%
>141 >60%

(b) Prediction model for woman

Item Item score

(1) Age≥ 55 years 57

(2) Fasting plasma glucose level≥ 6.1mmol/L. 14

(3) 2-hour postprandial plasma glucose
(2hPG)≥ 7.8mmol/L

21

(4) Triglyceride≥ 1.7mmol/L 19

Total item score
3-year risk
of T2DM

0~67 <10%
68~80 10%~20%
81~90 20%~30%
91~97 30%~40%
98~105 40%~50%
>105 >50%
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