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Introduction

Inorganic phosphate (Pi) is essential for various cellular

metabolism and skeletal mineralization. It is an essential

part of nucleic acids and the cell membrane, serves as an

important mediator of intracellular signaling, and regulates

protein activity. About 600 g (500-700 g) of phosphorus

is present in normal adults, of which 80% to 85% is present

in bone mineral. In serum, most of the phosphorus is pres-

ent as Pi in normal concentration of 0.75 to 1.45 mmol/L

(2.5 to 4.5 mg/dL). More than 85% of Pi in serum is present

as the free ion and less than 15% is protein-bound. Free

HPO4
2-
and NaHPO4

-
predominantly account for ~75% of

the total phosphorus and free H2PO4
-
accounts for ~10%.
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Major determinants of serum phosphorus concentration are

dietary intake and gastrointestinal absorption of phospho-

rus, mainly via upper small intestine, urinary excretion of

phosphorus, and shifts between the intracellular and ex-

tracellular spaces. Abnormalities in any of these steps can

result either in hypophosphatemia or hyperphosphatemia
1,

2)
. Lower than age-appropriate levels of serum phosphorus

are associated with severe skeletal defects and growth fail-

ure, unless appropriately treated
3, 4)

. The kidney is a major

regulator of Pi homeostasis by reabsorptive capacity. Renal

Pi excretion is the balance between free glomerular filtra-

tion and regulated tubular reabsorption. Under normal

physiological conditions, 80-90% of filtered phosphorus is

reabsorbed and the rest is excreted in the urine. Renal tubu-

lar reabsorption occurs primarily in proximal tubules by

way of a transmembrane Na
+
gradient-dependent process

(Na
+
/Pi cotransport) located on the apical brush border

membrane
5)
. Most of the hormonal and metabolic factors
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that regulate renal tubular Pi reabsorption, including altera-

tions in dietary phosphate content and parathyroid hor-

mone, have been shown to modulate the proximal tubular

membrane expression of the type II Na
+
/Pi cotransporter

protein
1, 6)

. Molecular and biochemical features of clinical

disorders associated with abnormal Pi handling led to the

identification of several genes and proteins involved in the

maintenance of the Pi homeostasis.

Renal tubular phosphate reabsorption

1. Cellular mechanism

Renal Pi reabsorption occurs in the proximal tubule and

involves the transport of Pi from the tubular lumen across

the apical brush-border membrane (BBM). And then Pi ab-

sorbed by BBM Na
+
/Pi cotransporters leaves the cell via

the basolateral transport pathway. Na
+
-dependent and Na

+
-

gradient (outside>inside) mechanism is maintained by the

Na
+
,K

+
-ATPase pump on the basolateral membrane.

2. Phosphate transport molecules

Three types of Na
+
/Pi cotransporters (types I-III; solute

carrier series SLC17, SLC34, and SLC20, respectively, in

the human gene nomenclature database) have been identi-

ied in the proximal tubules of the rat kidney
3,4)
. The type

I Na
+
/Pi transporter is expressed in the liver and kidney

3)
.

Its expression and activity are not regulated by the dietary

phosphate or PTH status. Recent studies suggest that ex-

pression of the type I gene (Npt1) is transcriptionally regu-

lated
7)
and that Npt1 may function as a modulator of in-

trinsic cellular Pi transport rather than a Na
+
/Pi co-

transporter
8)
, but its role in the regulation of Pi homeostasis

remains unclear
9)
. By contrast, the type II Na

+
/Pi co-

transporter (NPT2, NaPi2, NaPi3) is the major molecule

in the renal proximal tubule and is regulated by Pi, para-

thyroid hormone, fibroblast growth factor 23 (FGF23)

(except Type IIb), and by 1,25-dihydroxyvitamin D

(1,25(OH)2D) and it is responsible for most of Pi re-

absorption in the kidney and intestine
5, 10, 11)

. Recently,

three highly homologous isoforms of NPT2 have been

identified. NPT2a (Type IIa) is mainly expressed in the

kidney. The type IIa Na
+
/Pi transporter (SLC34A1) is a

key mediator of Pi reabsorption in the renal proximal tu-

bules and is affected by various hormones. The type IIa

and type IIc Na
+
/Pi transporter is located in the apical mem-

branes of renal proximal tubular cells
3)
. Beck et al.

12)
dem-

onstrated that disruption of the Npt2a gene in mice

(Npt2a
-/-
mice) leads to increased urinary Pi excretion and

to a 70-80% reduction in luminal BBM Na
+
-dependent Pi

transport, which then results in hypophosphatemia. Type

IIb Na
+
/Pi cotransporter, which exhibits wide tissue dis-

tribution and is not expressed in the kidney, is likely re-

sponsible for intestinal absorption of Pi
13)
. Type IIc Na

+
/Pi

cotransporter is identified as the growth-related Pi trans-

porter expressed in the kidney
14)
. Recent studies have led

to the identification of homozygous or compound hetero-

zygous mutations in SLC34A3, the gene encoding the

Na
+
/Pi cotransporter NPT2c, in patients affected by HHRH

(hereditary hypophosphatemic rickets with hypercal-

ciuria)
15-17)

. These findings indicate that NPT2c has a more

important role in phosphate homeostasis than previously

thought. Regulation of the type IIc Na
+
/Pi transporter by

PTH and dietary phosphorus resembles that of the type

IIa Na
+
/Pi transporter. Increases in the expression of type

IIa Na
+
/Pi transporter results from hypophosphatemia

quickly however, type IIc appears to act more slowly. Type

III Na
+
/Pi transporters have been identified and show a low

homology with other Na
+
/Pi cotransporters

18, 19)
. These pro-

teins have been known as receptors for gibbon ape leuke-

mia virus (Glvr) and murine amphotropic retrovirus

(Ram-1)
19)
. In contrast to type I and type II Na

+
/Pi co-

transporters, type III Na
+
/Pi cotransporters (PiT1 and PiT2)

are ubiquitously expressed in most species and particularly

abundant in the kidney, liver, lung, muscle, heart, and

brain
19)
. Furthermore, PiT1 and PiT2 function as Na

+
-de-

pendent Pi transporters
19)
. PiT is involved in the regulation

of bone mineralization. In the kidney, type III Na
+
/Pi co-

transporters are responsible for basolateral Pi influx in all

tubular cells. Furthermore, studies suggest that elevated Pi

stimulates smooth muscle cell phenotypic transition and

mineralization via the activity of the type III Na
+
/Pi co-

transporters
18)
. Thus, the type III transporters are likely to

serve as a housekeeping function and act as important me-
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diators of cell-mediated matrix mineralization.

3. physiological regulation

Physiological regulation of Pi reabsorption involves, at

the molecular level, an altered expression of a brush-border

Na
+
/Pi cotransporter protein (type IIa Na

+
/Pi cotranspor-

ter)
1)
. PTH, vitamin D, and dietary Pi intake have long been

known as major regulators of serum phosphorus
5)
. In the

proximal tubules, PTH inhibits reabsorption of phosphorus

via effects on NPT2a and NPT2c
11, 20, 21)

. In the proximal

tubule, PTH also acts as an inducer of mRNA encoding

25-hydroxyvitamin D-1 -hydroxylase,α resulting in the for-

mation of 1,25(OH)2D. Proximal tubular biosynthesis of

1,25(OH)2D is also induced by low serum phosphorus.

Circulating 1,25(OH)2D enhances the intestinal absorption of

calcium and, to a lesser extent, phosphorus. It also suppresses

the biosynthesis and secretion of PTH and stimulates FGF23

synthesis. Vitamin D is suggested to increase/stimulate prox-

imal tubular Pi reabsorption. 1,25(OH)2D treatment of rats

was found to stimulate BBM Na
+
/Pi cotransport

22)
. In recent

studies, not only Npt2a but also Npt2c are concerned in Pi

regulation. PTH and high Pi intake inhibit Na
+
/Pi cotransport

across the BBM by altered expression of Npt2a and Npt2c

proteins from the BBM to the subapical compartment. On

the other hand, low dietary Pi intake and removal of PTH

(parathyroidectomy) lead to an increase in BBM Na
+
/Pi co-

transport
11)
. FGF23, a novel regulator of renal Pi handling,

inhibits both types IIa- and IIc-mediated Na
+
/Pi cotran-

sport
20)
. Various hormonal and non-hormonal factors con-

trol proximal tubular Pi reabsorption by stimulation or in-

hibition of BBM Na
+
/Pi cotransport

1)
.

Novel factors regulating Pi homeostasis

1. PHEX

PHEX (Phosphate regulating gene with homologies to

Endopeptidase, on the X chromosome) is profusely ex-

pressed on the surface of bone and teeth. The bone ex-

pression is localized to osteoblast, osteocyte, and odon-

toblasts. PHEX gene expression occurs in vitro and in vivo

during osteoblast differentiation, and loss of PHEX func-

tion results in defective mineralization
22)
. PHEX also plays

a major role in renal phosphate handling but is not ex-

pressed in the kidney, suggesting the secondary involve-

ment of a circulating systemic factor. Recent studies con-

firm that, under normal conditions, PHEX gene expression

degrades and inactivates hormone-like substances. The

"circulating factor" called phosphatonins promotes phos-

phate excretion and impairs bone mineralization. Therefore

PHEX may also play a key role in phosphate homeostasis

and mineralization
23)
. PHEX gene mutations lead to under-

expression of the Na
+
/Pi cotransporter in the kidney

24)
. In

patients with X-linked hypophosphatemia (XLH), in-

activating mutations of PHEX probably result in a failure

to inactivate the phosphatonins.

2. FGF23

FGF23 is a recently identified member of the fibroblast

growth factor family. FGF23 is thought to be one of the

key molecules involved in the regulation of phosphate ho-

meostasis and skeletogenesis
25)
. FGF23 is required for nor-

mal phosphate balance and acts by suppressing both the

reabsorption of phosphate in the renal tubule and the bio-

synthesis of 1,25(OH)2D. In human studies, and partic-

ularly in rodents, changes in serum phosphorus levels have

been found to regulate serum FGF23
26-28)

. FGF23 causes

hypophosphatemia when injected into mice, and mice with

ablation of the FGF23 gene have hyperphosphatemia and

high levels of 1,25(OH)2D
29)
. Furthermore, injection of

FGF23 in mice decreases NPT2a levels and suppression

of 1 -hydoxylaseα
30)
. Excess circulating FGF23 concen-

tration leads to marked depression in proximal renal tubu-

lar reabsorption of Pi. Recent studies have showed regu-

latory feedback mechanisms that involve the old and new

regulators of phosphate homeostasis. It has been shown

that 1,25(OH)2D acts as a positive regulator of FGF23 ex-

pression in bone, as demonstrated by both in vivo and in

vitro studies
31)
. FGF23 expression in bone is normally sup-

pressed by PHEX. So deficiency of PHEX results in in-

creased serum FGF23 and renal phosphate wasting (as seen

in patients with XLH). FGF23 also inhibits PTH synthesis

in the parathyroid
32)
. Recent studies suggest that FGF23

acts via known FGF receptor (FGFR). In cultured opossum
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kidney cells, a cell line with a proximal tubular phenotype,

FGF23 binds to the FGFR type 3c
33)
. Klotho, a membrane

bound protein with -glucuronidase activity, is also requiredβ

as a co-receptor for FGF23 action. Klotho can bind FGF23,

and its co-expression in cells converts FGFR1(IIIc) into a

functional FGF23 receptor
34)
. The Klotho null animals show

markedly elevated serum levels of FGF23
34)
. Fig. 1 shows

the possible mode of action of FGF23/klotho in producing

hypophosphatemia. First, FGF23 is bound to the membrane

klotho/FGFR complex in the distal tubular cells or to the

soluble klotho/FGFR complex in the proximal tubular cells

of the kidney. Such interaction activates extracellular sig-

nal-regulated kinase (ERK) and its signaling to suppress

the expression of type IIa/IIc Na
+
/Pi transporters in the

BBM of proximal tubular cells. Alternatively, FGF23 could

reduce the serum 1,25(OH)2D3 levels by suppression of 1α

-hydoxylase. Reduction of the 1,25(OH)2D3 levels would

result from a decrease in intestinal type IIb Na
+
/Pi trans-

porter and also in a decrease in intestinal Pi absorption.

The FGF23/klotho/FGFR signaling could cause hypo-

phosphatemia by suppressing both intestinal Pi absorption

and renal Pi reabsorption.

3. Other phosphaturic factors

A number of recent studies suggest that secreted friz-

zle-related protein 4 (SFRP4) and matrix extracellular

phosphoglycoprotein (MEPE) may increase urinary phos-

phate excretion. Genetic studies of tumors inducing osteo-

malacia showed a high level of expression of the RNA

for SFRP4
35)

and MEPE
36)
. SFRP4 on opossum kidney epi-

thelial cells have a reduction effect in phosphate re-

absorption independent from PTH. The MEPE expression

was reduced by 1,25(OH)2D3
37)

in HYP mice, a model of

XLH characterized by a high level of MEPE expression.

4. Sodium hydrogen exchanger– regulatory factor 1

: New renal Pi-transporter regulatory protein

A recent study reported by Karim et al. presented anoth-

er potential new mechanism of renal phosphate wasting:

mutations in the sodium hydrogen exchanger– regulatory

factor 1 (NHERF1)
38)
. In the NHERF1 protein, two struc-

tural domains, named PDZ1 and PDZ2, were reported to

be interacting proteins. PDZ1-domain protein interacts

with the C-terminal tail of NPT2a
38)

and also NPT2c
40)

and

plays an important role in renal Pi reabsorption by

Fig. 1. Fibroblast growth factor 23 (FGF23)/klotho action
21)
. FGFR; FGF receptor; Type IIa/IIb/IIc Na/Pi, Type IIa/IIb/IIc

Na
+
/Pi cotransporter; 24-OHase, 25-hydroxyvitamin D-24-hydroxylase; 1α-OHase, 25-hydroxyvitamin D-1 -hydroxylaseα .
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NPT2a
41)
. Fig. 2 shows mechanisms of phosphorylation of

NHERF1 by PTH signaling through the PTH type 1 re-

ceptor (PTH1R). Phosphorylation of NHERF1 leads to dis-

association of NHERF1-NPT2a complexes, endocytosis of

apical NPT2a protein, and inhibition of phosphate

transport. The mechanisms of interactions between the

PTH and PDZ domain containing 1 protein (PDZK1) and

of PTH-induced NPT2c endocytosis remain unknown.

Inherited and aquired renal phosphate

wasting disorders

1. X-linked hypophosphatemia

The most common inherited phosphate-wasting disorder,

XLH, frequently becomes manifest during late infancy. The

patient demonstrates skeletal deformities that include bow-

ing of the long bones and widening of the metaphyseal

region. These deformities are accompanied by diminished

growth velocity, often resulting in short stature. In the adult

stage, the patients can show osteomalacia, enthesopathy,

degenerative joint disease, and continued dental disease.

Hypophosphatemia in XLH patients is associated with in-

ability of the renal proximal tubule to reabsorb phosphate.

Despite the low serum phosphorus, serum 1,25(OH)2D is

not elevated. Serum calcium and PTH are typically normal,

although some elevation of serum PTH is observed.

Genetic linkage analysis of XLH homologies and follow-

ing genomic studies have demonstrated inactivating muta-

tions in PHEX, a gene located on Xp22.1
42,43)

, since in-

activating mutations lead to phosphate wasting by proteo-

lytic cleavage failure of phosphatonin (PTN). However,

PHEX-dependent proteolytic cleavage of FGF23 could not

yet be demonstrated in vivo. Also, FGF23 cleavage in vitro

was shown only in a single study and this could not be

confirmed in others
44)
. At present, the physiological basis

of PHEX remains unknown. Under normal conditions, the

osteoblast produces PHEX and PTN. The PHEX protein

degrades a large amount of the active phosphatonin (PTNa)

to an inactive metabolite (PTNi). The remaining circulating

active hormone interacts with a renal tubule cell receptor

that, by unknown mechanisms and to a small degree,

down-regulates the NPT2, thereby minimally compromis-

ing the transport of phosphate. In XLH, defective PHEX

fails to inactivate the majority of PTNa. Thus, excessive

PTNa interacts with the renal receptor and markedly de-

creases NPT2 mRNA and protein content (Fig. 3)
45)
.

Fig. 2. Phosphate Transport inhibition by parathyroid hormone (PTH) through

sodium hydrogen exchanger– regulatory factor 1 (NHERF1) phosphorylation
38)
. PKA,

protein kinase A; PKC, protein kinase C; NPT2, type II Na
+
/Pi cotransporter;

PDZK1, PDZ domain containing 1 protein; PTH1R, PTH type 1 receptor.
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2. Tumor-induced osteomalacia

Severe hypophosphatemia with osteomalacia and, if

growth plates are still open, rickets, can occur as an ac-

quired disorder in association with a tumor. Tumor extracts

inhibit phosphate transport in renal epithelial cells and re-

duced both phosphate and calcitriol production in ex-

perimental animals. The tumor extract affects only phos-

phate transport, in contrast to PTH, it has no effect on cal-

cium metabolism. Three potential phosphaturic hormones

have been concerned in Tumor-induced osteomalacia

(TIO): FGF23, MEPE, and SFRP4
35, 36, 46, 47)

. Serum FGF23

was elevated in patients with TIO and fell after surgery

for removal. Clinical features are similar to XLH. Plasma

calcitriol level is reduced, even though elevated levels are

to be expected in the presence of hypophosphatemia. Thus,

the underlying tubular defect that impairs phosphate re-

absorption also appears to affect calcitriol synthesis. TIO

tumor cells produce PTNa in excess. The increased PTN

production, through a feedback mechanism, enhances

PHEX production. However, the overproduction of PTNa

exceeds the capability of PHEX to degrade sufficient

amounts of the product to PTNi. Hence, in spite of enhanced

PHEX, with an overabundance of PTNa, interaction with

the receptor decreases the NPT2 mRNA and protein pro-

duction (Fig. 4)
45)
.

3. Type IIa Na
+
/Pi cotransporter deficiency

The homozygous ablation of Npt2a gene in mice

Fig. 3. Pathophysiologic basis for X-linked hypophosphatemia (XLH)
45)
. PHEX, Phosphate

regulating gene with homologies to Endopeptidase, on the X chromosome; PTN, phosphato-

nin, PTNa, active PTN; PTNi, inactive phosphatonin; NPT2, type II Na+/Pi cotransporter.

Fig. 4. Pathophysiologic basis for tumor-induced osteomalacia (TIO)
45)
. PHEX, Phosphate

regulating gene with homologies to Endopeptidase, on the X chromosome; PTN, phospha-

tonin, PTNa, active PTN; PTNi, inactive phosphatonin; NPT2, type II Na+/Pi cotransporter.
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(Npt2a
/− −
) results from increased urinary phosphate ex-

cretion leading to hypophosphatemia
12)
. Npt2c protein

abundance is significantly increased in Npt2a
/− −
mice

48)
, al-

though up-regulation of Npt2c is not sufficient to compen-

sate for loss of Npt2a function. Due to the hypophos-

phatemia, Npt2a-ablated mice show an appropriate ele-

vation in the serum levels of 1,25(OH)2D leading to hyper-

calcemia, hypercalciuria, and decreased serum PTH levels.

A study reported by Prie D et al.
49)

showed that hetero-

zygous mutations in the NPT2a gene may be responsible

for hypophosphatemia and urinary phosphate loss in pa-

tients with urolithiasis or bone demineralization.

4. NHERF1 mutations

Recent studies from animal models suggest that

NHERF1 controls renal phosphate transport. The study re-

ported by Karim et al.
38)

identifies NHERF1 mutations as

a cause of renal phosphate loss that may increase the risk

of renal stone formation or bone demineralization together

with normal serum PTH concentrations. This study was

carried out for the NHERF1 gene in 158 patients, 94 of

whom had either nephrolithiasis or bone demineralization

and identified three distinct mutations in seven patients

with a low value of tubular maximal reabsorption of phos-

phate corrected for glomerular filtration rate (TmP/GFR).

This study also showed increased PTH-induced cyclic ad-

enosine monophosphate (cAMP) generation and then the in-

hibition of phosphate transport. Urinary cAMP excretion was

significantly higher in the patients with NHERF1 mutations

than patients without NHERF1 mutations
38)
. PTH induced

a significant decrease of phosphate uptake in all cell

groups
38)
. However, both PTH-induced cAMP generation and

PTH-induced inhibition of phosphate uptake were increased

in mutant NHERF1 complementary DNA (cDNA) as com-

pared with human wild-type NHERF1 cDNA
38)
.

5. Autosomal dominant hypophosphatemic

rickets/osteomalacia

Autosomal dominant hypophophatemic rickets (ADHR)

is a rare isolated renal phosphate wasting disease with rick-

ets or osteomalacia that is transmitted as an autosomal

dominant trait. ADHR results from heterozygous mutations

in FGF23 gene on chromosome 12p13
50)
. In ADHR circu-

lating FGF23 increased because PHEX cannot inactivate

the mutated form of FGF23. Clinical manifestations are

similar to X-linked disease but exihibits severe natured

manifestations. Inappropriately low or normal 1,25(OH)2D

levels are observed in patients with ADHR.

6. Hereditary hypophosphatemic rickets with

hypercalciuria

HHRH is autosomal recessive genetic disorder caused by

mutations of the renal type IIc Na
+
/Pi cotransporter, which

contains the gene SLC34A3 in chromosome 9q34
15-17)

.

Hypophosphatemic rickets and/or osteomalacia is the clinical

manifestation in most patients. Nephrolithiasis associated

with hypercalciuria frequently occurs, probably due to ele-

vated serum 1,25(OH)2D that leads to increased intestinal

absorption of calcium and phosphorus. Serum FGF23 is low

to low-normal in HHRH
15)
. Long-term phosphate supple-

mentation is the only therapy in HHRH.

Conclusion

PTH and 1,25(OH)2D have been investigated as the most

important regulators of phosphate homeostasis. FGF23 and

PHEX are novel renal Pi regulator proteins, which are mu-

tated in ADHR and XLH respectively. PHEX is an im-

portant negative regulator of FGF23. PTH and FGF23 both

inhibit proximal tubular phosphate reabsorption. However,

whereas PTH stimulates the synthesis of 1,25(OH)2D,

FGF23 inhibits this. FGF23 appears to act via known

FGFRs, but Klotho protein, as a co-receptor, is required

for the action of FGF23. Mutations in the genes encoding

two renal Na
+
/Pi transporters, NPT2a and NPT2c, have

been identified in patients with acquired and genetic Pi

wasting disorders. In recent studies, NHERF1 was reported

as another new regulator for the Pi reabsorption mecha-

nism. NHERF1 phosphorylation by PTH has been shown

to be important in the endocytosis of NPT2a. In humans,

NHERF1 mutations play a causative role in patients with

unexplained hypophosphatemia. Investigations for various

phosphaturic hormones FGF23, SFRP4, MEPE, etc and re-
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nal phosphate transporter genesare underway to define their

mechanism on renal Pi regulation.
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