
sensors

Article

Robust and Accurate Hand–Eye Calibration Method
Based on Schur Matric Decomposition

Jinbo Liu * , Jinshui Wu and Xin Li

Hypervelocity Aerodynamics Institute, Chinese Aerodynamics Research and Development Center, Mianyang
621000, China; wjscardc@126.com (J.W.); lixin_nudt@163.com (X.L.)
* Correspondence: liujinbo1988@hotmail.com; Tel.: +86-137-7803-5431

Received: 4 September 2019; Accepted: 14 October 2019; Published: 16 October 2019
����������
�������

Abstract: To improve the accuracy and robustness of hand–eye calibration, a hand–eye calibration
method based on Schur matric decomposition is proposed in this paper. The accuracy of these
methods strongly depends on the quality of observation data. Therefore, preprocessing observation
data is essential. As with traditional two-step hand–eye calibration methods, we first solve the rotation
parameters and then the translation vector can be immediately determined. A general solution was
obtained from one observation through Schur matric decomposition and then the degrees of freedom
were decreased from three to two. Observation data preprocessing is one of the basic unresolved
problems with hand–eye calibration methods. A discriminant equation to delete outliers was deduced
based on Schur matric decomposition. Finally, the basic problem of observation data preprocessing
was solved using outlier detection, which significantly improved robustness. The proposed method
was validated by both simulations and experiments. The results show that the prediction error
of rotation and translation was 0.06 arcmin and 1.01 mm respectively, and the proposed method
performed much better in outlier detection. A minimal configuration for the unique solution was
proven from a new perspective.

Keywords: robotics; hand–eye calibration; Schur matric decomposition; observation data
preprocessing; outlier detection

1. Introduction

The combination of vision sensors and robots is a milestone in robotic intelligence, increasing the
extent and efficacy of robot applications [1–5]. Hand–eye calibration is an important technique for
bridging the transformation between a robot gripper and a robot vision sensor [6]. Its application is
mainly reflected in the robot’s hand–eye coordination, guiding the robot gripper to accurately target
and reach into a specified location using the machine vision system. From height work to surgery, the
more sophisticated the operation, the better robot hand–eye coordination required.

Many researchers have studied hand–eye calibration, and all current methods can be divided into
two categories: linear methods and iterative methods.

Linear methods are efficient and suitable for online hand–eye calibration. Shiu and Ahmad
first introduced the dynamic equation AX = XB into hand–eye calibration and provided minimal
configuration for a unique solution [6]. Tsai and Lens proposed a high-efficiency linear method
for the equation AX = XB [7]. Chou and Kamel expressed rotation matrices using quaternions
and obtained an analytical solution using Singular Value Decomposition (SVD) [8]. Lu and Chou
used an eight-dimension vector to express rotation and translation and obtained a least squares
solution [9]. Chen analyzed the relationship between screw movement and hand–eye calibration,
and then proved that the movement of the robot gripper and vision sensor must satisfy certain
geometric constraints [10]. Daniilidis solved rotation and translation simultaneously by means of a
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dual quaternion [11]. Park introduced canonical coordinates into the hand–eye calibration equation,
which simplified the parameters [12]. Shah constructed a closed-form solution and derived the minimal
configuration of the unique solution based on Kronecker product [13]. Compared with Daniilidis [11],
Shah’s method was more reliable and accurate. Iterative methods are mainly used to improve the
accuracy and robustness. Other authors [14,15] took the F norm of the rotation error and translation
error as the cost function, and then optimized it using nonlinear methods. Horaud expressed rotation
matrices using quaternions and simultaneously optimized the transformation between the robot-world
and hand and eye [16]. Strobl and Hirzinger proposed a new adaptive error model that helped improve
the solution to AX = XB and AX = ZB [17]. Ruland proposed a self-calibration method that took
projection error as its cost function and optimized it using branch-and-bound [18].

The accuracies of the above methods strongly depend on the quality of the observation data.
Therefore, preprocessing observation data is essential. Observation data preprocessing is rarely reported.
Schmidt et al. [19] proposed a preprocessing method based on vector quantization, which improved
the quality of observation data to a certain extent but could not identity outliers. The complexity
increased from O(N) to O(N4), which considerably decreased the method’s efficiency.

2. Description of Hand–Eye Calibration Problem

Figure 1 describes the hand–eye calibration problem. The symbols are notated as follows: Gi is
the robot gripper coordinate system, it is fixed on the robot gripper and moves together with it, Ci is
the camera coordinate system fixed on the camera that moves together with it and the origin point is
coincident with the camera’s optical center. The Z-axis is parallel to the optical axis, and the X and
Y axes are parallel to the X and Y axes of the image coordinate system. CW is the world coordinate
system and RW is the robot coordinate system that is fixed on the robot and moves together with it.
When the robot gripper moves, its controlling device can identify the gripper’s pose in RW.
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Figure 1. Description of the hand–eye calibration problem.

Ai is the homogenous transformation matric from Gi to RW, obtained from the robot
controlling device:

Ai =

[
RAi tAi

01×3 1

]
(1)

Bi is the homogenous transformation matric from CW to Ci, obtained using camera pose
estimation methods:

Bi =

[
RBi tBi

01×3 1

]
(2)

Aij is the homogenous transformation matric from Gi to Gj:
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Ai j = A−1
j Ai =

[
RAi j tAi j

01×3 1

]
(3)

Bij is the homogenous transformation matric from Ci to Cj:

Bi j = B jB−1
i =

[
RBi j tBi j

01×3 1

]
(4)

and X is the homogenous transformation matric from Ci to Gi:

X =

[
RX tX

01×3 1

]
(5)

i and j represent the ith and jth state of the robot gripper and camera respectively, ranging from 0 to N.
N is the number of movements. Since the robot gripper and camera are fixed, X is constant.

The hand–eye calibration equation can be represented by notations:

Ai jX = XBi j (6)

Two equations can be obtained based on the partition matric: RAi jRX = RXRBi j(
RAi j − I

)
tX = RXtBi j − tAi j

(7)

Equation (7) shows that RX is independent, but the accuracy of tX is related to RX.

3. Hand–Eye Calibration Method

3.1. Schur Matric Decomposition

A given matric can be simplified to a normalized form via similarity transformation. Considering
numerical stability, the similarity transformation of a unitary matric is the most attractive. Schur
matric decomposition can be simply described as: If A ∈ Cn×n, then a unitary matric that satisfies
UHAU = T = D + N exists, where D is a diagonal matric and N is a strictly upper triangular matric,
implicating ∀I ≥ j ni j = 0. For a real matric A, U is restricted to an orthogonal matric: UTAU = T. T has
the following form:

T =


T11 T12 · · · T1m
0 T22 · · · T2m
...

...
. . .

...
0 0 · · · Tmm

 (8)

Tii is a 1 × 1 or 2 × 2 matric consisting of complex conjugate eigenvalues. If RAi j is similar to RBi j

and eigenvalues of RAi j and RBi j are the same, the matric T related to RAi j and RBi j are the same.

3.2. Hand–Eye Calibration Principle

A0, B0 is notated as the initial state of the robot gripper and camera. (Ai0,i0)(i = 1, 2, . . . , N − 1, N)

is a series of homogenous transformation matrices related to their initial states. Without the loss of
generality, e.g., i = 1, only consider the equation related to the rotation in Equation (7):
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RA10 RX = RXRB10 (9)

From Theorem 1, proved in the Appendix A, the general solution can be written as:

RX = URA10
YUT

RB10
(10)

And

Y =


±1 0 0
0 c d
0 −d c

, c2 + d2 = 1 (11)

RX only depends on c and d. For arbitrary i = 1, 2, . . . , N – 1, N:

RAi0RX = RXRBi0 (12)

Substitute Equation (10) into Equation (12):

PiY = YQi (13)

where:
Pi = UT

RA10
RAi0URA10

, Qi = UT
RB10

RBi0URB10
(14)

Collate Equation (13) into equations only related to s = (c d)T.

Cis = Di (15)

Ci is a matric generated by the coefficients of c and d. Di is a matric generated by the constant
term. Then, the final linear equation system can be constructed:

Cs = D (16)

where,

C =


C1

C2
...

CN

, D =


D1

D2
...

DN

 (17)

This is a least squares problem with constraints:

s = argmin
{
sTKs− 2FTs

}
sTs = 1

(18)

where,

K = CTC, F = CTD, s =
[

c d
]T

(19)

Notate the cost function as:

J(s,λ) = sTKs− 2FTs + λ
(
1− sTs

)
(20)
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From ∂J(s,λ)
∂s = 0 and ∂J(s,λ)

∂λ = 0:

(K − λI)s = F, sTs = 1 (21)

Notate s = (K − λI)y and substitute it into previous equations:

(K − λI)2y = F (22)

K is a symmetrical matric, so

sTs = yT(K − λI)T(K − λI)y = yTF (23)

sTs = 1 is the same as yTF = 1:
F = FyTF = FFT y (24)

Because yTF = FTy: [
λ2I − 2λK +

(
K2
− FFT

)]
y = 0 (25)

This is a symmetrical second eigenvalue problem [20].
Solve the least squares solution of the Langrage multiplier through methods previously

published [21,22]. The least square solution of s is:

s = (K − λminI)−1F (26)

Under the condition
(
URA10

, URB10

)
, the least squares solution of RX is:

R1
X = URA10

Y(s)UT
RB10

(27)

An Ri
X exists for each i = 1, 2, . . . , N – 1, N. To weaken the effect of noise, fuse the matrices based

on the string distance of matrices. First, calculate the singular decomposition of the sum of Ri
X, i = 1, 2,

. . . , N – 1, N:
URDRVT

R = R1
X + R2

X + . . .+ Ri
X + . . .+ RN−1

X + RN
X (28)

Then:
RX = URVT

R (29)

To solve for tX, for the ith movement, the translation satisfies the following equation:(
RAi0 − I

)
tX = RXtBi0 − tAi0 (i = 1, 2, . . . , N − 1, N) (30)

Substitute Equation (29) into Equation (30):

HitX = Wi (31)

Then, a large linear equation system can be obtained:

HtX = W (32)

where,

H =
[

HT
1 HT

2 . . . HT
i . . . HT

N−1 HT
N

]T

W =
[

WT
1 WT

2 . . . WT
i . . . WT

N−1 WT
N

]T (33)

This problem can be solved using the least squares method [20].
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3.3. Outlier Detection

In practice, matrices Ai and Bi contain an observation error, notated as Âi and B̂i, respectively. Bi is
more sensitive to image noises. A poor environment may lead to a large observation error and, in this
case, the global optimization solution has no significance. This is a basic problem that considerably
decreases the robustness of hand–eye calibration and has not been well solved.

The form of Y is:

Y =


±1 0 0
0 c d
0 −d c

 (34)

RAi0 and RBi0 must satisfy Equation (13).

Pi =


P11

i P12
i P13

i
P21

i P22
i P23

i
P31

i P32
i P33

i

, Qi =


Q11

i Q12
i Q13

i
Q21

i Q22
i Q23

i
Q31

i Q32
i Q33

i

 (35)

For arbitrary c and d, Equation (36) is satisfied:∣∣∣P11
i −Q11

i

∣∣∣ ≤ ε (36)

which can be used to discriminate the quality of the observation data: if greater than a specific threshold
ε, then the observation data are outliers and should be deleted. The threshold ε is an empirical value.
Through setting its value, the observation data can be filtered. The lower the threshold ε, the higher
the quality of the observation data. In simulations and experiments, ε was set to 0.01. In summary, the
flowchart of the proposed method is described in Figure 2.Sensors 2019, 19, x FOR PEER REVIEW 7 of 18 
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3.4. Unique Solution Conditions

Assume the rotation matrices of two movements are A1, A2, B1, and B2, and X is known. From
Theorem 1 (Appendix A), the general solution of A1X = XB1 is:

X = UA1YUT
B1

(37)

where, Y is a matric only related to c and d. Substitute Equation (37) into the equation built by
two movements:

A1X = XB1, A2X = XB2 (38)

Substitute them into Equation (13) to obtain:{
P1Y = YQ1

P2Y = YQ2
(39)
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And
P1 = Q1 (40)

For Equation (39):
rank

(
CT

1 C1
)
= rank

([
CT

1 C1 CT
1 D1

])
= 0 (41)

Equation (41) is an identical equation.
If rotation axes of two movements are not parallel, P2 and Q2 are independent:

rank
(
CT

2 C2
)
= rank

([
CT

2 C2 CT
2 D2

])
= 2 (42)

From Theorem 2 proved in the Appendix A, if the rotation axes of N movements of the robot
gripper are parallel, there will be multiple solutions to the hand–eye calibration. Therefore, the minimal
configuration of the unique solution is that the robot gripper and camera move at least twice, and the
rotation axes cannot be parallel.

4. Results

4.1. Simulations

We designed simulations to test the performance of different hand–eye calibration methods.
The hand–eye calibration equation can be written as:

Ai jX = XBi j (43)

where, Aij and Bij are the movement of the robot gripper and camera from time i to time j, respectively.
Ai and Bi were simulated as the observation data. X is simulated as the transformation from the camera
to the robot gripper. Ai, Bi and X consist of rotation matrices and translation vectors. The rotation
matric can be generated using three Euler angles.

The simulations included three parts: analysis of noise sensitivity, relationship between the
number of movements and accuracy, and outlier detection ability. All the simulations were performed
using MATLAB. In addition to the proposed method, we selected another five popular methods for
comparisons [7,11–13,23]. For the ith simulation, R̃i

X and t̃i
X are the ideal transformation from the

camera to the robot gripper and R̂i
X and t̂i

X are the measured transformations. The error matric can be
calculated as:

Ri
error =

(
R̂i

X

)T
R̃i

X
ti
error = t̂i

X − t̃i
X

(44)

where, ki
error and θi

error are the rotation axis and rotation angle of Ri
error, respectively.(

ki
error,θ

i
error

)
= rodrigues

(
Ri

error

)
(45)

The errors of rotation and translation are defined as:

θerror = RMS
(
θ1

error,θ2
error, . . . ,θn−1

error,θn
error

)
terror = RMS

(
t1
error, t2

error, . . . , tn−1
error, tn

error

) (46)

where, n is the number of simulations.

4.1.1. Analysis of Noise Sensitivity

Gaussian rotation noise (µR = 0, σR = 0◦–5◦) and translation noise (µT = 0, σT = 0–5 mm) were
added into Ai and Bi (i = 1, 2, . . . , 9, 10). We ran 100 simulations at each noise level. The results
were shown in Figure 3, in which ‘Rot.’ represents ‘Rotation’ and ‘Trans.’ represents ‘Translation’.
Except for the dual quaternion method, translation perturbation had no effect on the rotation solution,
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because only the dual quaternion method solves rotation and translation simultaneously, whereas
other methods solve rotation and translation by steps.
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Figure 3. The relationship between calibration accuracy and observation errors: (a) Rotation errors in
observations and calibration errors of RX. (b) Rotation errors in observations and calibration errors
of tX. (c) Translation errors in observations and calibration errors of RX. (d) Translation errors in
observation and calibration errors of tX. Each point on the figure is the Root Mean Square (RMS) of
100 simulations.

4.1.2. Relationship between Number of Movements and Accuracy

The simulation conditions included σR = 0.2◦, σT = 2 mm, and the number of movements varied
from 3 to 15. We ran 100 simulations at each number of movements. Figure 4a,b indicates that the
accuracy of hand–eye calibration improves with the increase in the number of movements. When the
number of movements increases from three to eight, the accuracy of hand–eye calibration improves
considerably. Figure 4c,d demonstrates that the other five methods are more robust, except for the
dual quaternion method being unstable.
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Figure 4. The relationship between calibration accuracy and the number of movements: (a) The number
of movements and the calibration errors of RX. (b) The number of movements and the calibration
errors of tX. (c) The standard deviations of the calibration errors of RX. (d) The standard deviations of
the calibration errors of tX. Each point on the figure is the RMS of 100 simulations.

4.1.3. Outlier Detection

The simulation conditions were σR = 0.2◦, σT = 2 mm, and ε = 0.01. The robot gripper moved
10 times, in which large noise was added into n (n = 1, 2, 3, 4, 5, 6) movements randomly and these
observations were regarded as outliers. We ran 100 simulations at each number of outliers. Figure 5a,b
shows the relationship between calibration errors of RX and tX and the number of outliers, respectively.
Figure 5c,d depicts the performance of the proposed method. The results indicate that the proposed
method can detect outliers effectively and performs much better than the other five methods.
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4.2. Experiments

Determining poses of the robot gripper with high precision is costly, but movements of the robot
gripper can be measured precisely. Thus, most researchers adopt the following program to validate
hand–eye calibration methods: the camera moves N + n times, where the preview N times are called the
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calibration link and the last n times are called the verification link. The calibration link is used to solve
the transformation between the robot gripper and the camera. The verification link is used to verify
method accuracy by comparing its predicted movements with its true movements [3]. The predicted
movements of the robot gripper can be solved from the camera’s movements using Equation (47).
The true movements of the robot gripper can be obtained from its controlling device. A robot arm was
fixed with a camera, as shown in Figure 6a.
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For the calibration link:
(1) Fix 9 feature points on the platform as shown in Figure 6b. The three-dimensional (3D)

coordinates of feature points can be measured by Leica Total Station. All the feature points’ coordinates
remain unchanged during the experiment.

(2) At time 0, capture an image of the feature points on the platform. Calculate the camera’s pose
B0 through Perspective-n-Points (PnP) methods. The robot gripper’s pose A0 can be determined from
its controlling device.

(3) At time i, move the robot gripper and camera.
(4) Capture an image of the feature points on the platform. Calculate the camera’s pose Bi through

PnP methods. The robot gripper’s pose Ai can be determined from its controlling device.
(5) Repeat step (3)–(4) N times and (Ai0, Bi0) (i = 1, . . . , N–1, N) can be obtained.
(6) The transformation X from the camera to the robot gripper can be calibrated using all six

hand–eye calibration methods.
For the verification link:
(7) Repeat step (3)–(4) n times and (Ai0, Bi0) (i = N+1, . . . , N+n–1, N+n) can be obtained.
(8) The predicted movement Âi0 of the robot gripper can be calculated through Equation (47).

The true movement of the robot gripper Ai0 can be obtained from its controlling device.

Âi0 = XBi0X−1 (47)

(9) Comparing Âi0 with Ai0, the error matric can be calculated using Equation (48):

Ri
error =

(
R̂Ai0

)T
RAi0

ti
error = t̂Ai0 − tAi0

(48)
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ki
error and θi

error are the corresponding rotation axis and rotation angle of Ri
error, respectively:(

ki
error,θ

i
error

)
= rodrigues

(
Ri

error

)
(49)

The rotation and translation errors are defined as:

θerror = RMS
(
θ1

error,θ2
error, . . . ,θn−1

error,θn
error

)
terror = RMS

(
t1
error, t2

error, . . . , tn−1
error, tn

error

) (50)

The rotation error is in arcmin and the translation error is in mm.
In the experiment, N = 2–9 and n = 200. The results are shown in Table 1. The experiment results

indicate that the prediction error decreased with the increase in the number of movements and when
the robot gripper moved 9 times, the proposed method’s prediction accuracy of rotation exceeded 6
arcsec, which is much higher than the calibration accuracy in the simulations. The reason is explained
in the following.

Table 1. Prediction error: terror in mm and θerror in arcmin.

N
Proposed Tsai Inria Navy Dual Quaternion Shah

θerror terror θerror terror θerror terror θerror terror θerror terror θerror terror

2 10.14 5.49 10.14 7.06 10.14 6.23 10.17 5.25 10.21 8.70 10.14 5.63
3 10.10 4.63 10.10 6.21 10.14 6.20 10.14 5.10 10.14 7.08 10.10 4.71
4 10.07 4.06 10.10 5.77 10.10 4.74 10.10 4.97 10.14 6.18 10.10 4.16
5 9.83 3.94 10.07 4.15 10.07 3.79 10.07 4.62 10.10 4.17 9.86 4.04
6 0.96 2.46 0.96 3.67 1.30 3.61 2.16 3.54 3.81 3.98 1.34 2.60
7 0.44 1.57 0.51 3.51 0.51 3.60 0.51 1.87 1.78 3.64 0.72 1.75
8 0.37 1.15 0.37 2.76 0.41 2.51 0.44 1.77 0.44 2.27 0.37 1.20
9 0.06 1.01 0.27 2.47 0.34 2.27 0.41 1.19 0.41 1.82 0.20 1.05

Expand Equation (47) using a partition matric:

R̂Ai0 = RXRBi0R−1
X (51)

The prediction error consists of hand–eye calibration error and camera pose estimation error.
Hand–eye calibration error is notated as ∆RX. Then, the prediction error of Equation (51) can be
written as:

e = ‖RX∆RXRBi0 ∆R−1
X R−1

X −RXRBi0R−1
X ‖F ≤ λ‖∆RXRBi0 ∆R−1

X −RBi0‖F (52)

Equation (52) can weaken the effect of the hand–eye calibration error. This conclusion also applies
to the prediction error of translation. Thus, the prediction error in the experiment was much lower
than the hand–eye calibration error in the simulations.

5. Conclusions

A hand–eye calibration method with high accuracy and robustness was proposed in this paper.
Using this method, the basic problem of observation data preprocessing is solved by outlier detection,
which significantly improves robustness. However, two aspects remain to be studied. To improve
the method’s efficiency, we used the least squares optimization method with constraints. If no strict
need exists for efficiency, an iterative method could be considered. We decreased the rotation matric’s
dimension from three to two via Schur matric decomposition and unknown parameters satisfied the
constraint c2 + d2 = 1. If the following triangle transformation is adopted, the degrees of freedom
(DOFs) can be decreased from two to one. The Gröbner basis method can be used to solve polynomial
equations [24]:

c =
2 tan θ

2

1 + tan2 θ
2

, d =
1− tan2 θ

2

1 + tan2 θ
2

(53)
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Appendix A

Lemma 1. A is a 3 × 3 rotation matric and can be decomposed to Equation (55) based on Schur matric
decomposition:

A = UATAUT
A (54)

Then, TA can be written as:

TA =

[
1 01×2

02×1 T2×2

]
(55)

and T2×2 is a unit orthogonal matric:

T2×2 =

(
a −b
b a

)
(56)

Proof of Lemma 1. Because A is a unit orthogonal matric:

AAT = UATATT
AUT

A = I⇒ TATT
A = I (57)

TA can be written as:

TA =

[
1 T1×2

0 T2×2

]
(58)

Substitute TA into TATT
A = I: 1 + T1×2TT

1×2 = 1⇒ T1×2 =
[

0 0
]

T2×2TT
2×2 = I

(59)

Thus, T2×2 is a unit orthogonal matric. Notate:

T2×2 =

[
a c
b d

]
(60)

Then, 
a2 + c2 = 1
b2 + d2 = 1
ab + cd = 0
ad− bc = 1

⇒ (a− d)2 + (b + c)2 = 0 (61)

Thus, {
a = d

b = −c
(62)

The lemma has been proven. �

Lemma 2. For rotation matric A, B, C, D, and X:{
AX = XB
CX = XD

(63)
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and the Schur matric decompositions of A and B are as follows:{
A = UATAUT

A
B = UBTBUT

B
(64)

If the axis of A and B is parallel to the axis of C and D respectively, then:

UT
ACUA = UT

BDUB = M (65)

The form of M can be written as:

M =

[
1 0
0 M2×2

]
(66)

Proof of Lemma 2. UA and UB can be obtained by Schur matric decomposition. ka and kb are the axes
of A and B calculated through Rodrigues, respectively. θa and θb are the rotation angles. Then ka = Xkb,
θa = θb, kc = Xkd and θc = θd. Then, the rotation matrices can be written as:

A = (1− cosθa)E1
A + cosθaE2

A + sinθaE3
A

B = (1− cosθa)E1
B + cosθaE2

B + sinθaE3
B

C = (1− cosθc)E1
A + cosθcE2

A + sinθcE3
A

D = (1− cosθc)E1
B + cosθcE2

B + sinθcE3
B

(67)

Ei
A and Ei

B(i = 1, 2, 3) are linearly independent matrices generated from rotation axes. Any
orthogonal transformation has no effect on the property of independence:

UT
AAUA = (1− cosθa)UT

AE1
AUA + cosθaUT

AE2
AUA + sinθaUT

AE3
AUA

UT
BBUB = (1− cosθa)UT

BE1
BUB + cosθaUT

BE2
BUB + sinθaUT

BE3
BUB

UT
ACUA = (1− cosθc)UT

AE1
AUA + cosθcUT

AE2
AUA + sinθcUT

AE3
AUA

UT
BDUB = (1− cosθc)UT

BE1
BUB + cosθcUT

BE2
BUB + sinθcUT

BE3
BUB

(68)

Because UT
AAUA = UT

BBUB = T,

UT
AEi

AUA = UT
BEi

BUB(i = 1, 2, 3) (69)

The rotation angles of C and D are equal, then:

UT
ACUA = UT

BDUB (70)

Since, {
UT

ACUAT = UT
ACAUA

TUT
ACUA = UT

AACUA
(71)

and the axes of A and C are parallel,
AC = CA (72)

Thus,
UT

ACUAT = TUT
ACUA ⇒MT = TM (73)

From Lemma 1, M can be written as:

M =

[
1 0
0 M2×2

]
(74)

M22 is a unit orthogonal matric and Lemma 2 has been proven. �
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Theorem 1. A, X and B are 3 × 3 rotation matrices and AX = XB. The Schur decomposition of A and B can be
written as: {

A = UATAUT
A

B = UBTBUT
B

(75)

Notate Y = UT
AXUB. Then,

Y =


±1 0 0
0 c d
0 −d c

, c2 + d2 = 1 (76)

Proof of Theorem 1. Since A is similar to B, TA = TB = T. Substitute it into AX = XB, then:

UATUT
AX = XUBTUT

B ⇒ TY = YT (77)

From Lemma 1, T can be obtained:

T =

[
1 0
0 T2×2

]
(78)

Assume Y =

[
Y1×1 Y1×2

Y2×1 Y2×2

]
, then:


Y1×1 = Y1×1

Y1×2(T2×2 − I) ≡ 0
(T2×2 − I)Y2×1 ≡ 0

T2×2Y2×2 ≡ Y2×2T2×2

(79)

Due to arbitrariness,
Y1×2 =

[
0 0

]
Y2×1 =

[
0 0

]T (80)

Thus,

Y =

[
Y1×1 01×2

02×1 Y2×2

]
(81)

Assume

T2×2 =

[
a b
−b a

]
, Y2×2 =

[
c e
d f

]
(82)

then: 
ac + bd ≡ ac− be⇒ d = −e
ae + b f ≡ bc + ae⇒ f = c
−bc + ad ≡ ad− b f ⇒ f = c
−be + a f ≡ bd + a f ⇒ d = −e

(83)

Y is a unit orthogonal matric, so: {
c2 + d2 = 1
Y1×1 = ±1

(84)

The ± of Y11 is related to the determinant of UAUB. Because the determinant of X is greater than 0,
the symbol of Y11 is the same as the symbol of the determinant of UAUB. Theorem 1 has been proven. �

Theorem 2. If rotation axes of N movements of robot gripper are parallel, there will be multiple solutions to the
hand–eye calibration.
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Proof of Theorem 2. Assume rotation matrices of two movements are A1, A2, B1, and B2. X is an
unknown rotation matric. From Theorem 1, the general solution of equation A1X =XB1 can be obtained:

X = UA1YUT
B1

(85)

Y is a matric only related to c and d:

Y =


±1 0 0
0 c d
0 −d c

 (86)

Substitute the general solution into the second movement:

A2UA1YUT
B1

= UA1 YUT
B1

B2 ⇒ UT
A1

A2UA1Y = YUT
B1

B2UB1 (87)

From Lemma 2:

UT
A1

A2UA1 = UT
B1

B2UB1 = M =

[
1 01×2

02×1 M2×2

]
(88)

Thus,
MY ≡ YM (89)

The equation is an identical equation indicating that the second movement cannot provide any
extra constraint related to c and d.

In the same way, an N – 1 movement with same rotation axes cannot provide any extra constraint
related to c and d. The general solution applies to all equations built by N movements. Therefore,
hand–eye calibration problems with same rotation axes have multiple solutions. Theorem 2 has
been proven. �
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