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Abstract
Generative adversarial networks (GANs) are one of the most powerful generative models, but always require a large and

balanced dataset to train. Traditional GANs are not applicable to generate minority-class images in a highly imbalanced

dataset. Balancing GAN (BAGAN) is proposed to mitigate this problem, but it is unstable when images in different classes

look similar, e.g., flowers and cells. In this work, we propose a supervised autoencoder with an intermediate embedding

model to disperse the labeled latent vectors. With the enhanced autoencoder initialization, we also build an architecture of

BAGAN with gradient penalty (BAGAN-GP). Our proposed model overcomes the unstable issue in original BAGAN and

converges faster to high-quality generations. Our model achieves high performance on the imbalanced scale-down version

of MNIST Fashion, CIFAR-10, and one small-scale medical image dataset. https://github.com/GH920/im-

proved-bagan-gp.
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1 Introduction

Image classification is a classical topic in computer vision.

There are many state-of-the-art networks proposed in the

ImageNet challenge [1]. These deep neural networks

commonly require a large and balanced dataset for training.

However, in medical image classification, the performance

of most networks will deteriorate due to the imbalanced

dataset. The underlying idea of neural networks is mini-

mizing the loss function via gradient descent. When

training on an imbalanced dataset, the gradients will easily

fall into the trap of predicting majority. Apart from

reducing majority-class samples, to the best of our

knowledge, the only effective solution is increasing the

samples of minority. In the field of medical images, col-

lecting pathological cases is time-consuming. The best

solution is generating new minority-class images with high

quality and with diversity.

Generative adversarial networks (GANs) [2] are cur-

rently the most powerful generative models. As one of deep

neural networks, GANs also require a large dataset for

training. However, the minority-class subset is always

insufficient to train a good GAN. In particular, balancing

GAN (BAGAN) [3] provided a new method to train GANs

on imbalanced datasets while specifically aiming to gen-

erate minority-class images in high quality. The main

contributions of BAGAN are 1. using an autoencoder to

initialize the GAN training, which gives the GAN a com-

mon knowledge of all classes, 2. combining real/fake loss

and classification loss fairly into one output at the dis-

criminator, which ensures a balanced training for each

class.

– Problem statement

Although BAGAN proposed an autoencoder initialization

to stabilize the GAN training, sometimes the performance

of BAGAN is still unstable especially on medical image

datasets. Medical image datasets are always: 1. highly

imbalanced due to the rare pathological cases, 2. hard to

distinguish the difference among classes. As shown in [3],

the imbalanced Flowers dataset has many similar classes so

that BAGAN performs not well. In our experiments,

BAGAN fails to generate good samples on a small-scale

medical image dataset. We consider that the encoder fails
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to separate images by class when translating them into

latent vectors. Furthermore, similar to traditional GANs,

BAGAN is hard to train and sensitive to its architecture and

hyperparameters. Our objective of this work is to generate

minority-class images in high quality even with a small-

scale imbalanced dataset. Our contributions are

– We improve the loss function of BAGAN with gradient

penalty and build the corresponding architecture of

generator and discriminator (BAGAN-GP).

– We propose a novel architecture of autoencoder with an

intermediate embedding model, which helps the

autoencoder learn the label information directly.

– We discuss the drawbacks of the original BAGAN and

exemplify performance improvements over the original

BAGAN and demonstrate the potential reasons.

2 Background

Literature review of GANs. The underlying method of

Generative adversarial networks (GANs) is solving a

minimax problem [2, 4]. A typical GAN model contains a

generator and a discriminator. The generator wants to

maximize its performance, which works to generate images

as real as possible to confuse the discriminator. The dis-

criminator works to distinguish a mixture of original and

generated images whether real or fake. In this game, the

generator attempts to mimic the distribution of the real

data.

GAN techniques are fast developed in recent years.

There are various types of GANs: with different metrics of

comparing two distributions (e.g., KL divergence for the

original GAN [2], Wasserstein distance for WGAN [5, 6],

EBGAN [7], BEGAN [8], Loss-Sensitive GAN [9]), with

regularization on the loss function (e.g., WGAN-GP [5],

DRAGAN [10]), with different well-designed architecture

of GANs (e.g., CycleGAN [11, 12], PGGAN [13], SAGAN

[14]), with using a single image for generation (e.g., Sin-

GAN [15]), with conditions (e.g., ACGAN [16]), for

augmentation (e.g., AugGAN [17], BAGAN [3]), for

reducing mode collapse problem (e.g., VEEGAN [18]).

GAN-based augmentation Data augmentation can extract

more information from the original datasets to improve the

performance of models. Traditional image augmentation is

simply applying linear transformations to the original

images, e.g., reflections, rotations, and shears. If the linear

transformations do not affect the recognition of images, it

is effective for the models to learn more information on the

original dataset. To extract more information, it is also

reasonable to apply some nonlinear transformations to the

original dataset. GANs are exactly good at creating similar

images by nonlinear transformations inside the network.

The literature review [19] compared many data augmen-

tation methods in deep learning, especially the methods

based on GANs.

GANs can simulate the distribution of the real dataset

and generate new data samples with high quality. There-

fore, there are some recent work applying GANs as an

augmentation technique. However, the small training set of

minority-class images is still a challenge to train a GAN to

generate high-quality samples. GAMO [20] introduced

oversampling method into an end-to-end adversarial

learning system to deal with the imbalance issue in clas-

sification. AugGAN [17] and AugCGAN [12] proposed an

image-to-image translation framework to generate images

in target domain. BAGAN [3] proposed an overall

approach to generate minority-class images with high

quality to balance the original dataset. [21] used condi-

tional WGAN-GP (cWGAN-GP) to generate face emotion

samples for data augmentation. [22] discussed the impor-

tance of data augmentation in medical image analysis and

considered GANs as the most promising technique. For

brain tumor images synthesis, [23] used GANs and [24]

used conditional PGGAN for better tumor detection. Par-

ticularly, some recent research applied GANs for aug-

mentation to detect the COVID-19 lesions from the

pulmonary CT images [25].

3 Methods

3.1 BAGAN architecture

Autoencoder initialization. Autoencoder initialization

helps generator and discriminator to build a common

knowledge of the dataset among all classes. Besides,

autoencoder will lead the initialized GAN to a good and

stable solution. BAGAN uses a typical autoencoder, the

encoder translates a given image into a latent vector and

the decoder translates a given latent vector back to a

Fig. 1 The architecture of BAGAN. BAGAN proposed three effective

steps to improve the quality of generated images when training GANs

on imbalanced datasets
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reconstructed image. It applies L2 loss minimization

between real images and reconstructed images to train the

autoencoder networks. In this step, there is no information

about classes and the autoencoder learns all images

unsupervisedly.

Labeled latent vectors generation. In this step, the class

information is attached to each latent vector. The real

images can be divided into different classes. Using the

encoder to translate these images into latent vectors. With

an assumption that these latent vectors are normally dis-

tributed within their own classes, a probabilistic generator

can be derived by calculating means and covariances w.r.t

classes.

Balanced training in GAN. The generator and the dis-

criminator have prior knowledge from the initialized

autoencoder. The generator inherits the same architecture

and weights from the trained decoder. The discriminator

inherits the same weights of the trained encoder as the first

part and adds an auxiliary softmax layer to identify dif-

ferent classes. Differently from ACGAN [16], the dis-

criminator has only one output but it can classify real/fake

and other real classes. Furthermore, in each training batch,

the proportion of fake images is the same as any other

class. It means the gradients propagated equally for each

class and real/fake validity. Although the majority-class

images are easier for GAN to learn and to generate real-like

images, the balanced training guarantees that the minority-

class images will not be ignored.

3.2 Enhancements on BAGAN

3.2.1 Enhanced loss function

In this work, we will use two advanced loss functions with

gradient penalty (from WGAN-GP [5] and DRAGAN [10])

to compare against the original loss function of BAGAN.

Original GAN. In original GAN model, the loss function is

based on KL-JS divergence. Using cross-entropy loss to

minimize the difference between two distribution is

equivalent to minimizing the KL-JS divergence. However,

KL-JS divergence can only give meaningful gradients

when two distributions have overlaps. KL-JS divergence

cannot measure how far two distributions away when they

have no intersections. The loss function L Xr;Xg

� �
of

original GAN is defined as:

min
hG

max
hD

L Xr;Xg

� �
¼ Exr �Xr

log D xrð Þð Þ½ �

þ Exg �Xg
log 1� D xg

� �� �� � ð1Þ

where D denotes the discriminator function, G denotes the

generator function, hG is the parameters of the generator,

hD is the parameters of the discriminator; xr is sampled

from the real distribution Xr, xg is sampled from the gen-

erated distribution Xg, where xg ¼ G zð Þ and z is a random

noise vector sample from normal distribu-

tionz�N 0; IdimðzÞ
� �

. The discriminator is minimizing:

L Dð Þ Xr;Xg

� �
¼� Exr �Xr

log D xrð Þð Þ½ �
� Exg �Xg

log 1� D xg
� �� �� � ð2Þ

The generator is minimizing:

L Gð Þ Xg

� �
¼ �Exg �Xg

log D xg
� �� �� �

ð3Þ

WGAN. For the loss function, we can replace the KL

divergence by the Wasserstein distance to improve the

performance and training stability. In practice of con-

structing an original GAN, the architecture of discriminator

is not suggested to be very powerful. A powerful dis-

criminator cannot give meaningful gradients when training

its generator. WGAN [6] proposed the Wasserstein dis-

tance to solve this problem. Wasserstein distance is the

minimum transport cost of moving mass from one distri-

bution to another distribution, which is also called as Earth-

Mover Distance (EMD). EMD is continuous and differ-

entiable so that the gradients are always meaningful, which

ensures the stability of the GAN training. Based on the

theory of WGAN, the generator will eventually converge to

the performance of the discriminator. Hence, WGAN

requires a deep architecture of the discriminator so that the

defined as:

W Xr;Xg

� �
¼ inf

c�P Xr ;Xgð Þ
E xr ;xgð Þ� ckxr � xgk ð4Þ

where P Xr;Xg

� �
denotes all possible joint distributions

between the real distribution Xr and the generated distri-

bution Xg. Each c represents a transport plan.

However, it is impossible to find the lower bound by

traversing all the possible c in this equation. Using the

Kantorovich–Rubinstein duality, it is equivalent to find the

upper bound in:

W Xr;Xg

� �
¼ sup

kDkL � 1

Exr �Xr
DðxrÞ½ � � Exg �Xg

DðxgÞ
� �� �

ð5Þ

where kDkL � 1 denotes D belongs to the set of 1-Lipschitz

functions. Without the constraint, the objective function for

the discriminator is maximizing:

W Dð Þ Xr;Xg

� �
¼ Exr �Xr

D xrð Þ½ � � Exg �Xg
D xg
� �� �

ð6Þ

The discriminator in WGAN uses an unconstrained real

number rather than a classification probability to measure

the validity of real/fake images. The loss function of the

WGAN does not have a log-sigmoid functions comparing

to the original GAN.
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Gradient penalty.1-Lipschitz constraint is equivalent to

the norm of gradients krxDðxÞk2 � 1 everywhere. The

gradient penalty term is defined as:

GP ¼ Ex�X ðkrxDðxÞk2 � 1Þ2
h i

ð7Þ

In WGAN-GP [5], they add an extra gradient penalty term

to the discriminator loss function. The loss function for the

discriminator is minimizing:

W Dð Þ Xr;Xg

� �
¼ Exr �Xr

D xrð Þ½ � � Exg �Xg
D xg
� �� �

þ kEx̂� X̂ ðkrx̂Dðx̂Þk2 � 1Þ2
h i ð8Þ

where bx ¼ axr þ 1� að Þxg; a�Uð0; 1Þ, which we refer to

as ‘‘model interpolation,’’ k is a hyperparameter of the

penalty extent.

Gradient penalty is only applied in the discriminator

loss. The loss function for generator is minimizing:

W Gð Þ Xg

� �
¼ �Exg �Xg

D xg
� �� �

ð9Þ

DRAGAN [10] borrowed the idea of gradient penalty from

WGAN-GP [5]. [5] indicated the gradient penalty term can

be adapted to standard GAN loss function Eq. 1. [10]

applied the gradient penalty based on the Wasserstein

distance to the original log-sigmoid loss function and [26]

demonstrated it is also effective. The loss function for the

discriminator is minimizing:

L Dð Þ Xr;Xg

� �
¼� Exr �Xr

log D xrð Þð Þ½ �
� Exg �Xg

log 1� D xg
� �� �� �

þ kEx̂� X̂ ðkrx̂Dðx̂Þk2 � 1Þ2
h i ð10Þ

where bx ¼ axr þ 1� að Þxnoise; a�Uð0; 1Þ; xnoise � pnoise,

which we refer to as ‘‘noise interpolation.’’ Although

DRAGAN modified the gradient penalty comparing with

WGAN-GP, we will not discuss deeply on the difference.

There is no gradient penalty in the generator loss, so the

loss function is the same as the original GAN:

L Gð Þ Xg

� �
¼ �Exg �Xg

log D xg
� �� �� �

ð11Þ

With comparison of these loss functions in practice, our

enhanced BAGAN uses a DRAGAN-like loss function

with the ‘‘model interpolation’’ gradient penalty.

With conditionality.For data augmentation, we need to

apply conditional GAN to generate minority-class samples.

The architecture of DRAGAN and WGAN-GP is almost

the same. Referring to ACGAN [16] and cWGAN-GP [21],

we built a feasible architecture for conditional DRAGAN

(cDRAGAN). Due to the existence of gradient penalty, we

cannot add softmax layer to the end of the discriminator to

identify different classes. The output of the discriminator

still needs to be an unconstrained real number. In our work,

we keep the output of the generator and the discriminator

the same as WGAN-GP, whereas we attach the label

information into the input of the generator and the dis-

criminator. The label information is expanded by an em-

bedding layer and combined with other inputs by a multiply

layer. The loss function for the discriminator:

L Dð Þ Xr;Xg; Yr
� �

¼ �Eðxr ;yrÞ� ðXr ;YrÞ log D xr; yrð Þð Þ½ �
� Eðxg;yrÞ� ðXg;YrÞ log 1� D xg; yr

� �� �� �

þ kEðx̂;yrÞ� ðX̂;YrÞ ðkrðx̂;yrÞDðx̂; yrÞk2 � 1Þ2
h i ð12Þ

Similar to ACGAN and cWGAN-GP, the generated images

use the real labels for training in both G and D. The loss

function for the generator:

L Gð Þ Xg; Yr
� �

¼ �Eðxg;yrÞ� ðXg;YrÞ log D xg; yr
� �� �� �

ð13Þ

Combine with BAGAN.BAGAN has state-of-the-art per-

formance of generating minority-class images on imbal-

anced datasets. The GAN architecture in BAGAN is just a

typical conditional GAN. We noticed that the GAN model

inside the BAGAN learning system is completely inde-

pendent. Referred to the evolution of GANs, there are some

improvements on GAN architectures and loss functions to

achieve more stable training and better performance. We

enhanced the GAN part in BAGAN by adopting the

architecture and loss function from the cDRAGAN pro-

posed in the previous section. The loss function is modified

by the idea of balanced training from BAGAN. The loss

function of the discriminator:

L Dð Þ Xr; Z; Yr; Yf ; Ywrong
� �

¼ �Eðxr ;yrÞ� ðXr ;YrÞ log D xr; yrð Þð Þ½ �
� Eðz;yf Þ� ðZ;Yf Þ log 1� D Gðz; yf Þ; yf

� �� �� �

� Eðxr ;ywrongÞ� ðXr ;YwrongÞ log 1� D xr; ywrong
� �� �� �

þ kEðx̂;yrÞ� ðX̂;YrÞ ðkrðx̂;yrÞDðx̂; yrÞk2 � 1Þ2
h i

ð14Þ

where z is a random noise vector z�N 0; Idim zð Þ
� �

� Z,

yf �Uf0; 1; 2; :::g � Yf
and ywrong �Uf0; 1; 2; ::: g � Ywrong. Previously, the real

labels are shared with the real images and the fake images

when training the discriminator. In an imbalanced dataset,

the real labels randomly sampled from the dataset are still

imbalanced. Hence, the GAN will automatically train more

on the majority classes. In practice, if we sample from the

stratified real labels for training, the GAN will learn

slowly. Referring to BAGAN, we randomly sample a fake

label from a balanced-label set Yf for each fake image. In

order to enhance the learning of class information from the

real dataset, we add an extra cross-entropy loss of wrongly

classified cases. For the gradient penalty term, we borrow

the ‘‘model interpolation’’ method from WGAN-GP.
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In the setting of balanced training, the loss function of

the generator becomes:

L Gð Þ Z; Yf
� �

¼ �E log D G z; yf
� �� �� �� �

ð15Þ

3.2.2 Enhanced autoencoder

BAGAN has two key steps comparing with ordinary con-

ditional GAN: autoencoder initialization and labeled latent

generation. In our work, we design a new autoencoder

architecture with an embedding section. In BAGAN, the

labeled latent generation is based on the assumption that

the latent vectors are normally distributed. This assumption

restricts the performance of BAGAN in practice.

1. There might be some overlaps between the latent-

vector distributions of different classes Fig. 2. The result is

the generated samples based on the intersected latent

vectors look like the mixed-class images. In application,

we cannot feed a random latent vector into generator to get

images by class. Instead, we must calculate a labeled latent

vector by means and covariances of encoded training data.

2. The autoencoder does not learn the label information

directly in BAGAN. The latent vectors encoded by the

autoencoder cannot disperse their own classes. The labeled

latent vectors are defined and restricted by their overlapped

distributions, i.e., the label information is unclear. Then,

the rough label information attached to the latent vectors

will mislead the later GAN training. Furthermore, even if

we have a perfectly dispersed latent vectors, the labeled

latent vectors are only suitable to the trained decoder.

Along with the GAN training, the generator (pretrained

decoder) will be updated. However, after the autoencoder

initialization, the distributions of labeled latent vectors

cannot be updated anymore when we train the later GAN

model. In our work, we use an embedding model to gen-

erate labeled latent vectors. (Figs. 3, 4, and 5)

4 Experiments and results

The optimizer for our models in this work is Adam algo-

rithm with learning rate 0.0002 and momentum (0.5, 0.9).

The size of mini-batches is 128. All the image inputs will

be resized as 64� 64� channels. The dimension ofFig. 2 Distributions of latent vectors in different classes are

overlapped

Fig. 3 Autoencoder with an intermediate embedding model. Our

proposed autoencoder is supervised. The label information is

embedded to a dense vector with the same size of the latent vector.

Then, we apply a multiply layer to combine these two vectors as a

labeled latent vector

Fig. 4 GAN architecture and our proposed generator. Our proposed

generator is an aggregate model of the pretrained embedding model

and decoder model. We feed a random latent vector and a random

label into the generator and get a generated image in specific class.

The embedding model inside the generator can be updated with GAN

training

Fig. 5 The discriminator architecture is similar to cWGAN-GP. Our

proposed discriminator is an extended model of the pretrained

encoder. To note, the discriminator does not use the whole encoder

model. Excluding the output layer in decoder, we adopt the second-

last output (feature map) and combine the feature map with the

embedded labels as a new dense vector. The output of the

discriminator is an unconstrained real number, which indicates the

total validity of real/fake and class-matching
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default latent vector is 128. We only use batch normal-

ization in the generator/decoder. Except the generator’s

output activation function is tanh while the discriminator’s

is linear, other activation functions are LeakyReLU with

threshold 0.2. Quality of generated images is measured by

Fréchet Inception Distance. The framework of all experi-

ments is Keras with TensorFlow backend. We use an

NVIDIA Tesla P4 GPU with 8GB memory. Most of our

results are trained within 3600s. For Cells dataset, we train

100 epochs and each epoch takes 18s on our device. For

MNIST Fashion dataset, we train 15 epochs and each epoch

takes 154s on our device. For CIFAR-10 dataset, we train

30 epochs and each epoch takes 129s on our device.

Note. In each figure of representative images at this

section, the first row (row ¼ 0) shows real images by class.

For each column, we feed the generator with class label

ccolumn. Start from the second row, we feed the generator

with a fixed noise vector zrow�1. The generated images in

this figure are derived by

Im row[ 0; column	 0Þ ¼ G zrow�1; ccolumnð Þð ð16Þ

4.1 MNIST fashion & CIFAR-10

We start with our experiments on two well-known bal-

anced datasets, MNIST Fashion and CIFAR-10. We first

sample 70% of images as the training set for generative

models (A for MNIST Fashion Table 1, C for CIFAR-10

Table 2). To exemplify the quality of minority-class gen-

eration, an imbalanced version (B for MNIST Fashion

Table 1, D for CIFAR-10 Table 2) is created manually for

comparison. We observe our model works perfectly not

only on the balanced datasets (A, C), but also on the highly

imbalanced datasets (B, D). From the representative ima-

ges Figs. 6 and 7 generated with imbalanced datasets, we

cannot easily figure out which column is minority class.

Therefore, our model has a fair training for each class no

matter the imbalanced class weight. The learning outcome

only depends on the complexity of the image itself. For

example, there are 73 trousers and 370 sandals in dataset

B. Although the training set of sandals is 5 times as large

as trousers, the generated trousers images even have a

better quality.

The discriminator in our BAGAN-GP has a similar

architecture with WGAN-GP. Hence, we can set the train

ratio of the discriminator vs the generator to 5 and boost the

training with high stability. In the original BAGAN, we

cannot set a train ratio larger than 1. Otherwise, the training

of BAGAN will be oscillated. In other words, the stability

of BAGAN requires a competitive relation between the

generator and the discriminator, while our BAGAN-GP

only pursues a powerful discriminator to lead the generator.

Furthermore, our BAGAN-GP still performs excellently

when we only initialize the generator because a good

generator will accelerate the learning process of the

discriminator.

4.2 Medical image dataset: cells

Cells dataset is a highly imbalanced medical-image dataset,

which contains one majority class and three minority

classes Table 3, i.e., ‘‘red blood cell,’’ ‘‘ring,’’ ‘‘schizont,’’

and ‘‘trophozoite,’’ respectively. Except the first type, the

rest of the cells indicate different stages of malaria

infection.

Unlike the images of MNIST Fashion and CIFAR-10,

these four classes are different types of red blood cells

Fig. 8. It means they look similar but some different in

specific features. Visually, it is hard to distinguish some

type 2 cells with type 3 cells.

In Fig. 9, we observe that BAGAN is trying to improve

the minority-class generation by sacrificing the quality of

majority class. It is exactly the objective of BAGAN, but

we are not satisfied on this result. With our BAGAN-GP,

all types of cells are generated in high quality. In Sect. 5,

we will quantitatively analyze the performance of our

model.

In practice, BAGAN is unstable to train on some

imbalanced datasets, especially the medical images data-

sets, e.g., Cells dataset in our experiment. The encoder of

the original BAGAN cannot translate the input images into

dispersed groups of latent vectors Fig. 10. Then, the

labeled latent vectors are generated by the distribution of

these undivided latent vectors. Thus, the later GAN model

will fail to generate images in different classes due to the

misleading labeled latent vectors. With our enhanced

autoencoder, we observe that BAGAN becomes stable in

training and it is not sensitive to the GAN architecture and

hyperparameters.

At the feature-level cognition of ResNet-50 Fig. 11, the

generated samples can be regarded as effective augmented

Table 1 Class weight of MNIST
Fashion (balanced &

imbalanced)

T-

shirt

Trouser Pullover Dress Coat Sandal Shirt Sneaker Bag Boot

A 4231 4165 4199 4211 4185 4217 4189 4241 4175 4187

B 4166 73 139 210 287 370 422 387 545 651
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images. Furthermore, we observe the generated images

manifold are equally distributed around the real images

manifold. It means, for each class, our generator is not

creating one or few modes of images. In other words, the

generator comprehensively learns the real data distribution

and does not suffer the problem of mode collapse.

Table 2 Class weight of

CIFAR-10 (balanced &

imbalanced)

Airplane Automobile Bird Cat Deer Dog Frog Horse Ship Truck

C 3527 3523 3500 3458 3563 3455 3535 3509 3453 3476

D 3490 71 130 221 269 349 435 485 572 628

Fig. 6 Representative samples generated in the MNIST Fashion. The
order of these images follows Eq. (16)

Fig. 7 Representative samples generated in the CIFAR-10. The order
of these images follows Eq. (16)

Table 3 Class weight of Cells dataset

Normal

(type 0)

Ring

(type 1)

Schizont

(type 2)

Trophozoite

(type 3)

Train 5600 292 106 887

Test 1400 73 27 222

Fig. 8 Real images per class of Cells dataset

Fig. 9 Generated images by BAGAN (left) and BAGAN-GP (right).

The order of these images follows Eq. (16)

Fig. 10 Two-dimensional t-SNE plot of the encoded latent vectors.

Left: Encoder of BAGAN. Middle: Encoder of the enhanced

BAGAN-GP (ours). Right: Encoder ? Embedding (ours)
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5 Evaluation

– Metric: Fréchet Inception Distance.

There are two common metrics to evaluate the quality of

the generated images: Inception Score (IS) [27] and Fré-

chet Inception Distance (FID) [28]. Both of these two

measurements are based on the Inception V3 network,

which is pretrained on ImageNet dataset. IS is derived from

the classification logits, while FID is derived from the

feature layer. IS only measures the distance between the

generated sample distribution and the ImageNet distribu-

tion, whereas FID calculates the feature-level distance

between the generated sample distribution and the real

sample distribution. In this work, our objective datasets,

medical image datasets, are quite different from ImageNet

dataset. Therefore, we adopt FID as the evaluation metric.

Fréchet Distance is defined as:

FID ¼ klr � lgk
2 þ Tr Rr þ Rg � 2 RrRg

� �1=2� �

where lr is the mean of the real features, lg is the mean of

the generated features, Rr is the covariance matrix of the

real features, Rg is the covariance matrix of the generated

features.

– FID on Cells. Table 4

All FID scores are calculated by the real samples from

validation set and the target samples. For comparison, we

introduce two baseline FID scores: the reconstructed

samples by autoencoder and the real samples from training

set. The FID of reconstructed samples is regarded as a

lower baseline and the FID of real samples is regarded as

an upper baseline. The quality of target samples is higher

when its FID is lower.

In the Cells dataset, BAGAN can only generate poor

samples. Its performance is only better than autoencoder.

As we construct our BAGAN-GP model, we first build a

cDRAGAN model Eqs. (12) and (13) and combine

cDRAGAN with BAGAN framework to get our final

model. We need to demonstrate that the combined model is

better than the previous independent models. cDRAGAN

can generate majority-class images with high quality and

ignore the minority, which is the drawback of non-

BAGAN. When we apply autoencoder initialization to

cDRAGAN and keep the same loss function, the BAGAN-

GP (v1) can further improve the quality of the majority but

there is no improvement on the minority.

Note on BAGAN-GP. (v1): using real labels for generated

images Eqs. (12) and (13). (v2): feeding balancing labels

in generator at training Eqs. (14) and (15). (v3): replacing

BAGAN original encoder by our encoder. (100/200): the

training epochs. 100 epochs for 1800s, and 200 epochs for

3600s.

Comparing BAGAN-GP (v1) with BAGAN-GP (v2),

there is a negative effect on the majority-class generation

when we apply balanced training to generator, which is

analogous to BAGAN. However, the improvement on

minority-class generation is significant, while the negative

effect on majority-class generation is small. If our purpose

is generating minority-class images, it is recommended to

use balanced training (v2). Otherwise, we can omit the

balanced training step to generate highest quality images of

the majority class. Many traditional GANs will fail to

converge with a long training time. Thanks to the gradient

penalty term, our BAGAN-GP is stable during a long

training period. We observe the longer training on

BAGAN-GP, the better overall performance it will

achieve.

Although BAGAN-GP is stable with less hyperparam-

eter tuning, here we give some suggestions to build a better

BAGAN-GP for future work. In our experiments, we

observe it is not recommended to set a high latent dimen-

sion and a complex embedding model. Besides, we suggest

the discriminator does not need to inherit the weights from

the pretrained encoder. The potential reason is the pre-

trained encoder is not powerful without the embedding

part.

Fig. 11 Comparing the real samples (o) and generated samples (x) by

the feature layer output via ResNet-50
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6 Conclusion

In this work, we proposed a new architecture of BAGAN

with gradient penalty in loss function. With gradient pen-

alty term, we have a more stable BAGAN in training. For

the autoencoder initialization, we proposed a supervised

autoencoder with an intermediate embedding model to

learn the label information directly, which helps to encode

the similar but different-class images dispersedly.

We compared the enhanced BAGAN-GP against the

original BAGAN. From the dispersion of labeled latent

vectors to the quality of generated images, our model has

stronger performance than the original BAGAN. Besides,

our model can handle minority-class generation in a wide

range of datasets, including medical image datasets.

– Future work

We observe our model can generate images in different

classes unambiguously. If we can transfer the class

knowledge from generative models to classification mod-

els, we believe it will significantly improve the perfor-

mance of classifiers on imbalanced datasets.

We only use the plain dataset to train the GAN model in

this work. In practice, we can apply data augmentation in

the step of GAN training, there will be a further

improvement on the final results.

There are many research topics dealing with the scarcity

of data, such as data augmentation, few-shot, and zero-shot

learning. We hope our work can broaden the ideas in these

topics.
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