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Abstract. 	Hypoxia has been suggested to enhance progesterone (P4) synthesis in luteinizing granulosa cells (GCs), but 
the mechanism is unclear. The present study was designed to test the hypothesis that the hypoxia-induced increase in P4 
synthesis during luteinization in bovine GCs is mediated by hypoxia-inducible factor 1 (HIF-1). GCs obtained from small 
antral follicles were cultured with 2 µg/ml insulin in combination with 10 µM forskolin for 24 h as a model of luteinizing 
GCs. To examine the influence of HIF-1 on P4 synthesis, we determined the effect of changes in protein expression of the 
α-subunit of HIF-1 (HIF1A) on P4 production and on the expression levels of StAR, P450scc, and 3β-HSD. CoCl2 (100 µM), 
a hypoxia-mimicking chemical, increased HIF-1α protein expression in luteinizing GCs. After the upregulation of HIF-1α, 
we observed an increase in P4 production and in the gene and protein expression levels of StAR in CoCl2-treated luteinizing 
GCs. In contrast, CoCl2 did not affect the expression of either P450scc or 3β-HSD. Echinomycin, a small-molecule inhibitor 
of HIF-1’s DNA-binding activity, attenuated the effects of CoCl2 and of low oxygen tension (10% O2) on P4 production and 
StAR expression in luteinizing GCs. Overall, these findings suggest that HIF-1 is one of the factors that upregulate P4 in GCs 
during luteinization.
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During follicular growth, blood vessels that develop during 
follicular maturation in the theca cell layer do not penetrate 

the basement membrane [1]. The granulosa cell (GC) layer remains 
avascular until the breakdown of the basement membrane; thus, GCs 
are believed to develop under low oxygen (O2) tension or hypoxic 
conditions, as compared to atmospheric O2 tension [2–4]. Immediately 
after ovulation, the ruptured follicle is also thought to be under low 
oxygen tension due to bleeding and immature vascularization [5].

Cellular responses to hypoxic conditions are mediated by hypoxia-
inducible factor 1 (HIF-1), an oxygen-regulated transcriptional 
activator [6]. HIF-1 is composed of two subunits: the oxygen-sensitive 
HIF-1α subunit and the constitutively expressed HIF-1β subunit [6, 
7]. Under hypoxic conditions, the HIF-1α protein is stabilized and 
translocated from the cytoplasm to the nucleus, where it dimerizes 
with HIF-1β. This heterodimer then binds to a hypoxia response 
element (HRE) in target gene promoters and activates transcription 
of HIF-controlled genes involved in many physiological functions 
[6, 7]. There is increasing evidence that HIFs participate in ovulation 

and follicular differentiation. HIF-1α, induced by various stimuli, 
is suggested to serve as a key mediator of endothelin 2 expression, 
which performs a crucial function in ovulation in mammals [8]. In 
mice, HIFs control follicular rupture by regulating the expression 
of a specific subset of progesterone receptor (PGR)’s target genes, 
whereas blocking of HIF activity impairs ovulation [2]. Human 
chorionic gonadotropin (hCG) in synergy with hypoxic conditions has 
been demonstrated to up-regulate HIF-1α activity within luteinizing 
GCs both in vivo and in vitro; these findings suggest the fundamental 
roles for HIFs in follicle differentiation [9].

The protein level of HIF-1α increases in response to several stimuli, 
including hypoxia, proteasomal inhibitors, transition metals (Co2+, 
Mn2+, and Ni2+), iron chelators [hydrophilic desferrioxamine (DFO) 
and lipophilic 2,2′-dipiridyl (DP)] and other stressors [10–12]. Iron 
chelators and transition metals suppress the interaction between 
iron-mediated hydroxylation of HIF-1α and pVHL binding and inhibit 
hydroxylation of a key proline residue within the ODD domain of 
HIF-1α, thus resulting in accumulation of the HIF-1α protein [11]. 
Treatment with cobalt chloride (CoCl2) was found to mimic HIF-1 
activation through inhibition of HIF-1α degradation. In latter process, 
HIF-1activation strongly induces vascular endothelial growth factor 
(VEGF), which represents the most important mechanism for hypoxia-
induced angiogenesis in GCs of several species [12–17]. On the other 
hand, HIF-1’s DNA-binding activity in the promoter region of target 
genes can be inhibited by echinomycin, a cyclic peptide that was 
originally discovered as a sequence-specific DNA-binding agent [18].
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During the differentiation of GCs and theca cells into luteal cells, 
called the luteinization process, the main steroid product of ovaries 
(estrogen synthesized by follicles) is replaced by progesterone (P4) 
produced by the corpus luteum [19]. These changes are mediated by 
differentiation-dependent modification of the steroidogenic pathway. 
The key proteins and enzymes in P4 synthesis include steroidogenic 
acute regulatory protein (StAR; STAR), which transports cholesterol 
from the outer to inner mitochondrial membrane; cytochrome P450 
side chain cleavage enzyme (P450scc; CYP11A1), which converts 
cholesterol into pregnenolone; and 3β-hydroxysteroid dehydrogenase 
(3β-HSD; HSD3B), which converts pregnenolone into P4 [20–24]. 
The rupture and collapse of a follicle at ovulation and the invasion 
by some elements, including theca cells and blood vessels, also 
commonly take place during luteinization [25].

Luteinization is thought to occur in a hypoxic environment. We 
previously suggested that hypoxia promotes P4 synthesis in our 
model of bovine luteinizing GCs [26]. Nevertheless, whether HIF-1 
plays a role in hypoxia-driven enhancement of P4 synthesis during 
luteinization is not clear.

In the present study, we hypothesized that the hypoxia-induced 
increase in P4 synthesis during luteinization in bovine GCs is 
mediated by HIF-1. To test this hypothesis, we evaluated the ef-
fect of changes in the protein level of the α-subunit of HIF-1 by 
means of a hypoxia-mimetic compound (CoCl2) and by means of 
low-oxygen-tension culture with or without echinomycin in bovine 
cultured luteinizing and non-luteinizing GCs. We then quantified the 
P4 production as well as mRNA and protein expression of StAR, 
P450scc, and 3β-HSD in these cells.

Materials and Methods

GC isolation and culture
Bovine ovaries were obtained from a local slaughterhouse and 

were transported to the laboratory in ice-cold sterile physiological 
saline. The ovaries with healthy follicles were washed several 
times in sterile saline containing 100 IU/ml penicillin (Meiji Seika 
Pharma, Tokyo, Japan; 611400D3051) and 100 µg/ml streptomycin 
(Meiji Seika Pharma; 6161400D1034) as described previously 
[26]. GCs in follicular fluid were aspirated aseptically from healthy 
small follicles (≤ 6 mm in diameter) using a 2.5-ml disposable 
syringe and a 24-gauge needle, were pooled, then transferred to a 
plastic Petri dish filled with Dulbecco’s Modified Eagle’s Medium 
(DMEM) and Ham’s F-12 medium (1:1 [v/v]; Invitrogen, Carlsbad, 
CA, USA; 12400-024) containing 10% of calf serum (Invitrogen; 
16170078), 20 μg/ml gentamicin (Sigma-Aldrich, St. Louis, MO, 
USA; G1397), 2 µg/ml amphotericin B (Sigma-Aldrich; A9528), 
and 50 IU heparin sodium salt (Nacalai Tesque, Kyoto, Japan; 
17513-41). After removal of cumulus-oocyte complexes with a fine 
glass pipet under a dissecting microscope, GCs in follicular fluid were 
centrifuged (800 × g, 5 min at 4°C), then resuspended in Tris-HCl 
buffer (25 mM, pH 7.4) to rupture the blood cells after discarding 
the supernatant. The cell suspensions were centrifuged again and 
resuspended in DMEM (Sigma-Aldrich; D1152) supplemented with 
100 IU/ml penicillin, 100 µg/ml streptomycin, and 0.1% of bovine 
serum albumin (BSA; Roche Diagnostics, Manheim, Germany; 
10735086001) after the supernatant was discarded. This washing step 

was performed twice. The cell suspensions were then centrifuged, 
filtered through metal meshes (100 µm × 2, 80 µm × 2) to avoid 
cell aggregation, and were resuspended in a suitable volume of the 
culture medium (DMEM and Ham’s F-12 containing 10% of calf 
serum and 20 μg/ml gentamicin). The viability of GCs was assessed 
by a trypan blue dye exclusion assay.

The dispersed GCs were seeded at 0.5 × 105 viable cells per 1 
ml in the culture medium in 75-cm2 culture flasks (20 ml/flask; 
Greiner Bio-One, Frickenhausen, Germany; 658175) and cultured 
in a humidified atmosphere containing 5% CO2 at 37.5°C in a 
N2-O2-CO2-regulated incubator (ESPEC, Osaka, Japan; BNP-110) 
for 3–4 days. When the cultured cells reached 80–90% confluence, 
cell passaging was conducted using 0.1% bovine trypsin (Sigma-
Aldrich; T92012) and sterile phosphate-buffered saline (PBS; Nissui 
Pharmaceutical, Tokyo, Japan; 05913). The GCs were seeded at the 
concentration of 2.0 × 105 viable cells per 1 ml in 48-well cluster 
dishes (0.5 ml/well; Greiner Bio-One; 662160) for quantification of 
P4 production, in 96-well cluster dishes (0.1 ml/well; Iwaki, Chiba, 
Japan; 3860-096) for the cell viability assay, in 24-well cluster 
dishes (1.0 ml/well; Greiner Bio-One; 677180) for determination of 
gene expression, and in 75 cm2 culture flasks (20 ml/flask; Greiner 
Bio-One; 658175) for analysis of protein expression.

Preparation of luteinizing and non-luteinizing GCs and 
hypoxic culture conditions

To prepare luteinizing and non-luteinizing GCs, the culture medium 
was replaced with a fresh medium containing 0.1% of BSA, 5 ng/
ml sodium selenite (Sigma-Aldrich; S5261), 5 µg/ml transferrin 
(Sigma-Aldrich; T4132), and 0.5 mM ascorbic acid (Wako-Pure 
Chemical Industries Osaka, Japan; 031-12061), and the cells were 
then incubated in a normal culture atmosphere (20% O2, 5% CO2, 
and 75% N2) with or without insulin (2 µg/ml; Sigma-Aldrich; I4011) 
in the medium in combination with forskolin (10 µM; Research 
Biochemicals International, Natick, MA, USA; 70-0501-05) for 
24 h. Insulin and insulin-like growth factor I (IGF-I) are known to 
stimulate proliferation of (and P4 production in) GCs [27–31]. In 
addition, forskolin increases intracellular cyclic AMP concentration 
via activation of adenylate cyclase [32]. Insulin in combination with 
forskolin mimics the effects of luteinizing hormone (LH) and activates 
adenylate cyclase via upregulation of P4 [33]. The concentration of 
insulin and forskolin was selected according to other reports [26, 34].

Experiment 1: Effects of CoCl2 on P4 production and cell 
viability

To determine the effects of hypoxia, a hypoxia-mimicking agent 
(CoCl2; Sigma-Aldrich; C8661) was used. The luteinizing and 
non-luteinizing GCs were cultured in the presence or absence of 
CoCl2 (100 or 250 µM) for 2, 6, or 24 h. The conditioned media and 
the cultured cells were then collected to quantify P4 production by 
an enzyme immunoassay (EIA) and a spectrophotometric method. 
The cell viability after 24 h culture was also determined by Dojindo 
Cell Counting Kit including WST-1 (Dojindo, Kumamoto, Japan; 
345-06463).
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Experiment 2: Effects of CoCl2 on mRNA and protein 
expression levels of StAR, P450scc, and 3β-HSD

To measure the effect of CoCl2 on P4 synthesis, mRNA and 
protein expression levels of StAR, P450scc, and 3β-HSD were also 
evaluated. The luteinizing and non-luteinizing GCs were cultured in 
the presence or absence of CoCl2 (100 or 250 µM) for 2 or 6 h. The 
cells were then collected for real-time PCR and western blotting.

Experiment 3: The effect of CoCl2 on HIF-1α protein 
expression

Because HIF-1α expression is known to be strongly regulated by 
hypoxic conditions, we determined the effect of CoCl2 on HIF-1α 
protein expression. The luteinizing and non-luteinizing GCs were 
cultured in the presence or absence of CoCl2 (100 or 250 µM) for 
2, 6, or 24 h. The cultured cells were then washed with PBS and 
harvested for western blotting.

Experiment 4: The effect of echinomycin on CoCl2-enhanced 
P4 synthesis

To demonstrate the involvement of HIF-1α in CoCl2-enhanced 
P4 synthesis, echinomycin (Sigma-Aldrich; SML0477), a small-
molecule inhibitor of HIF-1 activity, was used. The luteinizing and 
non-luteinizing GCs were exposed to CoCl2 (100 µM) in the presence 
or absence of echinomycin for 2 or 6 h. P4 production and mRNA 
and protein expression levels of STAR, P450scc, and 3β-HSD were 
then quantified.

Experiment 5: The effect of echinomycin on 10% O2-enhanced 
P4 synthesis

In our previous study, we found that 10% O2 increases P4 syn-
thesis [26]. To determine the role of HIF-1 in 10% O2-enhanced 
P4 synthesis, echinomycin — a small molecule inhibitor of HIF-1 
activity [18] — was added to the culture medium of luteinizing and 
non-luteinizing GCs incubated at 10% O2 for 24 h. P4 production 
and the mRNA and protein expression levels of STAR, P450scc, 
and 3β-HSD were then measured.

Quantification of P4 production
To measure P4 production, EIA and DNA assay were performed. 

The conditioned media were collected and stored at –30°C until 
analysis of P4 concentration. This concentration was determined by 
EIA as described previously [35]. The standard curve had a range 
from 0.391 to 100 ng/ml. To fit the range of concentrations of the 

standards, the culture media were diluted 1:10. The cultured cells 
were also stored at –30°C until the DNA content was measured by 
spectrophotometry as described previously [36] and was used to 
normalize the P4 concentrations. Four experiments were conducted, 
and each treatment was tested in triplicate wells in each experiment. 
Neither CoCl2 nor 10% O2 altered the cell number (data not shown).

RNA isolation, cDNA synthesis, and real-time PCR
Total RNA was extracted to determine mRNA expression of 

STAR, CYP11A1, and HSD3B. For this purpose, we used TRIsure 
(Bioline, London, UK; BIO-38033). The extracted RNA from each 
sample was quantified using a NanoDrop Lite Spectrophotometer 
(Thermo Fisher Scientific, Waltham, MA, USA). The total RNA was 
reverse-transcribed on a ThermoScript RT-PCR system (Invitrogen; 
11146-016).

STAR, CYP11A1, and HSD3B mRNA expression levels were 
measured by real-time PCR using the MyiQ (Bio-Rad, Tokyo, Japan) 
and the iQ SYBR Green supermix (Bio-Rad; 170-8880) starting 
with 1 ng of reverse-transcribed total RNA as described previously 
[37]. Standard curves of sample cDNA were generated using serial 
dilutions (1:2 to 1:1,000). Expression of the 18S ribosomal RNA gene 
(18SrRNA) served as an internal control. In a preliminary experiment, 
18SrRNA was confirmed to not be influenced by luteinization and 
hypoxia (data not shown). Twenty-base pair primers with 50–60% 
GC content were synthesized for PCR (Table 1).

The PCR conditions were as follows: 95°C for 30 sec, followed 
by 45 cycles of 94°C for 6 sec, 60°C for 30 sec, and 65°C for 6 sec. 
The use of the QuantiTect SYBR Green PCR system at elevated 
temperatures resulted in reliable and sensitive quantification of the 
PCR products, with high linearity. The melting curve analysis was 
used to confirm that only the target amplicon was amplified.

Western blotting
The cells were washed with ice-cold PBS, scraped from the culture 

flask in 1 ml of ice-cold homogenization buffer (25 mM Tris-HCl 
pH 7.4, 300 mM sucrose, 2 mM EDTA, and Complete [protease 
inhibitor cocktail; Roche Diagnostics; 11697498001]). The cell 
suspension was centrifuged at 19,000 × g for 30 min, the supernatant 
was discarded, and the pellet was lysed in 100 µl of lysis buffer (20 
mM Tris-HCl pH 7.4, 150 mM NaCl, 1% of Triton X-100, 10% 
of glycerol [Sigma; G7757], and Complete). The protein samples 
were then stored at –80°C until protein expression of HIF-1α, StAR, 
P450scc, and 3β-HSD was analyzed by western blotting.

Table 1.	 Primers used in real-time PCR

Gene Primer Sequence (5’–3’) Accession no. Product (bp)
STAR Forward CCCATGGAGAGGCTTTATGA Y17259 115

Reverse TGATGACCGTGTCTTTTCCA
CYP11A1 Forward CTGGCATCTCCACAAAGACC J05245 131

Reverse GTTCTCGATGTGGCGAAAGT
HSD3B Forward CCAAGCAGAAAACCAAGGAG X17614 109

Reverse ATGTCCACGTTCCCATCATT
18SrRNA Forward TCGCGGAAGGATTTAAAGTG AY779625 141

Reverse AAACGGCTACCACATCCAAG
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The protein concentration was determined by the method described 
elsewhere [38], using BSA as a standard. The protein samples were 
solubilized in SDS gel-loading buffer (50 mM Tris-HCl pH 6.8, 2% 
of SDS [Nacalai Tesque; 31607-94], 10% of glycerol, and 1% of 
β-mercaptoethanol [Wako Pure Chemical Industries; 137-06862]) and 
heated at 95°C for 10 min. Next, the samples (50 µg protein) were 
subjected to SDS-PAGE in a 7.5% gel with pre-stained molecular 
weight markers (Bio-Rad; 161-0374) for 1 h at 200 V.

The separated proteins were electrophoretically transblotted to a 
PVDF membrane (GE Healthcare, Limited, Buckinghamshire, UK; 
RPN1416LFP) for 1 h at 25 V in transfer buffer (25 mM Tris-HCl, 
192 mM glycine, and 20% of methanol). The membrane was washed 
in TBS-T (0.1% of Tween 20 in TBS [25 mM Tris-HCl, 137 mM 
NaCl, pH 7.5]) for 10 min and was incubated in PVDF blocking buffer 
(Toyobo, Osaka, Japan; NYBR01) for 1 h at room temperature. The 
membranes were then incubated separately with a primary antibody in 
an immunoreaction enhancer solution (Toyobo; NKB-101) specific to 
each protein: an anti-HIF-1α antibody (Sigma-Aldrich; SAB2104366; 
1:500), anti-StAR antibody (Abcam; ab96637; 1:3,000); anti-P450scc 
antibody (Abcam; ab75497; 1:1,000), anti-3β-HSD antibody (Abcam; 
ab75710; 1:3,000), and an anti-β-actin antibody (ACTB; Sigma-
Aldrich; A2228; 1:8,000) overnight at 4°C. The membranes were 
washed three times for 5 min in TBS-T at room temperature, incubated 
with a secondary antibody in the immunoreaction enhancer solution 
(for HIF-1α, StAR, and P450scc [1:5,000 dilution]: an anti-rabbit IgG 
horseradish peroxidase [HRP]-conjugated whole antibody produced 
in donkey; Amersham Biosciences, Piscataway, NJ; NA934; 3β-HSD 
and ACTB [1:40,000]: an anti-mouse IgG HRP-conjugated whole 
antibody produced in sheep; Amersham Biosciences; NA931) for 
1 h and were washed three times in TBS-T 5 min each at room 
temperature. The signals were detected by means of the ECL Western 
Blotting Detection System (Amersham Biosciences; RPN2109). The 
intensity of the immunological reaction (HIF-1α, StAR, P450scc, 
3β-HSD, and ACTB) in the cells was estimated by measuring optical 
density of a defined area by computerized densitometry in the NIH 
Image software (National Institutes of Health, Bethesda, MD, USA).

The WST-1 assay
WST-1, a version of MTT (3-[4,5-dimethyl-2 thiazolyl]-2,5-

diphenyl-2 H-tetrazolium bromide), is a yellow tetrazolium salt that is 
reduced to formazan by viable cells containing active mitochondria. 
The culture medium was replaced with 100 μl of the D/F medium 
with BSA without phenol red, and a 10-μl aliquot of the assay reagent 
(0.3% WST-1, 0.2 mM 1-methoxy phenazine methosulfate in PBS, 
pH 7.4) was added to each well. The cells were then incubated for 
4 h at 38°C. The absorbance was read at 450 nm using a microplate 
reader (Model 450; Bio-Rad Laboratories). The measured absorbance 
directly correlates with the number of viable cells [39]. In this assay, 
data were expressed as a percentage of the appropriate control values.

Statistical analyses
All data are shown as mean ± SEM. The statistical analyses were 

performed in the GraphPad Prism 4 software. Statistical significance 
of differences in all experiments was assessed by one-way analysis of 
variance (ANOVA) followed by Fisher’s protected least-significant 
difference procedure as a multiple-comparison test for each group: 

the group of non-luteinizing GCs and the group of luteinizing GCs. 
Differences with P < 0.05 were considered statistically significant.

Results

P4 production by luteinizing and non-luteinizing GCs
Insulin increased P4 production by GCs cultured for 24 h under 

20% O2 (Fig. 1A; P < 0.05). GCs cultured with insulin in combination 
with forskolin produced more P4. According to these results, the 
treated and untreated GCs were used as a model of luteinizing and 
non-luteinizing GCs in further experiments.

Effects of CoCl2 on P4 production and cell viability
To characterize the effects of hypoxia and HIF-1α, we cultured 

luteinizing and non-luteinizing GCs with 100 or 250 µM CoCl2 for 
2, 6, or 24 h. After 2 and 6 h of culture, 100 and 250 µM CoCl2 
increased P4 production by luteinizing GCs, but these treatments 
did not have any effect on P4 production by non-luteinizing GCs 
(Fig. 1B and 1C). On the other hand, after 24 h of culture, 100 and 
250 µM CoCl2 tended to decrease P4 production by luteinizing GCs 
(Fig. 1D). CoCl2 did not affect cell viability within 24 h after CoCl2 
addition, meaning that CoCl2 under these conditions did not cause 
cell toxicity in this study (Fig. 1E).

Effects of CoCl2 on mRNA and protein expression levels of 
StAR, P450scc, and 3β-HSD

To determine the effects of hypoxia and HIF-1 on P4 synthesis, we 
also analyzed the expression of key steroidogenic factors involved 
in P4 synthesis: StAR, P450scc, and 3β-HSD. The real-time PCR 
analysis showed that 100 µM CoCl2 after 6 h significantly increased 
STAR mRNA expression in luteinizing GCs (Fig. 2A; P < 0.05) but 
did not affect CYP11A1 and HSD3B mRNA expression levels (data 
not shown).

Western blotting analyses revealed that 100 µM CoCl2 after 2 and 
6 h significantly increased StAR protein expression in luteinizing 
GCs (Fig. 2B; P < 0.05) but did not affect CYP11A1 and HSD3B 
protein expression (Fig. 2C and 2D).

The effect of CoCl2 on HIF-1α protein expression
After 2 and 6 h of culture in the presence of 100 µM CoCl2, we 

observed the highest expression of the HIF-1α protein concomitant 
with an increase in StAR protein expression (Fig. 3). Although 
the expression of HIF-1α was detectable, there was no significant 
difference between the presence and the absence of 100 µM CoCl2 in 
culture. Based on these results, we chose 100 µM CoCl2 for 2 and 6 
h as the conditions mimicking hypoxia in all subsequent experiments.

The effect of echinomycin on CoCl2-enhanced P4 synthesis
0.5 nM echinomycin inhibited P4 production (Fig. 4A; P < 0.05) 

and the expression of STAR mRNA (Fig. 4B; P < 0.05) and protein 
(Fig. 4C and 4D; P < 0.05) under hypoxic conditions induced by 
CoCl2 (incubation for 2 or 6 h) in luteinizing GCs.

The effect of echinomycin on 10% O2-enhanced P4 synthesis
We also evaluated the involvement of HIF-1 in 10% O2-enhanced 

P4 synthesis by means of echinomycin. In agreement with our 
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Fig. 1.	 Effects of CoCl2 on P4 production by luteinizing and non-luteinizing GCs and on cell viability. To prepare luteinizing and non-luteinizing GCs, 
we cultured the cells at 20% O2 in the presence of insulin (2 µg/ml) and/or forskolin (10 µM) for 24 h. P4 production was then quantified (A). 
To measure P4 production, the culture media were collected for an enzyme immunoassay (EIA) of P4, while the cultured cells were collected 
for measurement of DNA content by spectrophotometry to normalize the P4 concentration. The cells cultured without insulin and forskolin were 
defined as non-luteinizing GCs, while the cells cultured in the presence of insulin in combination with forskolin were defined as luteinizing GCs 
(control: non-luteinizing GCs, insulin + forskolin: luteinizing GCs). After 24 h, the luteinizing and non-luteinizing GCs were cultured with or 
without CoCl2 (100 or 250 µM) for 2 (B), 6 (C), or 24 h (D) to determine the effect of CoCl2 on P4 production. P4 production value was shown as 
a percentage of control (cultured non-luteinizing GCs without CoCl2). (E) The effect of CoCl2 on cell viability was also determined. The cultured 
cells were incubated with the WST-1 reagent for 4 h at 38°C, then the absorbance was read using a microplate reader. The data are shown as a 
percentage of control (cultured cells without CoCl2) for each group: the group of luteinizing GCs and the group of non-luteinizing GCs. Different 
letters (A) and asterisks (B, C) indicate significant differences (P < 0.05) between groups as determined by one-way ANOVA. All data represent 
mean ± SEM of four independent experiments.
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Fig. 2.	 Effects of CoCl2 on the expression levels of StAR, P450scc, and 3β-HSD in non-luteinizing and luteinizing GCs. These cells were incubated with 
or without CoCl2 (100 or 250 µM) for 2 or 6 h. Total RNA was then extracted from harvested cells to determine mRNA expression of STAR (A) 
by real-time PCR. The amount of STAR mRNA is expressed relative to the amount of 18SrRNA mRNA. The protein expression levels of StAR 
(B), P450scc (C), and 3β-HSD (D) were determined by western blotting. All the protein expression levels are expressed relative to the level 
of β-actin protein expression. The blot was incubated with primary antibodies against StAR, P450scc, 3β-HSD, or β-actin and then incubated 
with a secondary antibody conjugated with HRP. The resultant signal was detected by chemiluminescence and quantitated by computer-assisted 
densitometry. Asterisks indicate significant differences (P < 0.05) between groups — the group of luteinizing GCs and the group of non-luteinizing 
GCs — as determined by one-way ANOVA. All data represent mean ± SEM of four independent experiments.
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previous findings [26], culturing of luteinizing GCs under 10% 
O2 significantly increased P4 production after 24 h (Fig. 5A; P < 
0.05). Culturing of luteinizing GCs under 10% O2 also increased 
the expression of STAR mRNA (Fig. 5C; P < 0.05) and protein 
(Fig. 5D and 5E; P < 0.05) in comparison with cultivation under 
20% O2. Echinomycin attenuated the 10% O2 effects that increased 
P4 production (Fig. 5B; P < 0.05) and the increased expression of 
STAR mRNA (Fig. 5C; P < 0.05) and protein (Fig. 5D and 5E; P < 
0.05) after 24 h in luteinizing GCs.

Discussion

LH pulses increase gradually and result in an LH surge. The 
increasing LH pulses stimulate dominant follicle growth, ovula-
tion, and luteinization [40, 41]. In the follicle compartment before 
ovulation, GCs and the oocyte develop in an avascular environment 
that is considered to be hypoxic [2–4]. The microenvironment of 
the ruptured follicle is also thought to be hypoxic immediately 
after ovulation [5]. Thus, luteinization and hypoxia seem to occur 
simultaneously the time of ovulation. Luteinization is defined as 
the process in which GCs and theca cells differentiate into luteal 
cells and then produce a large amount of P4, which is important 
for establishing pregnancy [10, 42–44]. We previously suggested 
that hypoxic conditions promote the progression and completion of 
luteinization by enhancing P4 synthesis in bovine GCs [26]. Using 
the same model of bovine cultured luteinizing GCs, we found in the 
present study that enhancement of P4 synthesis either by hypoxia (10% 
O2) or by CoCl2 is attenuated by the addition of echinomycin, the 
inhibitor of HIF-1 DNA binding [18], suggesting that HIF-1-mediated 
P4 upregulation takes place during luteinization. The present results 
strongly support the idea that hypoxic conditions are important for 
luteinization and for steroidogenesis during this period.

In the present study, we used CoCl2 to mimic hypoxia because 
treatment with this compound has been shown to successfully 
mimic hypoxia in other studies [8, 20, 45]. CoCl2 (100 and 250 
µM) increased P4 production after 2 and 6 h in luteinizing GCs. 
Concentrations of CoCl2 up to 500 µM have been used in some 
studies on HIF-1α [46, 47]. Simultaneously with the increase in P4 

production, 100 µM CoCl2 can also sufficient to increase the HIF-1α 
protein level after 2 and 6 h. In addition, the present results indicated 
that CoCl2 has the same effects as 10% O2 does on HIF-1α protein 
expression and on P4 production in luteinizing GCs, as shown in our 
previous study [26]. This low-oxygen condition may represent the 
O2 condition in the cells during luteinization. This finding suggests 
that low-oxygen conditions promote P4 production during rather 
than before luteinization.

Our results showed that treatment of luteinizing GCs with CoCl2 
for 24 h tended to decrease their P4 production. Similarly, 500 µM 
CoCl2 and 1% O2 for 24 h inhibited P4 synthesis in bovine luteinized 
GCs obtained from the largest follicle [48]. Hypoxia seems to have a 
biphasic effect on steroidogenesis depending on oxygen tension and 
on duration of exposure to hypoxia. The induction of apoptosis by 
hypoxia was found to be most pronounced after exposure of normal 
cells or tissues to severe hypoxia [49, 50]. Hypoxia-mimicking agents, 
such as CoCl2, and low oxygen tension are also known to induce 
apoptosis in a number of cell types [49]. Nevertheless, the degrees 
of apoptosis in the GCs exposed to CoCl2 or to low oxygen tension 
was not assessed in the present study, and further studies would be 
required to address this issue.

StAR is one of the key proteins in P4 synthesis. In GCs, StAR 
expression signals early functional maturation of an ovarian antral 
follicle [51]. During luteinization, StAR expression is upregulated 
in order to transfer cholesterol from the outer to inner mitochondrial 
membrane [11, 52–56]. We confirmed that luteinizing GCs in our 
present model show higher expression of StAR in comparison with 
non-luteinizing GCs as shown in our previous study [26]. In luteinizing 
GCs, expression of the StAR protein is increased by 100 µM CoCl2 
after 2 or 6 h of incubation and by 10% O2 after 24 h. The observed 
exposure duration necessary for CoCl2 or 10% O2 to increase StAR 
expression in luteinizing GCs is in agreement with their exposure 
time necessary to increase P4 production. One of the reasons why 
CoCl2 increased P4 production (Fig. 1B and 1C) together with mRNA 
(Fig. 2A) and protein expression of StAR (Fig. 2B) during shorter 
culture periods (2 and 6 h) than 10% O2 did (24 h; Fig. 5A–E) is that 
the direct inhibition of HIF-1α protein degradation by CoCl2 [20] 
is more effective than the influence of 10% O2 on HIF-1α protein 

Fig. 3.	 Effects of CoCl2 on HIF-1α and StAR protein expression levels. The luteinizing and non-luteinizing GCs were incubated with or without CoCl2 
(100 or 250 µM) for 2 h or 6 h. The cells were then collected to determine HIF-1α and StAR protein expression by western blotting. The blot 
was incubated with primary antibodies against HIF-1α, StAR, or β-actin and then with a secondary antibody conjugated with HRP. The resultant 
signals were detected by chemiluminescence and quantitated by computer-assisted densitometry.
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accumulation. On the other hand, neither CoCl2 nor 10% O2 affected 
P450scc and 3β-HSD expression levels. These results suggest that 
hypoxic conditions promote P4 production via the upregulation of 
StAR during luteinization.

Echinomycin is a DNA-binding agent that binds to the HRE 
site within the promoters of HIF-1’s target genes and selectively 
inhibits the binding activity of HIF-1α [18]. In rats undergoing 
gonadotropin-induced ovulation, blockage of HIF-1 activity by 
echinomycin profoundly impairs the rupture of preovulatory follicles 
and reduces VEGF expression [2], suggesting that HIF-1 performs 
important functions in ovulation, especially in steroidogenesis during 
luteinization. Our finding in the present study that echinomycin 
attenuated hypoxia-enhanced P4 production and StAR expression 
in luteinizing GCs suggests that the increase in P4 synthesis during 
luteinization is stimulated by the transcription-regulatory activity 
of HIF-1. All these results may explain additional roles of hypoxia 
and HIF-1 around approximately at the time of ovulation, especially 
steroidogenesis, which is required not only for ovulation but also 
for luteinization.

In our previous studies [57, 58], we reported that hypoxia also 
affects luteolysis. Hypoxia has been shown to induce corpus luteum 
regression and to promote apoptosis of luteal cells, in which an 
oxygen deficiency or low-oxygen conditions suppress P4 production. 
It seems that hypoxia has a biphasic effect on P4 production during 
luteinization and in luteolysis depending on the differentiation status 
of the cells. The cells used in the present study were early-growing 
luteal cells, which start producing a large amount of P4, whereas the 
cells analyzed in our previous study were luteal cells obtained from 
a mid-stage corpus luteum, which produce the largest amount of P4.

In agreement with our present results, it has been reported that 
10% O2 stimulates STAR gene transcription in immortalized (KK1) 
murine GCs, and that HIF-1α seems to be actively involved in 
direct regulation of basal and dibutyryl cyclic AMP-stimulated 
StAR protein expression by binding to the proximal murine STAR 
promoter [59]. Further studies are needed to explain why hypoxic 
conditions and HIF-1 affected P4 synthesis in luteinizing GCs but not 
in non-luteinizing GCs in the present study. In conclusion, overall, our 
findings suggest that the hypoxia-induced increase in P4 production 
and in StAR expression in bovine cultured luteinizing GCs is mediated 
by HIF-1. In other words, by enhancing P4 synthesis, HIF-1 may 
play as an important factor in the progression of luteinization by 
enhancing P4 synthesis.
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