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The revival of cancer immunotherapy has taken place with the clinical success of immune checkpoint
inhibition. However, the spectrum of immunotherapeutic approaches is much broader encompassing T
cell engaging strategies, tumour-specific vaccination, antibodies or immunocytokines. This review
focuses on the immunological effects of irradiation and the evidence available on combination strategies
with immunotherapy. The available data suggest great potential of combined treatments, yet also poses
questions about dose, fractionation, timing and most promising multimodal strategies.
� 2017 The Authors. Published by Elsevier Ireland Ltd on behalf of European Society for Radiotherapy and

Oncology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).
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1. Immune checkpoint inhibition

The use of immune checkpoint inhibitors for the treatment of
advanced melanoma [1] and other solid tumour entities [2–5] is
establishing immunotherapy as a fourth pillar besides systemic
anticancer treatments (conventional chemotherapy and targeted
therapies), surgery and radiotherapy. Numerous clinical trials and
preclinical projects have been started and CTLA4 (cytotoxic T-
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lymphocyte-associated protein 4) and PD-1 (Programmed cell
death protein 1 receptor)/PD-L1 (PD-1 ligand) antibodies have
been FDA approved for the treatment of malignant melanoma
and non-small cell lung cancer as well as other cancer types. The
combination of immunotherapy with radiation is based on promis-
ing preclinical data and supported by a strong theoretical rationale
[6–8]. To date, several clinical trials testing such combinations
have been started for multiple cancer types [9] and the first results
should be reported within the next years.
2. Immunotherapy beyond checkpoint inhibition

Yet, the spectrum of immunotherapy is much broader than
immune checkpoint inhibition. Anti-tumour vaccination [10,11],
cytokine based therapies [12], chimeric antigen receptor (CAR) T
cells [13] and bispecific antibodies (bsAbs) [14,15] are only a few
examples. Other strategies include toll-like receptor agonists
[16], TGFb blockade [17], NK cell based therapy [18] and immune
modulation of macrophages [19] among others. Some of these
strategies have been developed well before the clinical use of
checkpoint inhibitors, yet with limited success. However, most of
the clinical studies have been performed with immunotherapies
as monotherapy, which leaves the question, if patients might ben-
efit from combination therapies.

The last 2–3 decades have seen the development of two
approaches that utilize polyclonal cytotoxic T lymphocytes (CTL)
independently of T cell receptor (TCR)-mediated recognition of
MHC (major histocompatibility complex) bound peptides for the
elimination of tumours. Both, CAR T cells and bsAbs typically make
use of a specificity-conferring single-chain variable fragment (scFv)
derived from a monoclonal antibody to target a specific surface
antigen on tumour cells. To generate CAR T cells, T cells are trans-
duced with a recombinant fusion protein, in which such an scFv is
fused to intracellular signalling components of the TCR and – at
least in newer-generation CAR T cells – co-stimulatory domains
usually derived from CD28 or 4-1BB are also incorporated [20]. T
cell-recruiting bsAbs consist of two scFvs, one of which is directed
against a tumour cell surface antigen. The other scFv is specific for
the invariant CD3 signalling chain of the TCR and is able to recruit
and activate tumour infiltrating T cells [21]. One of the biggest
advantages of both approaches is the fact that every T cell, inde-
pendent of its inherent specificity (through the a/b TCR), can be
converted into a CTL for the specific lysis of tumour cells.

Vaccination strategies include ‘‘off-the-shelf” peptide vaccines
as evaluated for renal cell carcinoma [22–24], personalized peptide
vaccination approaches [25], as well as RNA vaccines [26] and
strategies using dendritic cells [27] or whole inactivated tumour
cells [28,29]. These therapies have the advantage of inducing
tumour-specific immune responses targeting tumour-specific or
tumour-associated antigens. Yet, vaccination as monotherapy,
even in patients with minimal disease burden such as biochemical
recurrence of prostate cancer after radical prostatovesiculectomy
slowed PSA kinetics but did not control the disease in most
patients [30,31]. The reason for that is most probably, that the
tumour-inherent immunosuppression via Th2 polarization and
intratumoural regulatory T cells (Tregs) do not allow the cytotoxic
T cells primed by the vaccination to enter the tumour microenvi-
ronment [32] or exert their cytolytic function.

Cytokines have been established in oncological therapies for
several years, e.g. IL-2 in melanoma [33,34]. Yet, systemic applica-
tion can cause severe inflammation and even led to grade 5 toxic-
ities in the case of IL-12 [35,36]. Therefore, recent efforts were
focused on the development of tumour targeted cytokine applica-
tion e.g. by coupling the active component with a tumour targeting
antibody [37–40] creating so-called immunocytokines or complex-
ing IL-2 with antibodies for altering binding specificities [41,42].
These therapies are able to overcome the general immunosuppres-
sion in the tumour microenvironment by converting the stroma
into Th1 polarization, thus enabling T cells to enter the tumour
and recognize their cognate antigens in context with co-
stimulation on mature APCs. However, some cytokine effects are
dependent on spatial distribution and exact concentrations. IL-2
is known to have dual effects depending on the concentration. It
can either foster Th1 polarization and thus prime naïve T cells
for anti-tumour responses or support Th2 polarization and Treg
differentiation leading to a protumourigenic effect [43]. Thus, the
effects of cytokine therapies might not be predictable and even
heterogeneous in different patients and tumours depending on
the tumour microenvironment.
3. Immune activation through tumour irradiation

During the last decade a paradigm shift has taken place
acknowledging that besides the direct or indirect interaction of
ionizing radiation with the radiosensitive DNA, secondary radia-
tion responses additionally occur. In close proximity bystander
effects and in distal sites of the irradiated area systemic, abscopal
effects have been observed [44]. Distinct tumour cell death forms
accompanied by the release of danger signals by IR-stressed cells
and/or phenotypical cell alterations foster immune cell activation,
thereby contributing to such non-DNA-targeted radiation-effects
[7,45–47]. The so called immunogenic cancer cell death was origi-
nally linked to certain chemotherapeutic agents such as anthracy-
clines [48] and has been expanded to many stressors like radiation
during the last years [49,50]. Characteristics and detection of
immunogenic cancer cell death are discussed in the recently pub-
lished consensus guidelines [51]. The key outcome is that tumour
cells should be killed in a way that they become an intrinsic
(in situ) cancer-specific vaccine and secrete danger signals to acti-
vate the innate immune system [7,52]. This can also be achieved by
interfering with cell death pathways and consecutive induction of
immunogenic necrosis [53].

The tumour microenvironment, too, can be modulated by radi-
ation. Irradiation (IR) generates novel peptide sequences and
enhances MHC class I expression [54]. Neoantigen-specific CD8+

T cell responses have been shown to go along with tumour regres-
sion [55]. Radiation further enhances the diversity of the T-cell
receptor repertoire of intratumoural T cells [56]. Some of the muta-
tions that create neoantigens influence the response of patients to
immune checkpoint inhibition. One pre-requisite for anti-tumour
immune reactions is the infiltration of immune cells into the
tumour tissue [57]. Neoadjuvant local IR with a single dose of 2
Gy causes inflammation and normalization of tumour vasculature
and consecutively enables the recruitment of tumour-specific T
cells. This was shown in the RIP1-Tag5 (RT5) transgenic mouse
model expressing the simian virus 40 derived T antigen (Tag) as
a model tumour antigen. M1 polarized macrophages in the tumour
micro-milieu mediated the tumour infiltration of T cells by produc-
ing nitric oxide (NO) [58]. Currently, a randomized phase II study of
radiation-induced immune boost in operable non-small cell lung
cancer (RadImmune trial) evaluates the impact of low dose neoad-
juvant irradiation in particular on CD8+ T cell infiltration and sec-
ondarily on the association between CD8+ T cell counts and
progression free survival [59]. However, tumour irradiation has
also been described to enhance tumour infiltration by Treg cells
and immune system exhaustion [60] and to have a negative influ-
ence on anti-tumour immunity. In line with this, low dose IR can
have anti-inflammatory effects including on macrophages [61],
exploited for the treatment of benign, autoimmune T cell-driven
inflammatory or degenerative diseases [62]. Additionally, the
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dynamics of the immunomodulation have to be considered, since
the time window of radiation-induced infiltration of high numbers
of immune cells in the tumour is narrow [63,64]. A close-meshed
monitoring of the individual patients’ immune status should be
performed after radiation to define opportune moments for addi-
tion of selected immunotherapies. For that purpose, liquid biopsies
might be useful [65]. Multicolour flow-cytometry-based assays
allow for the detection of many immune cells and subsets and
additionally give information about the activation status of these
cells circulating in the peripheral blood [66]. Liquid biopsies and
flow cytometry have been evaluated in cancer patients for pur-
poses of diagnosis and monitoring of different treatments.
4. Car T cells, bispecific antibodies and irradiation

CAR T cells as well as bsAbs have shown spectacular results for
the treatment of CD19+ hematological neoplasms, particularly
acute B-lymphoblastic leukemia [67–69]. However, the treatment
of solid tumour malignancies by these approaches is more chal-
lenging. Currently, only few cell surface antigens are known that
are truly tumour-specific or whose targeting would cause accept-
able (‘‘off-tumour on-target”) side effects [70]. Undifferentiated,
stem-like tumour cells might express a different set of antigens.
Thus, the antigen targeted by CAR-T-cells might have to be chosen
explicitly to target tumour initiating cells [71]. A potential advan-
tage of CAR T cells is the possibility to artificially manipulate cyto-
kine secretion and other parameters (to generate so-called
‘‘armored T cells” or TRUCKs) [72,73] to improve both passive
and active immunotherapy with or without radiotherapy. In the
case of cytokine-secreting CAR T cells, it remains to be determined
if this approach can also reduce the risk of inducing unwanted side
effects of systemic cytokine application. In solid tumours, the num-
ber of infiltrating CAR T cells or bsAb-recruited T cells has to reach
a certain threshold to be effective. This can only be achieved if suf-
ficient T cell extravasation occurs and the immunosuppressive
tumour microenvironment is disarmed. Tumour infiltration by T
cells has been described to be fostered by total body irradiation
before transfer of in vitro expanded lymphocytes [57,74] as well
as local tumour IR [58,64,75,76]. These findings point toward a
possible rationale for the combination of CAR T cells and IR.

Mechanistically, enhanced T cell infiltration after tumour IR is
largely due to the induction of adhesion molecules, cytokines,
and chemokines involved in the recruitment of effector T cells
[57,75,76]. Furthermore, particularly high-dose hypofractionated
irradiation, in addition to reducing tumour cell numbers and
inducing immunogenic cell death, is also capable of eliminating
immunosuppressive cell populations in tumours, such as Tregs
and myeloid-derived suppressor cells, at least transiently, either
directly or indirectly via the induced T cells [77]. Low-dose IR with
one fraction in the range of 0.5–2 Gy, although not capable of
depleting myeloid cells, has been reported to change the polariza-
tion of macrophages from proangiogenic and protumourigenic M2
to anti-tumourigenic, iNOS+ M1 macrophages, which support
tumour infiltration by T cells through vascular normalization and
the upregulation of chemokines [58]. In addition, it was shown that
radiotherapy can have an enhancing effect on the cell surface
expression of certain target antigens [78,79].

Contrarily to CAR T cells, the generation of which is still time
consuming, expensive, and more vulnerable to errors, T cell-
recruiting bsAbs have the crucial benefit to be readily available
off-the-shelf. Recently, it has been reported that the combination
of IR and a T cell-recruiting bsAb yielded additive effects compared
to the respective monotherapies in the treatment of small tumours
in mice. However, contrarily to the combination of IR and anti-PD-
1 antibodies, the anti-tumour effects were not durable and no com-
plete remissions were observed [64]. Surprisingly, large tumours
treated with IR and bsAb relapsed even faster than after IR alone.
Mechanistic analyses revealed, that this was caused by massive
apoptotic depletion of tumour-resident T cells induced by repeti-
tive strong T cell stimulation by the relatively large numbers of
remaining tumour cells decorated with the T cell-recruiting bsAb.
This study clearly outlines the risk of induction of specific
immunological tolerance caused by bsAb-mediated overstimula-
tion of tumour-specific T cells, reflected by worsened tumour con-
trol. However, it is conceivable that this hazard of bsAbs could be
overcome by design optimization (including affinity alteration of
the scFvs or the addition of co-stimulatory domains) [80], refined
application schemes or other measures. Future studies have to
show to what extent CAR T cells and/or T cell-recruiting bsAbs
can contribute to successful tumour therapy in combination with
radiotherapy.
5. Tumour vaccination in combination with irradiation

Radiotherapy is capable of creating a tumour micro- and
macroenvironment that complements therapeutic cancer vaccines
in several aspects. Besides the possible creation of neoantigens
through mutations induced by IR triggered DNA damage, IR trig-
gers the tumour tissue to release danger signals that attract and
activate innate immune cells robustly which in turn leads to effi-
cient antigen-presentation by local APCs and priming of T cells
thus establishing long lasting T cell immunity [81]. In patients
who lack a natural tumour response the latter should be triggered
by thoughtfully designed vaccines. Type I interferon and pro-
inflammatory cytokine responses necessary for maturation of
APC, efficient presentation of antigen and co-stimulation, and the
attraction and priming of T cells can be achieved through diverse
adjuvants. Both exogenous and endogenous cytosolic cyclic dinu-
cleotides (CDN), used as adjuvants bind to the cytosolic receptor
stimulator of interferon genes (STING) and consecutively trigger
immune cell infiltration [82]. These bacteria-derived CDN can be
coupled to GVAX, an allogeneic, granulocyte–macrophage colony-
stimulating factor (GM-CSF)-secreting cellular immunotherapy
comprising of irradiated tumour cells transfected with the GM-
CSF gene [83]. This example highlights that the generation of vac-
cines is complex but always based on provision of a true tumour-
associated antigen and a potent trigger for Th1 polarization of the
microenvironment which allows the presentation of the antigen in
context with a strong costimulatory signal.

That radiation does synergize with vaccination in the induction
of anti-tumour immune responses is based on the mechanisms
described by Tang et al., such as radiation-induced release of anti-
gen and the possible generation of neo-antigens (see above), that
in concerted action with vaccination-induced immune stimulation
do result in strong and long-lasting anti-tumour immune effects
[84]. As shown in pre-clinical models for head and neck cancer,
combination of IR with 7.5 Gy and human papilloma virus (HPV)-
vaccination enhanced intra-tumour vascular permeability, which
correlated with anti-tumour response [85]. One draw-back of IR
in multimodal settings is that the expression of checkpoint-
molecules such as PD-L1 might be increased [86]. Even though
local IR combined with vaccination increases CD8+ T cell infiltra-
tion e.g. in pancreatic tumours, only modest inhibition of tumour
growth was observed. However, addition of anti-PD-L1 antibody
enhanced the effector function of tumour-infiltrating T cells and
significantly increased the survival of the mice. This calls for a tri-
ple combination of IR, vaccination and checkpoint-blockade, which
converts non-T cell-inflamed cancers to T cell-inflamed cancers,
revealing one underlying mechanism of induction of efficient
anti-tumour immune responses [87]. Recent research suggests that
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interfering with immune checkpoint molecules also depends on
the gut microbiome [88], provoking very personalized multimodal
cancer therapies in the future [89].
6. Immunocytokines in combination with irradiation

Immunocytokines are fusion proteins of cytokines with anti-
tumour efficiency and tumour targeting antibodies. The cytokine
mostly used is IL-2, a cytokine which can polarize the tumour
micromilieu and the intratumoural T cells to a Th1 phenotype
[90]. IL-2 is mainly produced by T cells, dendritic cells and natural
killer (NK) cells and it has differential effects on effector T cells,
Treg cells and NK cells [90,91]. Interleukin 12 (IL-12), too, can
induce tumour regression and affects innate and adaptive immu-
nity [92,93]. Besides its role in T-cell priming, IL-12 efficiently
leads to Th1 polarization in the tumour microenvironment [94].
Systemic administration of IL-12 has already shown efficacy
against solid tumours but induced dose-limiting toxicity [36,95].
The use in the form of immunocytokines refuelled the interest in
the use of IL-12 for cancer therapy.

IL-2-based immunocytokines that have been used in preclinical
and clinical studies include ch14.18-IL2 [96], L19-IL2 [97] and
NHS-IL2 [98]. L19-IL2 has also been evaluated in combination with
IR [97]. The antibody part of this immunocytokine targets altered
tumour vasculature by binding to extradomain B of fibronectin
(ED-B) [99]. Preclinically, anti-tumour efficacy has been shown
against mantle cell lymphoma [100] and B cell lymphoma in com-
bination with rituximab [101] as well as pancreatic cancer [102]. A
novel biologic combination showing preclinical efficiency is the
combination with syndecan-1 targeting antibodies [103]. Clinical
studies were performed for a cohort of patients with mixed solid
tumours and renal cell carcinoma in phase I [104] and intralesion-
ally in stage III melanoma. In this study, complete responses were
observed in 7 of 13 patients [105,106]. L19-IL2 has been described
to be effective in the clinical setting in combination with dacar-
bazine for malignant melanoma [107] and checkpoint inhibition
[108]. The combination of L19-IL2 and IR has shown anti-tumour
efficacy in a CD8+ T cell dependent manner according to ED-B
expression of tumour vasculature in different cancer models [97].
Even in the absence of MHC-I expression in the tumour with
immune effects being dependent on NK cell responses, treatment
with IR and L19-IL2 led to additive anti-tumour effects [38].

A different antibody used for the construction of immunocy-
tokines is NHS-76, an antibody binding to DNA-histone complexes
and thus targeting necrotic tumour regions that provide extracellu-
lar access to the target [109]. The fusion protein with IL-2 has been
shown to have anti-tumour effects in vivo [110] and has been
introduced to the clinic in a phase I study [111,112]. The combina-
tion of NHS-IL2 with IR showed promising results in preclinical
experiments and was evaluated in a phase Ib trial leading to long
term cancer control in 1 of 13 patients [98]. The fusion protein of
NHS-76 with IL-12 has shown anti-tumour effects in vivo with
decreased toxicity compared to IL-12 in a non-human primate
model [37]. Mice reconstituted with a human immune system
showed long-lasting tumour control of rhabdomyosarcoma xeno-
grafts through senescence and differentiation [40]. Dogs with
malignant melanoma treated with NHS-IL12 showed signs of clin-
ical response [113]. In addition to the described immunological
effects of radiation the rationale for combining necrosis targeting
immunocytokines with IR also includes necrosis induction and
enhanced intratumoural bioavailability of the compound through
IR [114]. Unpublished data revealed additive effects of the combi-
nation as well as abscopal effects by combining NHS-IL12 with
local tumour IR (Eckert et al., unpublished data).
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7. Conclusion

Whereas immune checkpoint inhibition is the most advanced
immunotherapeutic strategy already established in several differ-
ent indications [2,115–117] and is FDA approved for advanced
melanoma, non-small cell lung cancer and other cancer entities
such as urothelial bladder cancer [118], other immunotherapeutic
approaches also merit further attention. Immune checkpoint inhi-
bition might be more effective in combination with other
immunotherapy strategies or anti-cancer treatment as indicated
by the findings of Badoual et al. [119].

The challenges of combination therapies are manifold. The cel-
lular effects of the combination of IR and immunotherapy are at
least in part different than the combinatorial effects of IR and
chemotherapy [40,114]. Thus, ‘‘common knowledge” in radiation
biology might have to be reconsidered. As shown for bispecific
antibodies, combination therapies might even decrease anti-
tumour effects, e.g., in the case of large tumours. There are intense
discussions about radiotherapy dose, fractionation, timing as well
as therapy sequencing [120–122]. The common notion is that
hypofractionated, stereotactic radiation might be of advantage,
yet this leaves the question of how immunotherapy can be com-
bined with primary or neoadjuvant normofractionated radiother-
apy of larger treatment volumes encompassing adjuvant lymph
node regions. Current clinical trials mostly start immunotherapy
after curative radiation e.g. in non-small cell lung cancer or they
combine stereotactic body radiotherapy with immunotherapy reg-
imens. Yet, the most successful fractionation and sequencing might
differ depending on the applied immunotherapy, tumour type and
patient inherent factors. Radiotherapy might also be used in
immunotherapy refractory disease to induce a secondary response
with continuation of the treatment. Furthermore, combinatorial
regimens might induce abscopal effects in non-irradiated lesions
in oligometastastatic patients.

In summary, the combination of immunotherapy and radiother-
apy might be a way to long-term cancer control and survival for a
large number of cancer patients and might avoid aggressive sys-
temic therapies. The range of immunotherapeutics that might be
combined with IR is much broader than checkpoint inhibition
(Fig. 1). The further developments in this fascinating area will have
to focus on the regimens and immunotherapeutics used in differ-
ent clinical settings of metastatic or localized disease in different
cancer types.
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