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Abstract: Encapsulating CdS quantum dots (QDs) into zeolitic imidazole framework-8 (ZIF-8) can
offer several advantages for photocatalysis. Various types of capping agents have been used to
encapsulate QDs into ZIF-8 nanopores. An effective method for encapsulating CdS QDs into ZIF-8
is to use 2-mercaptoimidazole as the capping agent. This is because 2-mercaptoimidazole is similar
to the imidazolate ligands of ZIFs and can used for capping active species with simultaneous
encapsulation during the crystal growth of ZIF-8. Compared to other widely used capping agents
such as polyvinylpyrrolidone (PVP), using 2-mercaptoimidazole for encapsulating CdS QDs into
ZIF-8 revealed photocatalytic effects along with the molecular sieving effect when using differently
sized molecular redox mediators such as methyl viologen (MV2+) and diquat (DQ2+).
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1. Introduction

Metal sulfide quantum dots (QDs) demonstrate tremendous potential for application in
photocatalytic fields because of their high optical quantum yield, photostability, and high photocatalytic
performance [1–5]. However, QDs show a strong tendency to aggregate into larger particles due to
their high surface energy, leading to the loss of their unique characteristics. This tendency obstructs
the utilization of QDs in photocatalytic applications [6–8]. To address this issue, several studies have
explored the concept of the encapsulation of QDs into high porous scaffolds such as mesoporous
materials [9,10], zeolites [11,12], polyoxometalate [13,14], and metal organic frameworks (MOFs) [15–25].
Recently, zeolitic imidazole frameworks (ZIFs), which are a class of MOFs, have been considered
as an attractive class of porous scaffold materials for the incorporation of various components into
the ZIF-8 network, owing to their high tunability and chemical and moisture stability compared to
other MOFs [26–28]. Therefore, encapsulating functional QDs as catalytic sites into highly porous
ZIF materials is a rational approach. QDs@ZIF composites were fabricated for inducing subsequent
ZIF heterogenous growth around QDs to anchor an appropriate binder molecule on the surface.
The most significant advantage of QDs@ZIF composites is the ability to customize the composition,
size, and morphology of QDs for specific purposes, with the chemical properties of QDs retained after
encapsulation within the crystalline hosts.

Lu et al. reported an exquisite approach in which a variety of QDs were encapsulated into
ZIF-8 by employing polyvinylpyrrolidone (PVP) as the surfactant for surface modification of the
QDs [15]. Several studies have reported this strategy of encapsulating QDs, including PVP-covered
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QDs such as CdS, CdTe, and CdSe, or nanoparticles, into ZIF-8 growth to be very effective [16–20].
In particular, the widely used method employing PVP as the binder between QDs and ZIF-8 is limited
to complete removal of PVP after growth. This may reduce the photocatalytic activity of embedded
QDs with respect to the accessibility of the catalytic sites. Despite the good dispersion of QDs in ZIFs,
the possibility of the presence of unencapsulated QDs on the ZIFs’ surface remains due to the different
growth rates of QD-Zn2+ and ligand-Zn2+. This interferes with the molecular sieving effect, which is
one of the significant advantages in catalytic application.

To adjust the growth rates for encapsulating active species into ZIFs, an effective alternative is
to use agents similar to the imidazolate ligands of ZIFs used for capping active species. Therefore,
2-mercaptoimidazole could be a suitable capping material for realizing the above strategy to encapsulate
nanoparticles inside ZIF-8. Herein, we report an effective strategy for the in situ encapsulation of
CdS QDs as a representative metal sulfide by employing parallel capping agent 2-mercaptoimidazole
with ligand-ZIF-8 into nanocages of ZIF-8 for various loading amounts of CdS QDs, as illustrated
in Scheme 1. We also reveal the complete molecular sieving effect of the CdS QD@ZIF-8 composite
prepared using the proposed strategy.
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Scheme 1. Schematic illustration of the ligand exchange process of oleic acid with 2-mercapto imidazole
and encapsulation of exchanged CdS QDs into ZIF-8.

2. Materials and Methods

2.1. Materials

Cadmium oxide (98.5%, Sigma-Aldrich, St. Louis, MO, USA), oleic acid (extra pure, Sigma-Aldrich,
St. Louis, MO, USA), 1-octadecene (90%, Acros, NJ, USA), sulfur powder (99.5%, Alfa, Ward Hill,
MA, USA), chloromethane (extra pure, DUKSAN, Daejeon, Republic of Korea), polyvinylpyrrolidone
(average M.W.: 58,000, Alfa, Ward Hill, MA, USA), 2-mercaptoimidazole (98%, %, Alfa, Ward Hill, MA,
USA), 3-mercaptopropionic acid (99%, Alfa, Ward Hill, MA, USA), tetramethylammonium hydroxide
(25% w/w in methanol, %, Alfa, Ward Hill, MA, USA), zinc nitrate hexahydrate (99%, Alfa, Ward Hill,
MA, USA), cobalt nitrate (97%, Junsei, Tokyo, Japan), 2-methylimidazole (99%, Acros, NJ, USA),
methyl viologen hydrate (98%, Acros, NJ, USA), diquat dibromide monohydrate (95%, Sigma-Aldrich,
St. Louis, MO, USA), ammonium hexafluorophosphate (99%, Acros), triethanolamine (99%, Acros,
NJ, USA)

2.2. Synthesis of Oleic Acid Capped CdS QDs

CdS QDs were prepared using the hot-injection method according to previously reported
methods [29–31]. To obtain the cadmium source, 1-octadecene (ODE) (36 mL), CdO (3.0 mmol),
and oleic acid (5 mL) were mixed in a two-neck round-bottom flask and dissolved by heating to
280 ◦C under an argon atmosphere. Separately, as the sulfur source, sulfur powder (1.5 mmol) was
poured into an ODE (5 mL) solution in a round-bottom flask and completely dissolved by heating to
80 ◦C. The sulfur solution was swiftly injected into the prepared hot Cd source solution. The mixture
was cooled to 220 ◦C and maintained at this temperature for 1 h to facilitate the growth of CdS QDs.
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After the mixture was cooled to room temperature, the synthesized CdS QDs were centrifuged several
times for removing unreacted chemicals with 1:1 acetone/ethanol mixture (1:1). The pure CdS QDs
capped with oleic acid were dissolved in chloroform.

2.3. Preparation of 2-Mercaptoimidazole Capped CdS

Surface ligand exchange of CdS QDs with thiol-based ligands such as 2-mercaptoimidazole(2-MIm)
was conducted according to the literature [31]. First, 2-MIm (1 mL) was dispersed in 1:1 chloroform/

methanol (20 mL) and the pH value was adjusted to approximately 11 using a methanolic
tetramethylammonium hydroxide (TMAOH) solution. The synthesized QDs (30 mg) were added to
this mixture and stirred at 50 ◦C for 12 h in the dark. After the exchange, the CdS QD products were
washed using centrifugation with an acetone/ethanol mixture (1:1).

2.4. Encapsulation of CdS QDs into ZIF-8

ZIF-8 crystals were synthesized according to previous reports [16–20]. For ZIF-8, first, 0.9 g
(3.0 mmol) of Zn(NO3)2·6H2O was dissolved in 30 mL of MeOH. Separately, 0.984 g (12.0 mmol)
of 2-methylimidazole was completely dissolved in 10 mL of MeOH and the desired amount of
methanol solution of ligand-exchanged CdS QDs was added. Zn solution was added into a mixture
of 2-methylimidazole and ligand-exchanged CdS QDs; the mixture was stirred for 12 h at room
temperature. After pale yellow CdS QD@ZIF-8 crystals were formed, the solution was centrifuged at
8000 rpm for 10 min to facilitate separation, and the crystals were washed with methanol five times.

2.5. Test for Photocatalytic Performance

Firstly, we prepared two molecular redox mediators such as methyl viologen (denoted as MV2+)
and diquat (denoted as DQ2+) with anion PF6−. Methyl viologen dichloride and diquat dibromide
with the anions PF6− are soluble in acetonitrile. Anion exchange was conducted to convert halide to
PF6− by stirring the methyl viologen dichloride (0.1 g) and diquat dibromide (0.1 g) solution in the
presence of ammonium hexafluorophosphate (0.3 g). To investigate the photocatalytic performance of
CdS-QD@ZIF-8, in situ measurements of the spectral change from MV2+ to MV+ in the presence of
CdS-QD@ZIF-8 were carried out as follows. CdS-QD@ZIF-8 (2.0 mg) was added in a photoreaction
cell containing 4 mL of 0.2 mM acetonitrile solution of MV2+ and 1.0 mM of triethanolamine (TEAOH),
and the cell was bubbled with high-purity argon for 3 min and air-tightened lid under the dark.
The airtight fluorescence cell was irradiated with a blue LED lamp (415 nm, 1 W) at room temperature
for the desired time.

2.6. Instrumentation

XRD patterns of the samples were obtained using an X’Pert-MPD System (PHILIPS, Eindhoven,
Netherlands) diffractometer with monochromatic Cu Kα radiation in the 2θ ranges from 10◦ to 60◦ at
40 kV and 40 mA. Scanning electron microscopy (SEM) images were obtained using a CX-200 scanning
electron microscope (COXEM, Daejeon. Republic of Korea). Transmission electron microscopy (TEM)
analysis was conducted using a JEM-2100F microscope (JEOL, Tokyo, Japan) operated at 200 kV.
Infrared spectra were recorded on a FT/IR-4000 (JASCO, Tokyo, Japan) system in the spectra range
from 400 to 4000 cm−1. All UV–vis absorption spectra were obtained using on a UV-2600 UV–vis
spectrophotometer (Shimadzu, Kyoto, Japan). For determining the amount of encapsulated CdS
into ZIF-8, we obtained the values of Cd2+ to Zn2+ ratio of the series of CdS@ZIF-8 samples using
inductively coupled plasma–optical emission spectrometry (ICP-OES, Optima 7300 DV, PerkinElmer,
Waltham, MA, USA). Nitrogen adsorption–desorption isotherms of the series of CdS QDs@ZIF-8
composites for evaluating microporous characteristics were obtained from a BEL sorp-Max instrument
(BEL, Tokyo, Japan). Before the isotherms were measured, all of the samples were pretreated by
evacuation (∼20 mTorr) at 150 ◦C for 12 h.
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3. Results

3.1. Characterization of ZIF-8 Encapsulated CdS QDs

We synthesized CdS QDs with sizes in the range of 3–5 nm in the presence of oleic acid as a
surface capping ligand to avoid aggregation. Morphological characterization of the pristine CdS QDs
was carried out using transmission electron microscopy (TEM). From Figure 1a, a fairly uniform
size distribution of nanoparticles is observed, with an estimated mean size centered at 3–4 nm.
Even after ligand exchange with 2-MIm, the ligand exchange process did not cause any structural and
morphological changes in CdS QDs, except the partial aggregation of QDs, as seen Figure 1b. This result
is consistent with identical first exitonic absorption obtained for pristine and 2-mIm exchanged CdS
QDs. In addition, FTIR spectroscopy confirmed the success of ligand exchange (Figure 1c). As seen,
the IR spectrum of the CdS quantum dot exchanged with 2-MIm showed the characteristic band at 1610
and 3252 cm−1 corresponding to the –C–N stretching and N–H stretching frequency of the imidazole
ring, respectively.
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Figure 1. TEM images of CdS QDs capped with (a) oleic acid, (b) 2-mercaptoimidazole, and (c) infrared
spectra as indicated.

We encapsulated different amounts of ligand-exchanged CdS QDs in ZIF-8 under identical
synthetic conditions as in the case of pristine ZIF-8 by simply adjusting the amount of CdS QD solution
to be added. To verify the amount of CdS QDs encapsulated into ZIF-8, the mole percent of Cd2+

per mole of Zn2+ in the series of QDs@ZIF-8 samples was determined using ICP-OES (Figure 2a).
We denoted each series of QDs@ZIF-8 as QD1@ZIF-8, QD2@ZIF-8, QD3@ZIF-8, and QD4@ZIF-8,
corresponding to ratios of 0.4, 1.1, 1.6, and 2.4, respectively. To evaluate the successive encapsulation
CdS QDs into ZIF-8 without structural change, the prepared QDs@ZIF-8 at various loading amounts
was analyzed by XRD, as seen in Figure 2b. The characteristic peaks of the ZIF-8 structure for the series
of QDs@ZIF-8 appeared at 7.3◦, 10.3◦, 12.6◦, 14.6◦, 16.3◦, and 17.9◦, corresponding to (0 1 1), (0 0 2),
(1 1 2), (0 2 2), (0 1 3), and (2 2 2) planes, respectively. These peaks were sharp and their intensity ratios
were consistent with the simulated and measured XRD pattern for pristine ZIF-8 [20,26]. This indicates
that the ZIF-8 framework was well preserved after the encapsulation of CdS QDs during crystallization.
The diffuse reflectance UV–visible (UV–vis) spectra of the series of QDs@ZIF-8 composites with
different amounts of encapsulated CdS QDs are compared in Figure 2c. First, the exitonic absorption
band at 420 nm by encapsulated CdS QDs was almost identical to that of pristine CdS QDs (inset of
Figure 2c) and increased in intensity with increasing amount of CdS QDs. The identification absorption
bands represent sustenance of 2-MIm capped CdS QDs after the encapsulation process. The FE-SEM
images of the obtained series of QDs@ZIF-8 indicate that their morphology and size of around 0.2 µm
were almost identical. This indicates that the encapsulation of 2-mercaptoimidazole ligand-exchanged
QDs does not affect the growth of ZIF-8 during crystallization because of the isostructure formed
between the QD capping ligand and the ZIF-8 ligand. The TEM image of QDs@ZIF-8 clearly shows
that the encapsulated CdS QDs are moderately monodispersed on the outer surface of the ZIF-8
crystals, and all CdS QDs are clearly encapsulated into the ZIF-8 matrix (Figure 2e). The nitrogen
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adsorption and desorption isotherms of CdS QDs@ZIF-8 and pristine ZIF-8 were obtained for clarifying
microporous natures in Figure S1a. As seen, although the amount of nitrogen adsorption is found to
be slightly lower in CdS QDs@ZIF-8 than pristine ZIF-8 due to the increasing amount of the loading
of CdS quantum dots, all samples exhibit type I isotherm, implying the microporous characteristics.
Furthermore, from the size distribution plot, the encapsulation of CdS QDs does not alter the pore size
distribution of ZIF-8, as seen in Figure S1b.
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Figure 2. (a) Cd2+ to Zn2+ ratio from ICP-OES analysis; (b) XRD patterns; (c) UV–vis diffuse
reflectance spectra represented as Kubelka–Munk function; (d) SEM images of CdS QDs@ZIF-8 and
(e) representative TEM image of CdS QD3@ZIF-8.

3.2. Photocatalytic Performance of ZIF-8 Encapsulated CdS QDs

MV2+ and DQ2+ of different sizes are widely investigated molecular redox mediators in the CdS
photocatalyst system. We hypothesized that MV2+ can access the CdS QDs encapsulated ZIF-8 via mass
transfer through the window but DQ2+ cannot, as shown in Scheme 2. To prove the molecular sieving
effect of QDs@ZIF-8, we tested the photoreduction of MV2+ and DQ2+ using QDs@ZIF-8 composites
as the visible photocatalyst and triethanolamine (TEOA) as a sacrificial electron donor in acetonitrile.
When the QDs@ZIF-8 composite was irradiated with blue LED (415 nm, 1 W), the solution turned blue
and the color intensified with time as irradiation continued. The UV–vis spectra of the blue supernatant
solutions from the QDs@ZIF-8 suspensions showed the two characteristic absorption bands at 397 and
605 nm of the viologen radical cation, MV•+, and their intensity increased with photoreaction duration,
as shown Figure 3a. In the control experiment in the dark, no absorption band of MV•+ was detected.
For a more systematic study, we conducted photoreduction using the QDs@ZIF-8 composites with
different loading amounts of CdS QDs including pristine ZIF-8. Apparently, as the loading amount
increased, photoinduced reduction of MV2+ effectively occurred, as seen in Figure 3a. This indicated
that ZIF-8 itself does not thermally reduce MV2+ to MV•+ and that the photoinduced reduction of MV2+

originates from encapsulated CdS QDs. Using identical photoreaction conditions, the photoactivity
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of CdS QDs@ZIF-8 composites using other types of binding agents such as mercaptopropionic acid
(MPA) and PVP, which exhibited a CdS QD absorption band as described in Figure 3b, were measured
and compared with that obtained using mIm. All the samples displayed almost identical performance
in the case of MV2+ (Figure 3c). In the presence of bulkier DQ2+ (compared to the window of ZIF-8),
CdS QDs@ZIF-8 using 2-MIm did not photoproduce DQ•+. Furthermore, when several different
binding molecules such as PVP and MPA, which are commonly used to encapsulate QDs into ZIF,
were employed, CdS QDs@ZIF-8 photoproduced DQ•+ by the external effect of CdS QDs on the ZIF-8,
as seen in Figure 3d. Due to the steric hinderance, compared with pyridinium parts at the end of para
position of MV2+, pyridinium parts at the ortho position of DQ2+ cannot contact encapsulated CdS
quantum dots, resulting in absolute regioselectivity. This indicated that the molecular sieving effect
of CdS QDs@ZIF-8 using 2-MIm was similar to that of the ligand-ZIF-8. This result reveals that the
utilization of identical binding molecules is a rational approach for generating QD@ZIF composites.
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4. Conclusions

We developed a feasible method for the encapsulation of CdS QDs into ZIF-8. The CdS QDs capped
with 2-mercaptoimidazole could be readily encapsulated, with simultaneous growth of the ZIF-8
crystals. Compared to other widely used capping agents such as PVA, using 2-mercaptoimidazole for
encapsulating CdS QDs into ZIF-8 revealed the excellent photocatalytic performance of the QDs@ZIF
composites. Moreover, outstanding molecular sieving effects with differently shaped molecular redox
mediators such as MV2+ and DQ2+ were achieved, owing to the effective encapsulation of the CdS QDs.
This strategy can be readily applied to other types of ZIFs for extending the photocatalytic application
of composites fabricated from metal chalcogenide QDs and ZIFs.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/10/12/2498/s1,
Figure S1: (a) Nitrogen adsorption (solid) and desorption (cycle) curves and (b) pore size distribution of CdS
QDs@ZIF-8 samples.
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