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A B S T R A C T   

The increasing incidence and range expansion of tick-borne diseases have caused global threats to human and 
animal health under the background of climate and socioeconomic changes. As an efficient vector in transmission 
of tick-borne diseases, a growing burden caused by Ixodes persulcatus and associated pathogens could not be 
underestimated. This study summarized the distribution, hosts, and pathogens of I. persulcatus, and predicted the 
suitable habitats of this tick species worldwide. An integrated database involving a field survey, reference book, 
literature review, and related website was constructed. Location records of I. persulcatus and associated patho-
gens were incorporated into distribution maps using ArcGIS software. Positive rates for I. persulcatus-associated 
agents were estimated by meta-analysis. The global distribution of the tick species was predicted using Maxent 
model. I. persulcatus was distributed in 14 countries across the Eurasian continent, involving Russia, China, 
Japan, and several Baltic Sea states, which ranged between 21◦N to 66◦N. The tick species fed on 46 species of 
hosts, and 51 tick-borne agents could be harbored by I. persulcatus. The predictive model showed that 
I. persulcatus could be predominantly distributed in northern Europe, western Russia, and northern China. Our 
study fully clarified the potential public health risks posed by I. persulcatus and I. persulcatus-borne pathogens. 
Surveillance and control measures of tick-borne diseases should be enhanced to promote the health of humans, 
animals, and ecosystems.   

1. Introduction 

Partly due to the climate and socioeconomic changes, tick pop-
ulations are increasing and their geographic ranges are expanding 
globally, which provides suitable habitats for ticks and their harbored 
pathogens [1]. The last several decades have witnessed a steady and 
continued rise in the number of recognized tick-borne pathogens and the 
number of tick-borne disease cases, posing a serious and growing public 
health threat [2–4]. In the United States, the reported tick-borne disease 

cases nearly tripled from 2004 to 2017 [4]. I. persulcatus, one of the most 
crucial vectors of human and animal diseases in the northern hemi-
sphere, is distributed throughout Eurasia [5]. It readily feeds on humans 
and has been implicated as the vector of various microbial pathogens, 
such as tick-borne encephalitis virus (TBEV), Anaplasma phag-
ocytophilum, Babesia divergens, and Borrelia afzelii, causing multi-organ 
and multi-system damage [5–7]. The Alongshan virus, a newly discov-
ered tick-borne virus in 2019, was also closely associated with the tick 
species [8]. 
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Although there have been studies on several pathogens carried by 
I. persulcatus, most previous studies are limited to a certain area or 
laboratory characteristics of pathogens, related epidemiological data is 
insufficient. And there is a lack of effective nationally tick surveillance in 
many countries to identify the range expansion of the tick. The global 
health threat posed by I. persulcatus and I. persulcatus-borne diseases 
remains obscure. In this study, we built a dataset of I. persulcatus from 
multiple data sources, conducted an extensive investigation of the 
geographical distribution, hosts, and associated pathogens of 
I. persulcatus, predicted the suitable areas for the tick species on a global 
scale, and provided targeted guidance for the prevention and control of 
I. persulcatus-borne diseases. 

2. Methods 

2.1. Data collection and extraction 

Multiple data sources of I. persulcatus involving a field survey, liter-
ature review, reference book, and related website were integrated into a 
comprehensive dataset. Our group conducted a field survey in 31 
provinces, autonomous regions, and municipalities of mainland China. 
All tick samples collected from vegetation and animals were identified to 
species by an entomologist based on morphological features. Ticks 
identified as I. persulcatus were included in the present study, and all 
collected locations of I. persulcatus were listed in Supplementary Table 1. 
We also extracted the distribution data of I. persulcatus from the refer-
ence book, Fauna Sinica-Arachnida Ixodida, the website of the Global 
Biodiversity Information Facility (GBIF, https://www.gbif.org/), and 
published literatures. 

2.2. Literature review 

2.2.1. Review protocol 
Literature searches were conducted by two independent reviewers. 

We searched PubMed, China National Knowledge Infrastructure (CNKI), 
and WanFang Database for articles between January 1, 1954, and 
September 30, 2021 by using the search terms “Ixodes persulcatus” and 
the Chinese name for Ixodes persulcatus (detailed procedures for litera-
ture search are provided in Supplementary Figure 1 and Supplementary 
Data 1). Articles with search terms included in any part of their content 
were retrieved. 

2.2.2. Eligible criteria selection 
Two independent reviewers assessed the eligibility of each article 

after duplicates removal. Published full articles were eligible for inclu-
sion if they met the following criteria: (1) studies with sufficient detail 
on collection locations of I. persulcatus (at county or prefecture level); (2) 
language restrictions in English or Chinese. All irrelevant or review ar-
ticles were excluded. 

2.2.3. Estimation of pathogen prevalence 
A meta-analysis was conducted to estimate the combined positive 

rate and 95% confidence interval (CI) of each I. persulcatus-associated 
pathogen. Articles that reported the exact number of tested I. persulcatus 
were included. The positive rate was calculated by the number of pos-
itive ticks divided by total ticks and without a 95% CI, when there was 
only one study identifying a certain species of pathogen. The combined 
positive rate and 95% CI were estimated using R software (version 4.0.5, 
meta package), when the number of included studies was two or more. 
We quantified the heterogeneity of the data by I2 statistic. I2 above 50% 
indicated that the heterogeneity was significant and the random effects 
model was applied. Otherwise, the fixed effects model was used. 

2.3. Environmental variables 

Nineteen bioclimatic variables, including annual mean temperature, 

mean diurnal range, isothermality, temperature seasonality, max tem-
perature of warmest month, min temperature of coldest month, annual 
range of temperature, mean temperature of wettest quarter, mean 
temperature of driest quarter, mean temperature of warmest quarter, 
mean temperature of coldest quarter, annual precipitation, precipitation 
of wettest month, precipitation of driest month, precipitation season-
ality, precipitation of wettest quarter, precipitation of driest quarter, 
precipitation of warmest quarters and precipitation of coldest quarter, 
and elevation data were downloaded from WorldClim (www.worldclim. 
org). Variables of slope and aspect were obtained using the Spatial An-
alyst Tool. Vegetation (Percent Tree Cover) and land cover (GLCNMO) 
were available from the Resource and Environmental Science and Data 
Center of Global Map (https://globalmaps.github.io/). All these 24 
environmental variables with a spatial resolution of 5 arc-min (~10 km) 
were used to establish the prediction model for the global potential 
distribution of I. persulcatus (see Supplementary Table 2 for details). 

2.4. Distribution of I. persulcatus and associated pathogens 

Geographical distribution of I. persulcatus and its associated patho-
gens were plotted by ArcGIS 10.2 software. The latitude and longitude 
coordinates of collected locations of I. persulcatus were applied for 
mapping, and the administrative region centroids were used when the 
exact locations were not available. 

2.5. Prediction model of distribution of I. persulcatus 

An ecological niche model (ENM) was applied for predicting the 
distribution of I. persulcatus [9,10]. Locations indicated by administra-
tive region centroids were not taken into account in our model. A total of 
349 geographic records were finally retained (Supplementary Table 3). 
R software (kuenm package) was used to determine the model param-
eters. The ENM model was performed in Maxent software (version 3.4.1) 
(the detailed procedures of model building are provided in Supple-
mentary Data 2). 

3. Results 

3.1. Geographical distribution of I. persulcatus 

As shown in Supplementary Fig. 1, 11,626 articles were identified 
from literature search, and 374 articles that met our inclusion and 
exclusion criteria were finally included for further analysis (see Sup-
plementary Data 1 for details). A total of 2179 records of distribution of 
I. persulcatus were collected, of which 1209 were from literature review, 
27 were from field survey, 52 were from the reference book and 891 
were from GBIF. After removing duplicates, 967 records were included 
in the integrated database. 

I. persulcatus was only found distributed between 21◦-66◦ latitude in 
the northern hemisphere, involving 14 countries across the Eurasian 
continent, including Russia, China, Japan, Estonia, Finland, Kazakhstan, 
Latvia, South Korea, Sweden, Mongolia, Lithuania, Kyrgyzstan, Ukraine, 
and Poland (Figs. 1 and 2A, Supplementary Fig. 2). Russia had the most 
distribution records of I. persulcatus. The tick species was present in 31 
regions throughout Russia, such as Altai, Novosibirsk, and Omsk oblast, 
and was most abundant in the southwestern areas. In China, the tick 
species was most prevalent in the northeast and northwest areas, 
including Heilongjiang, Jilin, Liaoning, Inner Mongolia, and Xinjiang 
(Fig. 2B). In Japan, I. persulcatus was mainly distributed in the central 
areas and Hokkaido. In addition, I. persulcatus was identified in the 
northern and eastern Europe, especially the countries that have shore-
lines along the Baltic Sea, involving Sweden, Finland, Estonia, Latvia, 
Lithuania, and Poland (Fig. 2A). 
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3.2. Hosts of I. persulcatus 

As shown in Fig. 3, I. persulcatus was reported to feed on 46 species of 
hosts, which belong to 22 families. Canis lupus (dog) was known as 
common animal host of I. persulcatus, and had been parasitized by the 
tick species in 5 countries. A total of 18 bird species belonging to 10 
families were recorded as hosts of I. persulcatus, with only one species 
(Turdus pallidus) found in Japan and the others in Russia. I. persulcatus 
had the most diverse range of host animals in Russia, involving 31 
species, of which 21 were only found in this country. I. persulcatus had 
been collected from 17 species of animals in China, and 9 species were 
distinctive from other countries. In Japan, the hosts of I. persulcatus 
included 7 species of animals, most of which were medium-sized 
mammals. A broad range of other animals can be parasitized by the 
tick species, which were identified in Sweden, South Korea, Finland, 
Estonia, and Latvia. 

3.3. Positive rate and distribution of I. persulcatus-associated pathogens 

As shown in Fig. 4, 51 species of microorganisms, including 33 
human pathogens, 6 animal pathogens, and 12 agents with unknown 
risks of pathogenicity were identified in I. persulcatus. Nine species 

belonging to the Anaplasmataceae family were detected in I. persulcatus. 
Among them, Anaplasma sp. Mongolia (27.78%), Ehrlichia chaffeensis 
(5.68%, 95%CI 1.68–11.56), and A. phagocytophilum (4.77%, 95%CI 
3.73–5.91) had high positive rates. Eleven species of Babesia harbored 
by I. persulcatus were reported, with Babesia venatorum having the 
highest pooled positive rate at 0.93% (95%CI 0.50–1.48). Seven geno-
species in the complex Borrelia burgdorferi sensu lato were found to be 
carried by I. persulcatus, among which the pooled positive rates of Bor-
relia garinii (12.80%, 95% CI 8.32–19.17) and B. afzelii (8.13%, 95% CI 
5.09–11.76) were both high. Nine species of spotted fever group rick-
ettsiae (SFGR) were found in I. persulcatus. Candidatus Rickettsia tar-
asevichiae (CRT) (26.88%, 95%CI 17.77–37.08) and Rickettsia japonica 
(21.68%) showed high pooled positive rates. Eight species of viruses 
were detected in I. persulcatus, including Alongshan virus and TBEV. 
Other pathogens, like Francisella tularensis, Coxiella buenetii, and Thei-
leria were also detected (Supplementary Fig. 3). 

Geographical distribution of human pathogens harbored by 
I. persulcatus was basically consistent with the tick species, involving 10 
countries across Eurasia (Fig. 5). Pathogens were more abundant and 
widely distributed in Asian countries than in Europe. TBEV was the most 
widely distributed pathogen, involving 27 regions in 6 countries. In 
China, the largest variety of human pathogens (28 species) were 
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Fig. 2. Geographical distribution of I. persulcatus. 
(A) Recorded locations of I. persulcatus worldwide. Empty circles represent the prefecture-level regions (the first-level administrative regions of the country), and 
filled circles represent the county-level regions (the second-level administrative regions of the country). The tick species was distributed in the regions between 
21◦–66◦ latitude in the northern hemisphere. (B) Recorded locations of I. persulcatus in China. 
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detected in I. persulcatus, including five species in the family Ana-
plasmataceae, four Babesia species, four genospecies in the complex 
Borrelia burgdorferi sensu lato, six SFGR species, seven species of viruses, 
Francisella tularensis and Coxiella burnetii. It is noteworthy that eight 
species of pathogens were only found in Northeast China, which is a 
densely populated area. Eighteen species of I. persulcatus-associated 
human pathogens were detected in Russia. Among them, 
A. phagocytophilum and Kemerovo virus were identified throughout the 
country, while Borrelia miyamotoi and CRT were sporadically distributed 
in some areas. A variety of Borrelia burgdorferi sensu lato and Babesia 
species were carried by I. persulcatus in Japan. In the Baltic Sea states, 
pathogens were primarily identified in Estonia and Latvia, and Babesia 
and Borrelia burgdorferi sensu lato were more common. In addition, there 
were no records of I. persulcatus-borne pathogens in Poland, Ukraine, 
Lithuania, and Kyrgyzstan. 

3.4. Predicted distribution of I. persulcatus 

In the present study, nine independent variables with the optimiza-
tion parameters (feature combination = LPTH and regularization 
multiplier = 1.8) were finally used to develop the prediction model, 
including BIO18, BIO11, BIO4, BIO19, vegetation, election, BIO16, 
BIO2, and BIO15. The average AUC value of Maxent model with 25 
replicates was 0.964 ± 0.015, indicating the prediction effect was good. 
Based on the percentage contribution rate and jackknife test, precipi-
tation of the warmest quarter (BIO18), mean temperature of the coldest 
quarter (BIO11), and temperature seasonality (BIO4) were the main 
environmental variables influencing the geographical distribution of 
I. persulcatus. According to the response curves, the presence probability 
of I. persulcatus was positively correlated with humidity but negatively 
correlated with temperature above 0 ◦C (Supplementary Fig. 4). 

As shown in Fig. 6, I. persulcatus was predicted to be able to inhabit in 
the northern hemisphere. Areas with high suitability for I. persulcatus 
were mainly located in the Baltic Sea states (such as Finland, Sweden, 
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Latvia, and Poland); western Russia; northern China; northern Japan; 
South Korea, and North Korea. Moreover, central and northwestern re-
gion of North America, including northern America, southern Canada, 
and west of Alaska, were also predicted as suitable habitats for 
I. persulcatus. Due to the restriction of ecological factors, the remaining 
areas of the world were unsuitable for the distribution of the tick species. 

4. Discussion 

Through the analysis of our integrated database, we found that 

I. persulcatus was distributed in 14 countries in the northern hemisphere, 
parasitized 46 species of hosts, and harbored 51 species of microor-
ganisms. The Maxent model predicted the most suitable habitats for the 
tick species. The present study provided a comprehensive elaboration of 
the potential public health risks of I. persulcatus and I. persulcatus-asso-
ciated agents in a global scale, facilitating cooperation in multiple fields 
and departments, and improving monitor, early warning, and control of 
I. persulcatus-borne diseases. 

The tick species was reported to distribute between 21◦ and 66◦ of 
north latitude in Eurasia, mostly in areas with a temperate continental 
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climate. The adult tick is usually active from early summer to fall. In the 
southern Russian Far East, the activity phase of the tick may be extended 
to early November due to the maritime climate [11]. This might be one 
of the reasons why I. persulcatus was widely distributed in Russia. 
Temperature is the main factor influencing the habitat of the tick spe-
cies. The life cycle of I. persulcatus includes four developmental phases. 
Its complete development requires that a sum of valid temperatures 
during the period was no less than 1400 ◦C, with a stable average 
temperature surpassing 10 ◦C [12]. The total of positive temperatures of 
May and June (above 15 ◦C) are the basis for consistent tick activity to 
complete the digestion of blood and nutrient storage [13]. Diapause is a 
low-temperature adaptation strategy for the tick that helps them survive 
under unfavorable external conditions and adjust their development and 
growth accordingly [11]. Besides, precipitation parameters in combi-
nation with thermal regime have considerable influence on I. persulcatus 
activity [14]. Also, the vegetation has an impact on the tick distribution 
to some extent. I. persulcatus prefers wetted biotopes with small open 
areas to high-mountainous area without large forests, reaching its 
maximum abundance in the subzone of mixed forest [15–17]. 

I. persulcatus was collected on 46 different host species according to 
our study, showing a wide host range and good adaptability. The tick 
species is a typical three-host species [11]. Larvae of I. persulcatus feed 
mainly on small mammals, nymphs feed on small and medium-sized 
mammals, and adults seek medium to large-sized hosts [18]. Notably, 
a total of 21 species of animals are found only in Russia, involving birds 
and rodents, indicating a higher risk of zoonosis. 

Canis lupus (dog), as a significant host of I. persulcatus, was reported 

to be parasitized by the tick species by 5 countries. Due to their ubiq-
uitous social interactions with human and widespread distribution, dog 
owners should raise awareness of preventing dogs from tick infestation; 
and measures should be taken to control tick-borne diseases in dogs, 
which might affect people in contact. Various birds, especially migratory 
birds, are potential disseminators of TBEV and Borrelia spp., and may 
play a more important role in the transmission of ticks and associated 
pathogens to remote areas than small feral rodents [19–22]. Riparia 
riparia, one of the animal hosts of I. persulcatus in Russia, migrates to 
Africa in winter [19]. Turdus pilaris, which is widely distributed in 
Europe, northern Asia, and Africa, typically winters in West and South 
Europe and Southwest Asia [23]. The migratory behavior of birds may 
bring a great risk of tick-borne infections to new biotopes on specific 
migration routes. It is imperative to establish a tick-borne pathogen 
surveillance network in birds and to conduct dynamic epidemiological 
surveys to confirm the role of wild birds in disease spread. 

I. persulcatus could carry 33 human pathogens, of which CRT had the 
highest prevalence at 26.88% (95%CI 17.77–37.08). I. persulcus consti-
tutes the main vector of CRT in Europe and Asia, and there exists an 
efficient transovarial transmission of this bacteria in the tick species 
[24]. A. phagocytophilum, a zoonotic bacterium that replicates in 
neutrophil granulocytes and elicits febrile disease in humans and ani-
mals [25], is the most reported pathogen in I. persulcatus, and mainly 
distributed in Russia and China. At present, Lyme disease is the most 
common tick-borne zoonosis in temperate regions of the northern 
hemisphere [18]. In Eurasia, B. afzelii and B. garinii, carried by 
I. persulcatus, are the main causative agents for the disease. B. afzelii 

Fig. 5. Geographical distribution of I. persulcatus-associated pathogens. 
A total of 32 pathogens were carried by I. persulcatus. SFTSV=Severe fever with thrombocytopenia syndrome virus. 
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primarily cause skin infection, while B. garinii is most commonly asso-
ciated with neuroborreliosis. Tick-borne encephalitis is the most sig-
nificant flavivirus infection involving central nervous system in Eurasia, 
which has been listed as a notifiable disease in the European Union since 
2012 [26,27]. There are three major subtypes of TBEV, of which the FE 
and Sib subtypes are mainly transmitted by I. persulcatus in western 
Europe and may lead to severe encephalitic symptoms or chronic in-
fections [26,28]. With the changes of climate and environmental con-
ditions, the expanding range of I. persulcatus and the increasing 
incidence of tick-borne encephalitis have become a growing problem 
[29]. Numerous emerging pathogens of public health concerns like 
Alongshan virus are also closely related to the tick species [30]. 
Therefore, more surveillance and investigations of I. persulcatus and 
associated pathogens are required to reduce the burden of tick-borne 
diseases. 

For now, studies predicting suitable habitats of I. persulcatus are 
particularly limited. In our model, BIO18, BIO11, BIO4, and BIO19 were 
major factors that contribute more than 80% of the model under current 
climate conditions. And the model shows that the distribution of the tick 
species was mainly determined by temperature and humidity. High 
temperature in the driest quarter was associated with a low probability 
of presence for I. persulcatus based on BRT models [31], indicating that 
low temperature is more suitable for the tick species. According to 
previous studies, the highly suitable habitats of I. persulcatus were pre-
dominantly located in northeastern China [32], which is consistent with 
our results. However, the prediction map in our study revealed that 
I. persulcatus might be able to inhabit more extensive areas than previ-
ously recorded, such as North America, where no available evidence 
with this tick species exists. In this area, two close relatives of 
I. persulcatus, Ixodes scapularis and Ixodes pacificus, were identified, all 
three of which belong to the Ixodes ricinus species complex and show 
high similarity in morphological and ecological features [11,33–35]. 
Further explorations and monitoring programs are needed to confirm 

the presence of I. persulcatus in the future. Tick distribution models can 
be used to predict where tick-borne infections might emerge in the 
absence of a thorough pathogen monitoring program [36]. Therefore, 
our results could be utilized to conduct control and management pro-
grams against I. persulcatus and to help identifying the emerging risk of 
I. persulcatus-borne diseases in an endemic area. 

There are several shortcomings in our study that should be pointed 
out. First, publication limitation could have been present due to the 
inclusion of only English and Chinese published studies. Second, 
detection methods, reagents, and sensitivities vary by research period, 
area, and design. Poor identification of some tick-borne pathogens in 
earlier published studies may result in a lack of detailed information 
about distribution or prevalence of the related pathogens in some areas. 
And full repertoire of the tick-borne pathogens should be assessed by 
large-scale metagenomic and transcriptomic studies. 

5. Conclusion 

In summary, I. persulcatus inhabits in a variety of countries of Eura-
sia, feeds on multiple hosts, and harbors various pathogens, which is a 
great public health concern. The predictive model demonstrates that the 
tick species is suitable to distribute in more extensive areas. An efficient 
tick-surveillance network should be enhanced to mitigate I. persulcatus 
and I. persulcatus-borne diseases. Multi-country and multi-department 
collaborations should be strengthened to promote the health of 
humans, animals, and ecosystems through communication, information- 
sharing, and group decision-making. Our study yields a new clue for 
clarifying the key points to control the outbreak of tick-borne diseases, 
and identifying where to implement tick surveillance strategies on a 
wider range. 

Fig. 6. Potential distribution map of I. persulcatus globally. 
Predicted probability of I. persulcatus occurrence are displayed on the backgrounds of Maxent-created ecological niche model. 
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