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Simple Summary: The causative role of human papillomavirus (HPV) in sinonasal squamous
cell carcinoma (SNSCC) remains unclear and is hindered by small studies using variable HPV
detection techniques. This meta-analysis aims to provide an updated overview of HPV prevalence in
SNSCC stratified by detection method, anatomic subsite, and geographic region. From 60 eligible
studies, an overall HPV prevalence was estimated at 26%. When stratified by detection method,
HPV prevalence was lower when using multiple substrate testing compared to single substrate
testing. Anatomic subsite HPV prevalence was higher in subsites with high exposure to secretion
flow compared to low exposure subsites. HPV prevalence in SNSCC followed the global distribution
of HPV+ oropharyngeal squamous cell carcinoma. Taken together, this meta-analysis further supports
a role for HPV in a subset of SNSCCs.

Abstract: Human papillomavirus (HPV) drives tumorigenesis in a subset of oropharyngeal squa-
mous cell carcinomas (OPSCC) and is increasing in prevalence across the world. Mounting evidence
suggests HPV is also involved in a subset of sinonasal squamous cell carcinomas (SNSCC), yet small
sample sizes and variability of HPV detection techniques in existing literature hinder definitive
conclusions. A systematic review was performed by searching literature through March 29th 2020
using PubMed, Embase, and Web of Science Core Collection databases. Preferred Reporting Items
for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed by two authors inde-
pendently. A meta-analysis was performed using the random-effects model. Sixty studies (n = 1449)
were eligible for statistical analysis estimating an overall HPV prevalence of 25.5% (95% CI 20.7–31.0).
When stratified by HPV detection method, prevalence with multiple substrate testing (20.5%, 95%
CI 14.5–28.2) was lower than with single substrate testing (31.7%, 95% CI 23.6–41.1), highest in
high-exposure anatomic subsites (nasal cavity and ethmoids) (37.6%, 95% CI 26.5–50.2) vs. low-
exposure (15.1%, 95% CI 7.3–28.6) and highest in high HPV+ OPSCC prevalence geographic regions
(North America) (30.9%, 95% CI 21.9–41.5) vs. low (Africa) (13.1, 95% CI 6.5–24.5)). While small
sample sizes and variability in data cloud firm conclusions, here, we provide a new reference point
prevalence for HPV in SNSCC along with orthogonal data supporting a causative role for virally
driven tumorigenesis, including that HPV is more commonly found in sinonasal subsites with
increased exposure to refluxed oropharyngeal secretions and in geographic regions where HPV+
OPSCC is more prevalent.

Keywords: human papillomavirus; sinonasal squamous cell carcinoma; prevalence; detection method;
anatomic subsite
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1. Introduction

Human papillomavirus (HPV) has been identified as an etiological factor in a subset
of head and neck squamous cell carcinomas (HNSCC). HPV-driven tumors arise predomi-
nately in the oropharynx (oropharyngeal squamous cell carcinomas (OPSCC)), but also
in epithelial-derived tumors of the oral cavity, larynx and nasopharynx, albeit at signifi-
cantly lower prevalence [1,2]. OPSCC driven by HPV (HPV+ OPSCC) has unique biology,
epidemiology, and clinical behavior compared to OPSCC driven by carcinogen exposure.
Further, and perhaps most importantly, HPV+ OPSCC has improved treatment response
and overall survival [3–5]. At this time, detection of HPV in OPSCC is one of the only
clinically utilized biomarkers in HNSCC.

The first evidence for a potential etiological role of HPV in sinonasal squamous
cell carcinoma (SNSCC) tumorigenesis arose in 1983 with the detection of HPV DNA by
Syrjänen et al. [6]. Since this time, mounting histologic and epidemiologic evidence suggests
a subset of SNSCCs may be HPV-driven, and that similar to HPV+ OPSCC, HPV detection
in SNSCC may be a biomarker for improved survival [7–11]. However, small sample sizes
and variable HPV detection techniques, each with wide ranges in sensitivity and specificity,
continue to hinder definitive conclusions. Because of this, and: (1) improvements in HPV
detection techniques and (2) the changing prevalence of HPV+ OPSCC in the population,
we performed a meta-analysis of HPV in SNSCC, identifying 1458 cases for inclusion.
In addition to establishing a new point prevalence of HPV in SNSCC, using by far the
largest cohort to date, we also test orthogonal hypotheses which would support a role
for HPV-driven tumorigenesis in SNSCC, including that HPV prevalence will be highest
in: (1) subsites of the sinonasal cavities with the highest exposure to refluxed secretions
from the oropharynx and (2) geographic regions of the world with the highest HPV+
OPSCC prevalence.

2. Materials and Methods

A systematic review was performed by a medical librarian (L.C.) following the guidelines
of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) [12].

2.1. Literature Search

A search of published studies in Medline via Legacy PubMed (1946-), Embase.com
(1947-), and Web of Science Core Collection (1900-) was performed on 6 February 2020 to
identify relevant articles. Search strategies were customized for each database (Methods S1).
Each search utilized a combination of controlled vocabulary and keywords focused on
the concepts human papillomavirus, squamous cell carcinoma, and sinonasal. The search
was constructed to exclude non-human studies. No filters for language, study design,
date of publication, or country of origin were used in the search producing 1177 articles
(Figure 1). All references were exported into EndNote X7.8. Duplicates were removed
first by the automated process in EndNote and then manually by the librarian leaving
730 articles, which were exported into Covidence for study screening, selection, and data
extraction. The search was re-run on 29 March 2020 to update for the most recent literature
rendering 14 additional articles. Three subsequent articles were found through searching
the references of included articles making up a total of 747 articles for screening.
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Figure 1. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flowchart depicting the study
selection process.

2.2. Study Selection

Studies examining both SNSCC and HPV status in adult patients were considered
eligible for inclusion. Included SNSCC histology subtypes were non-keratinizing, kera-
tinizing, papillary, and basaloid squamous cell carcinoma. SCC in which the histological
subtype was not further specified was also considered eligible. Other SCC subtypes such
as adenosquamous and multi-phenotypic sinonasal carcinoma were excluded along with
studies not listing HPV detection methods or discussing cancers originating from the
nasopharynx, nasal vestibule, nasal ala or skin.

Extracted data comprised geographic region of the study, histology, anatomic subsite,
HPV status, HPV genotype, and HPV detection method. During the screening, any‘study
written in a language other than English, Dutch, Arabic, or German (languages spoken
by the authors) were excluded. Titles and abstracts were screened by two authors inde-
pendently (K.C.S.P. and T.M.) for full text review. The same two authors independently
conducted the full text review. Any disagreements in the screening process were settled by
discussion and consensus between the two authors. Disagreements that could not be settled
in this manner were settled in consultation with a third author (D.F.). All eligible studies
were screened for duplicate data by comparing authors, timeframe of data collection,
and outcomes. After full text screening, 69 studies remained for the quantitative synthesis.
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2.3. Statistical Analysis

Comprehensive Meta-Analysis (CMA) v3 (Biostat, Englewood, NJ, USA, 2013) was used
to conduct the statistical analysis. To minimize distortion of the results by outliers the CMA
program excludes all studies with a sample size of one patient. Using the random-effects
model, HPV prevalence estimates including 95% confidence intervals (CI) were computed
from sample size and event rates. In case of an event rate of 0% or 100%, the CMA
program adds 0.5 to event and non-event values for computation of logit event rates
and its variance. HPV prevalence was stratified by detection method, anatomic subsite,
and geographic region for descriptive comparison. Subsequently, separate meta-regressions
were performed to test the association of each study characteristic with HPV prevalence
estimates. Interstudy variability and between-study variance were assessed by Cochran’s
Q statistic [13,14]. The percentage of variation explained by true heterogeneity opposed
to sampling error was calculated with the I2 statistic [13]. Potential publication bias was
evaluated by generating a funnel plot and assessing its asymmetry with Egger’s Test [15],
Begg and Mazumdar Rank Correlation Test [16], and Duval and Tweedie’s “Trim and Fill”
method [17]. A sensitivity analysis was performed by removing one study at a time to
assess the influence of each individual study on the combined HPV prevalence. We assume
a two-sided p < 0.05 to be significant.

3. Results
3.1. HPV Prevalence

A total of 69 studies were included in the meta-analysis containing a total of 1458
patients with SNSCC (Table 1). There were 324/1458 HPV-positive cases comprising a crude
HPV prevalence of 22.2%. After removal of all studies with a sample size of one patient,
60 studies remained for statistical analysis. Estimated HPV prevalence rates ranged from
5.0 to 94.4%. Using the random-effects model, an overall prevalence rate was estimated at
25.5% (95% CI 20.7–31.0) (Table 1).
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Table 1. Overview of study characteristics. Table showing all 60 studies eligible for the statistical analysis including study characteristics, human papillomavirus (HPV) prevalence estimates
using the random-effects model, and forest plot. Study characteristics of the nine excluded studies are shown in grey.

Studies Included in Statistical Analysis 95% CI

Authors Year HPV+/Total Geographic
Region

Anatomic
Subsite Detection Method(s) Substrate Event Rate Lower Limit Upper Limit

Forest Plot of
Event Rate and

95% CI
Weights

(%)

Syrjänen et al. [18] 1987 1/2 Europe NC, SNNS ISH DNA 0.500 0.059 0.941
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Jo et al. [45] 2009 2/4 North
America SNNS ISH, p16 DNA + Protein 0.500 0.123 0.877 1.18
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Table 1. Cont.

Studies Included in Statistical Analysis 95% CI

Authors Year HPV+/Total Geographic
Region

Anatomic
Subsite Detection Method(s) Substrate Event Rate Lower Limit Upper Limit

Forest Plot of
Event Rate and

95% CI
Weights

(%)

Bishop et al. [50] 2012 2/9 North America SNNS ISH, p16 DNA + RNA +
Protein 0.222 0.056 0.579
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Paul et al. [63] 2017 2/6 Asia SNNS p16 Protein 0.333 0.084 0.732 1.39

Rooper et al. [64] 2017 2/22 North America NC, ES, MS,
SS, FS, SNNS ISH, p16 RNA + Protein 0.091 0.023 0.300 1.62

Beigh et al. [65] 2018 2/10 Asia SNNS PCR DNA 0.200 0.050 0.541 1.52
Owusu-Afriyie et al. [66] 2018 3/31 Africa SNNS p16 Protein 0.097 0.032 0.261 1.90

Udager et al. [67] 2018 10/36 North America SNNS PCR DNA 0.278 0.156 0.444 2.45
Jiromaru et al. [10] 2019 9/101 Asia NC, ES, MS, SS ISH, p16 RNA + Protein 0.089 0.047 0.162 2.51

Kim et al. [68] 2019 3/6 Asia NC PCR, p16 DNA + Protein 0.500 0.168 0.832 1.47
Quan et al. [69] 2019 18/96 Asia NC, MS p16 Protein 0.188 0.121 0.278 2.69

Sahnane et al. [70] 2019 3/31 Europe SNNS PCR, ISH, p16 DNA + Protein 0.097 0.032 0.261 1.90
Bulane et al. [71] 2020 4/25 Africa SNNS PCR DNA 0.160 0.061 0.357 2.04
Cabal et al. [72] 2020 6/74 Europe NC, MS, ES, SS PCR DNA 0.081 0.037 0.169 2.33
Cohen et al. [73] 2020 5/40 North America SNNS ISH, p16 RNA + Protein 0.125 0.053 0.267 2.20

Random-effects model 0.255 0.207 0.310
Studies excluded from statistical analysis

Brandwein et al. [74] 1989 1/1 North America SNNS ISH DNA
Bradford et al. [75] 1991 0/1 North America MS SB DNA

Gaffey et al. [76] 1996 1/1 North America SNNS SB, PCR, ISH DNA + RNA
Miguel et al. [77] 1998 0/1 South America MS PCR, DBH DNA

Badaracco et al. [78] 2007 1/1 Europe SNNS PCR DNA
Mirza et al. [79] 2009 1/1 North America SNNS ISH DNA

McLemore et al. [80] 2010 1/1 North America NC PCR, DBH DNA
Singhi et al. [81] 2010 0/1 North America SNNS ISH, p16 DNA + Protein

El-Salem et al. [82] 2019 1/1 North America SNNS PCR, p16 DNA + Protein

Abbreviations: NC = nasal cavity, SNNS = sinonasal area not specified, MC = maxillary sinus, ES = ethmoid sinus, FS = frontal sinus, NS = nasal septum, SS = sphenoid sinus.
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3.2. HPV Detection Method

There were 32 DNA-based studies, six protein-based studies, 12 DNA + protein-based
studies, two DNA + RNA-based studies, four RNA + protein-based studies, and two
DNA + RNA + protein-based studies. There were no studies using only RNA-based
detection methods. DNA-based detection methods included DNA in situ hybridization
(ISH), Southern blotting (SB), polymerase chain reaction (PCR), dot-blot-hybridization
(DBH), and slot-blot-hybridization (SBH). RNA-based detection methods included RNA
ISH and reverse transcriptase PCR (RT-PCR). Protein-based detection methods included
p16 IHC and NCL-PVp antibody detection. Due to the small sample size in the majority of
the subgroups, we categorized studies as either detecting a single HPV substrate (DNA-
based or protein-based) or detecting a combination of HPV substrates (DNA + protein-,
DNA + RNA-, RNA + protein-, or DNA + RNA + protein-based). Two studies, Deng et al.,
(2013) [53] and Larque et al., (2014) [54], first assessed HPV-positivity using DNA-based
testing and only conducted additional RNA-based testing on the HPV-positive tumors.
Since these studies show selection bias, both were excluded from this analysis. Additionally,
when looking at the distributions of other variables in the two subgroups, only the single-
agent testing group contained studies conducted in Africa. Since the three African studies
reported a low HPV prevalence and thereby bias the results, they were also excluded from
this analysis. The results of the 55 remaining studies are shown in Table 2.

Table 2. HPV Prevalence estimates stratified by detection method. (A). HPV prevalence stratified by single-agent testing
and multi-agent testing. (B). HPV prevalence stratified by single-agent testing, multi-agent testing using RNA, and all
multi-agent testing not using RNA.

Groups Random-Effects Analysis Heterogeneity

Detection Method No. of
Studies Events/Total Point

Estimate 95% CI Q-Value p-Value I2

A Single testing 35 152/583 0.317 0.236–0.411 - - -
Multi-testing 20 142/727 0.205 0.145–0.282 - - -

Total between study - - - - 3.878 0.049 -

B Single testing 35 152/583 0.317 0.236–0.411 - - -
Multi-testing without RNA 12 101/455 0.233 0.150–0.343 - - -

Multi-testing with RNA 8 41/272 0.165 0.088–0.287 - - -
Total between study - - - - 4.595 0.101 -

Overall 55 294/1310 0.261 0.208–0.322 - - 70.452 ˆ

ˆ Only calculated using the fixed-effects model.

As expected, HPV prevalence was lower when a combination of detection methods
was used, reflecting fewer false positives, compared to when DNA- or protein-detection
was used alone (Table 2A)—this difference was of border-line significance (Q = 3.88, p = 0.05,
I2 = 70.5%). Since the gold standard for determining a tumor is HPV-driven in OPSCC is
RNA-based testing, we also wanted to compare RNA-based to DNA- and protein-based
detection techniques. This is of particular importance as the diagnostic utility of p16
overexpression in SNSCC remains unclear. As there were no single RNA-testing studies,
we split the multi-agent testing group into either RNA (RNA + DNA, RNA + protein,
DNA + RNA + protein) or no RNA (DNA + protein). Again, in line with our expectations,
the RNA group yielded the lowest HPV prevalence (Table 2B); however, the difference
across the three groups was not statistically significant (Q = 4.60, p = 0.10, I2 = 70.5%).

3.3. Anatomic Subsite

We next considered HPV prevalence stratified by sinonasal subsite. These data existed
in 20 studies. The remaining 40 studies did not specify sinonasal subsite. We catego-
rized anatomic subsites as either high-exposure to refluxed oropharyngeal secretion flow
(nasal cavity and ethmoids), or low-exposure (maxillary, frontal, and sphenoid sinuses).
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In line with our hypothesis, analysis using the random-effects model yielded the highest
HPV prevalence in high-exposure subsites (37.6%, 95% CI 26.5–50.2) and lower prevalence
in less exposed subsites (15.1%, 95% CI 7.3–28.6) (Figure 2A) with the prevalence of un-
specified sinonasal area (likely a combination of all subsites) in the middle (25.6%, 95% CI
20.1–31.7) (Figure 2B).
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3.4. Geographic Region

Data for HPV prevalence stratified by geographic region were available for 59 studies.
Three studies were conducted in Africa, 18 in North America, 19 in Asia, and 19 in Europe.



Cancers 2021, 13, 45 9 of 17

No studies were available for analysis from South America or Oceania. Using the random-
effects model, the highest HPV prevalence estimate was found in North America (30.9%,
95% CI 21.9–41.5), in line with existing literature using the National Cancer Database
(32.0%) [9,83], and the lowest in Africa (13.1%, 95% CI 6.5–24.5). These trends mirrored
HPV prevalence of OPSCC after matching for countries of origin (Figure 3). Remarkably,
when examining data from North American studies only, high risk subsites showed HPV
detection rates approaching those seen in OPSCC (Figure 4B).
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Figure 3. HPV prevalence in sinonasal squamous cell carcinoma (SNSCC) stratified by geographic region
for oropharyngeal squamous cell carcinoma (OPSCC) and SNSCC demonstrating paired prevalence
rates using the random-effects model. Studies from India and Japan were removed from the Asian
SNSCC data as they were felt to introduce bias as these counties were not represented in the OPSCC
data. * Source: Jalouli et al., (2010) [84] and Jalouli et al., (2012) [85]. ˆ Source: Ndiaye et al., (2014) [86].

3.5. Analysis of Validity, Sensitivity, Data Trends and Publication Bias

The included studies show a significant amount of interstudy variability: Cochrane’s
Q = 188.23 (p < 0.001); I2 = 68.7%. Studies included in the subgroup analysis for detection
method (single- vs. multi-agent testing) and anatomic subsite were significantly heteroge-
neous (Q = 3.88, p = 0.05; I2 = 70.5% and Q = 6.81, p = 0.03, I2 = 63.5%, respectively), but not for
geographic regions (Q = 5.82, p = 0.12). Meta-regression results indicated that both detection
method ((Q = 3.54, p = 0.06), with a border-line significance, and anatomic subsite (Q = 6.33,
p = 0.04) were associated with the outcome (Table S1). However, due to limited number
of studies and sample sizes we were unable to include all three covariates in one model.
Our outcomes show a constant presence of interstudy variability limiting the conclusions
which can be drawn. Of note, intra-study sample size increased across time, as did the use of
RNA and multi-substrate testing, leading to more high yield studies (Figure S1).



Cancers 2021, 13, 45 10 of 17

Cancers 2021, 13, x FOR PEER REVIEW 10 of 17 
 

 

 
Figure 4. HPV prevalence by subgroup. (A). Bar chart depicting an overview of HPV prevalence per subgroup. (B). HPV 
prevalence per subgroup using only data from North America. (C). North American data stratified by testing method. 

Sensitivity analysis conducted by removing one study at a time showed a relatively 
stable HPV prevalence estimate with the random-effects model with the lowest HPV prev-
alence of 24.3% (95% CI 19.9–29.3) when the study by Saegusa et al., (1999) [35] was re-
moved and the highest HPV prevalence of 26.2% (95% CI 21.3–31.7) when the study of 
Liu et al., (2016) [61] was removed. 

Begg and Mazumdar’s rank correlation test yielded a Kendall’s tau b with continuity 
correction of 0.245 with a one-tailed p-value of 0.003 showing significant funnel plot asym-
metry (Figure S2). Duval and Tweedie’s Trim and Fill method using the random-effects 
model imputed 14 missing studies and yielded an adjusted HPV prevalence of 19.1% (95% 
CI 14.8–24.3). However, Egger’s test showed no statistical evidence for publication bias 
with an intercept (B0) of 46.3 (95% CI −0.540–1.465) with t = 0.924, df = 58, and one-tailed 
p-value of 0.180. 

4. Discussion 
HPV+ OPSCC is increasing in prevalence across the world and has now surpassed 

cervical cancer as the most common HPV-mediated malignancy. HPV status is a critical 
biomarker for OPSCC, signifying improved response rates to treatment and improved 
survival [3]. HPV+ OPSCC now necessitates its own staging criteria in the American Joint 
Committee on Cancer, Eighth edition, separate from the OPSCC caused by carcinogen 
exposure, and the rest of HNSCCs [87]. Because of the strong prognostic implications of 
HPV compared to carcinogen-driven tumorigenesis in HNSCC, considerable interest ex-
ists in the role of HPV in subsites outside the oropharynx. Numerous distinct cohorts of 
patients with HNSCC who lack carcinogen exposure have been interrogated as potential 

Figure 4. HPV prevalence by subgroup. (A). Bar chart depicting an overview of HPV prevalence per subgroup. (B). HPV preva-
lence per subgroup using only data from North America. (C). North American data stratified by testing method.

Sensitivity analysis conducted by removing one study at a time showed a relatively
stable HPV prevalence estimate with the random-effects model with the lowest HPV
prevalence of 24.3% (95% CI 19.9–29.3) when the study by Saegusa et al., (1999) [35]
was removed and the highest HPV prevalence of 26.2% (95% CI 21.3–31.7) when the study
of Liu et al., (2016) [61] was removed.

Begg and Mazumdar’s rank correlation test yielded a Kendall’s tau b with continuity
correction of 0.245 with a one-tailed p-value of 0.003 showing significant funnel plot
asymmetry (Figure S2). Duval and Tweedie’s Trim and Fill method using the random-
effects model imputed 14 missing studies and yielded an adjusted HPV prevalence of 19.1%
(95% CI 14.8–24.3). However, Egger’s test showed no statistical evidence for publication
bias with an intercept (B0) of 46.3 (95% CI −0.540–1.465) with t = 0.924, df = 58, and one-
tailed p-value of 0.180.

4. Discussion

HPV+ OPSCC is increasing in prevalence across the world and has now surpassed
cervical cancer as the most common HPV-mediated malignancy. HPV status is a critical
biomarker for OPSCC, signifying improved response rates to treatment and improved
survival [3]. HPV+ OPSCC now necessitates its own staging criteria in the American Joint
Committee on Cancer, Eighth edition, separate from the OPSCC caused by carcinogen
exposure, and the rest of HNSCCs [87]. Because of the strong prognostic implications
of HPV compared to carcinogen-driven tumorigenesis in HNSCC, considerable interest
exists in the role of HPV in subsites outside the oropharynx. Numerous distinct cohorts of
patients with HNSCC who lack carcinogen exposure have been interrogated as potential
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HPV-mediated tumors, for example, oral tongue squamous cell carcinoma in young non-
smoking patients. However, multiple studies have refuted this hypothesis [88–90]. Overall,
less than 5% of HNSCCs outside the oropharynx appear to be HPV-driven, based on
genomic interrogation of over 500 HNSCCs in The Cancer Genomes Atlas (TCGA) [91].
Of importance, the TCGA cohort excluded rare subsites, including SNSCC.

Cancer of the nasal and paranasal sinuses account for <3% of head and neck tu-
mors, with SNSCC being the most common histologic subtype, comprising about half of
cases [9,92–94]. Due to the nonspecific nature of initial symptoms, patients often present
at a locally advanced stage [9,95,96]. The proximity of these malignancies to critical
anatomic structures means treatment carries significant morbidity and poor overall sur-
vival [9,10,95–97]. Interest in the role of HPV in SNSCC spans back numerous decades [98].
A wide range of HPV detection rates in SNSCC have been reported, varying from 0 to
100% [8,10,20,38,44,54,67,69,99]. Major barriers to progress in defining the role of HPV
in SNSCC include: (1) the relative rarity of SNSCC and thus published literature often
utilizing small, single institution cohorts, (2) the use of disparate HPV detection tech-
niques with significant variation in sensitivity and specificity for HPV, (3) few studies
using “gold standard” platforms (E6/E7 mRNA detection with ISH or RT PCR) to demon-
strate transcriptionally active HPV, ruling out a contamination or “bystander” infection
and (4) exclusion of SNSCC from TCGA and a dearth of comprehensive genomic studies
examining SNSCC at the DNA and RNA level [86,100–102].

Our systematic literature review revealed only one meta-analysis, using <500 pooled
cases, from 35 studies published prior to 2012 [103]. In this study, the authors calculated an
overall HPV prevalence rate of 27.0%. In addition to the small sample size, a number of
critical limitations exist in applying the findings to our primary endpoints here, including:
(1) a focus only on SNSCC arising from papillomas, which are a distinct subgroup of SNSCC
and (2) a complete lack of RNA-based or multiple substrate testing studies, which are
significantly more likely to approximate a “true” HPV-mediated cancer prevalence rate.
Since 2012, significant interest in the role of HPV in SNSCC has led to a notable increase
in the available pooled cohort for analysis (69 studies identified out of 747 screened,
yielding 1458 cases). Additionally, the number of RNA-based and multi-substrate testing
studies, and size of cohorts published have both increased across time, yielding more high
quality studies.

Here, we aimed to provide an updated overall point prevalence for HPV detection in
SNSCC using a larger and more contemporary cohort, and an estimate of the prevalence
of SNSCCs likely to be driven by HPV, using multi-substrate testing as a benchmark,
to increase specificity above DNA detection alone. Additionally, we hypothesized that if a
subset of SNSCCs is indeed driven by HPV, orthogonal data should support this, including:
(1) increased HPV prevalence in sinuses with more exposure to refluxed secretion flow
from the oropharynx and (2) higher HPV+ SNSCC prevalence rates in regions of the world
with higher HPV+ OPSCC prevalence. Using the random-effects model, we found an
overall HPV point prevalence of 26%. When sub-stratified by single- vs. multi-substrate
testing, we identified a prevalence of 21% for multi-substrate testing, which we posit
should represent a more accurate number for estimating HPV-driven SNSCC from the
cohort available here. As expected, prevalence decreased in a stepwise fashion when tests
with increasing specificity were applied. Unfortunately, there were no studies using gold-
standard RNA-based detection techniques alone, which met inclusion criteria for the study.
This highlights the need for additional, large cohort studies using RNA-based detection
methods. It should further be noted that while p16 overexpression is a widely recognized
surrogate marker for high risk HPV in OPSCC, whether p16 is a sensitive and specific
marker for SNSCC has not been well established. In our systematic literature review we
found 18 studies using both p16 IHC and DNA- and/or RNA-based HPV testing. However,
the majority of the studies were too small to make a statement on the reliability of p16 IHC.
Eight studies reported correlations of 69–100% between p16 overexpression and positive
HPV status [10,11,19,22,81,84,90,97]. Reported sensitivity for p16 ranged from 88 to 100%
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and specificity from 67 to 100% [10,11,19,84,97]. Predictive values were calculated in three
studies, all comparing p16 IHC to RNA-based HPV testing [10,84,90]. Positive predictive
values ranged from 50 to 94% and negative predictive values ranged from 94 to 100%.

In line with our hypotheses, we found the highest HPV prevalence in sinonasal sub-
sites with the greatest exposure to refluxed secretion flow from the oropharynx and the
lowest prevalence in sinuses more remote from routine exposure, i.e., the more anterior,
cranial and posterior sinuses, each of which also possess restrictive ostium. High-exposure
subsites had HPV prevalence rates more than double low-exposure sites (38% vs. 15%).
Interestingly, HPV prevalence rates by subsite mirror reported overall survival rates strat-
ified by subsite with frontal and sphenoid sinuses having the lowest survival and nasal
cavity having the highest survival [104,105]. Considering HPV+ OPSCC’s improved sur-
vival compared to non-HPV OPSCC, in part due to improved responsiveness to current
treatment schemas and existing studies suggesting HPV+ SNSCCs have improved sur-
vival compared to non-HPV SNSCC, additional studies will be needed to parse out the
relationship between sinonasal subsite, HPV status and survival [9].

Additionally, we found considerable variation by geographic region, which aligned
with HPV+ OPSCCs rates. For example, overall HPV prevalence was highest in North
American studies and lowest in African studies in both OPSCC (using previously pub-
lished cohorts) and SNSCC, with SNSCC HPV prevalence rates in both cohorts being
approximately 50% of the OPSCC rate. Remarkably, when restricting to examination of
high risk subsites in North American studies (those most likely to be HPV positive), preva-
lence rates approximate HPV prevalence rates in the oropharynx in some parts of the US
(52%). Additional large cohort studies using RNA-based detection techniques are needed
to evaluate if these findings remain true, as sample sizes available for these sub-analyses
are small.

This study has a number of limitations which relate to the status of exiting literature.
First, sample sizes of available studies are small, with 27 of the 60 studies included in the
analysis having a sample size of under ten patients (36 of 69 studies, total). Second, there is
significant heterogeneity of HPV testing methodologies, each of which have variable
sensitivity and specificity. Additionally, the majority of studies (37/69) use DNA testing
alone, which may not represent a tumor driven by HPV but instead contamination or a
bystander infection. Small sample sizes and heterogeneity of the datasets, as highlighted
by the Q and I2 statistics make definitive conclusions challenging (Table S2). Despite this,
findings of this analysis are in line with our pre-existing hypotheses, increasing confidence
in our conclusions. Due to the high levels of heterogeneity between datasets and the large
number of missing variables needed to accurately perform subgroup analyses, we chose not
to evaluate certain factors which are likely to impact true HPV+ SNSCC prevalence rates
such as association with papilloma, histologic subtypes and viral genotype [7]. Of note,
recent reports have highlighted SNSCCs which arise from inverted papillomas and are
associated with low risk HPV types 6/11 [106]. The role, and prevalence, of low risk HPVs
in SNSCCs were not evaluated here. Future studies should focus on reporting the results of
genotype-specific assays. Lastly, a recently recognized histologic variant of sinonasal cancer
is HPV-related multiphenotypic sinonasal carcinoma (HMSC). HMSC is formerly known
as HPV-related carcinoma with adenoid cystic-like features and is strongly associated
with HPV-33 [107]. HMSC is characterized by mixed phenotypes including squamous
differentiation, resembling SNSCC in some cases. While we excluded HMSC from our
search, it is possible that our dataset includes HMSC mistaken for SNSCC, particularly in
the studies published prior to HMSC’s first description in 2012 [108].

5. Conclusions

Here, we provide a new reference point prevalence for HPV in SNSCC, stratified by
detection method, along with orthogonal data supporting a causative role for virally driven
tumorigenesis in SNSCC. Small sample sizes, high interstudy variability and missing data
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such as genotype-specific incidence highlight the need for large prospective evaluations of
HPV in SNSCC and detailed genomic studies to further clarify the role of HPV in SNSCC.

Supplementary Materials: The following are available online at https://www.mdpi.com/2072-6
694/13/1/45/s1, Figure S1: Sample size against year of study publication, Figure S2: Funnel plot,
Table S1: Meta regression results, Table S2: Heterogeneity analyses for HPV prevalence subgroups
using the fixed-effects model, Methods S1: Complete PubMed Search.
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