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Original Article

Spatial position changes in the semicircular canals may be the 
anatomical basis of Meniere’s disease: a preliminary study based 
on ultra-high-resolution computed tomography (CT) and intelligent 
segmentation

Yan Huang1^, Ke Liu2^, Ruowei Tang1^, Ning Xu1^, Jing Xie3^, Zhenghan Yang1^, Hongxia Yin1^, 
Xiaoguang Li2^, Zhenchang Wang1^, Pengfei Zhao1^

1Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China; 2School of Information Science and Technology, 

Beijing University of Technology, Beijing, China; 3Department of Otolaryngology, Head and Neck Surgery, Beijing Friendship Hospital, Capital 

Medical University, Beijing, China 

Contributions: (I) Conception and design: Y Huang, P Zhao; (II) Administrative support: Z Wang, P Zhao; (III) Provision of study materials 

or patients: R Tang, N Xu, J Xie; (IV) Collection and assembly of data: Z Yang, H Yin; (V) Data analysis and interpretation: K Liu, X Li; (VI) 

Manuscript writing: All authors; (VII) Final approval of manuscript: All authors.

Correspondence to: Hongxia Yin, PhD. Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong’an Road, 

Xicheng District, Beijing 100050, China. Email: 282496774@qq.com; Xiaoguang Li, PhD. School of Information Science and Technology, Beijing 

University of Technology, No. 100, Pingleyuan, Chaoyang District, Beijing 100124, China. Email: lxg@bjut.edu.cn; Zhenchang Wang, MD, PhD; 

Pengfei Zhao, MD, PhD. Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong’an Road, Xicheng 

District, Beijing 100050, China. Email: cjr.wzhch@vip.163.com; zhaopengf05@163.com.

Background: Meniere’s disease (MD) is an ear-related vestibular disorder accompanied by vertigo, hearing 
loss, and tinnitus. The anatomical structure and spatial position of the semicircular canals are important 
for understanding vestibular function and disease; however, research on MD and the effect of anatomical 
changes in the semicircular canals is limited. This study explored the relationship between the spatial 
location of the semicircular canals and MD using ultra-high-resolution computed tomography (U-HRCT) 
and intelligent segmentation.
Methods: Isotropic U-HRCT images obtained from patients with MD and healthy controls (HCs) 
were retrospectively analyzed. We extracted the semicircular canal structures and extracted their skeleton. 
The plane of the skeleton of each semicircular canal was fitted separately. The mutual angles between the 
semicircular canals, and the angles between each semicircular canal and each plane of the coordinate system 
were measured.
Results: Among 45 MD-affected ears (MDAEs), 33 MD-healthy ears (MDHEs), and 45 HC ears, the 
angle between the superior and lateral semicircular canals (LSCs) and the angle between the superior and 
posterior semicircular canals (PSCs) were larger in the MDAE and MDHE groups than the HC group 
(P<0.01), while the angle between the posterior and LSCs was smaller in the MDAE group than the HC 
group (P<0.001). The angles between the superior and PSCs and coronal plane (CP) of the coordinate 
system were significantly smaller in the MDAE and MDHE groups than the HC group (P<0.01); however, 
the angles between the LSC and axial plane and CP were significantly larger in the MDAE and MDHE 
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Introduction

Meniere’s disease (MD) is an ear-related vestibular 
disorder accompanied by clinical symptoms, including 
vertigo, hearing loss, and tinnitus (1,2). Its prevalence is 
approximately 50–200 per 100,000 adults, with a female-
to-male ratio of 1:1.89, and a peak incidence between 20 
and 60 years of age (3). Hallpike and Cairns first described 
endolymphatic hydrops (EH) as a characteristic pathological 
change in MD (4). The causes of EH in MD include 
anatomical changes of the temporal bone, genetics, and 
autoimmunity (5,6). The important aspects of MD include 
anatomical changes in the temporal bone, including poorly 
displayed vestibular aqueducts (7), the reduced width of 
vestibular aqueducts (8), and increased rates of jugular vein 
anomalies (9).

The anatomical structure and spatial position of the 
semicircular canals are important for studying vestibular 
function and disease. Traditional theory assumes that the 
ipsilateral semicircular canals are perpendicular to each 
other; however, they are not completely vertical or planar 
and demonstrate large changes in spatial position (10,11). 
By reviewing previous studies we found that research on the 
effect of anatomical changes in the spatial position of the 
semicircular canals on the onset of MD is lacking.

Computed tomography (CT) allows for the study of 
semicircular canals and their geometric shapes, and their 
three-dimensional (3D) reconstruction in living humans. 
In 1988, Takagi et al. undertook the computer-aided 
3D reconstruction of human temporal bones (12). The 
in-plane spatial resolution of conventional multi-slice 
CT devices varies, and typically ranges between 0.23 and  
0.35 mm (13,14). However, this is insufficient to visualize 
very small structures and occult lesions in the inner ear. 
The conventional reconstructed voxel size for the ultra-
high-resolution CT (U-HRCT) developed in previous 
studies is 0.1 mm × 0.1 mm × 0.1 mm (15,16), and the 
smaller reconstructed voxel size is 0.05 mm × 0.05 mm ×  

0.05 mm (17), enabling the clear visualization of the bony 
anatomical structures of the ear.

Different methods are currently used to measure 
semicircular canal angles based on clinical CT images, 
with differing point positions and numbers, and mainly 
include the rotating coordinate plane and three-point 
plane equation methods (18). Most of these methods 
require manual segmentation and measurement. Due to 
the complex and irregular structure of the semicircular 
canal and large image changes, skilled operators are 
needed to perform manual segmentation. In the early 
stage, performing automatic segmentation of the inner ear 
quickly and accurately is possible through the segmentation 
network “sub-labyrinth net”, which has good repeatability; 
with a segmentation time of approximately 10 s per side, it 
significantly improves clinical workflow efficiency (19,20).

In the present study, we applied this automated 
segmentation network to segment the three semicircular 
canals using U-HRCT data to explore the spatial position of 
the semicircular canals in patients with MD and investigate 
the anatomical factors in MD. We present this article in 
accordance with the STROBE reporting checklist (available 
at https://qims.amegroups.com/article/view/10.21037/
qims-24-196/rc).

Methods

Patients

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The study was 
approved by the Ethics Committee of Beijing Friendship 
Hospital, affiliated with Capital Medical University 
(approval No. 2022-P2-259-02), and the requirement of 
individual consent for this retrospective analysis was waived.

We retrospectively collected data from 43 patients with 
MD who visited Beijing Friendship Hospital between June 
2021 and March 2023. To be eligible for inclusion in this 

groups than the HC group (P<0.001). 
Conclusions: Spatial position changes in the semicircular canals may be the anatomical basis of MD.
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study, the patients had to meet the following inclusion 
criteria: (I) have a definite diagnosis of MD based on the 
2015 diagnostic criteria (21); and (II) have U-HRCT data 
available. Patients were excluded from the study if they 
met any of the following exclusion criteria: (I) had poor-
quality CT images; (II) had inner ear malformations; and/
or (III) had a history of ear surgery for MD. Qualitative 
distinction was used to exclude poor-quality CT images, 
including those with artifacts in the image and incomplete 
scan coverage. Subjects with normal ears were included as 
healthy controls (HCs) at a 1:1 ratio.

CT scan parameters and image analysis

CT scans were performed using a U-HRCT instrument 
(LargeV Instrument Corp., Beijing, China) with each patient 
in the supine position. The scan area covered the arcuate 
eminence of the stylomastoid foramen. Each patient was 
asked to relax and lie flat on the CT machine, and the bed 
entry position was the same for each test. Once the patient’s 
head entered the CT, the patient was asked to stare at a fixed 
point. The scan parameters were as follows: tube voltage: 
100 kV; tube current: 3.5 mA; and reconstructed voxel size: 
0.1 mm × 0.1 mm × 0.1 mm. The scanning time was 40 s, 
and the reconstructed field of view was 65 mm × 65 mm; the 
scanning layer thickness and interlayer spacing were 0.1 mm  
with 370 layers. For each scan, the inner ear region of 
interest (ROI) was a fixed size of 224×224×160 voxels.

Segmentation

The automatic calibration did not require preprocessing; 
rather, the binarized lateral semicircular canal (LSC) 
obtained through segmentation with the original image 
was simply rotated. Figure 1 shows the network flowchart. 
A two-stage segmentation framework, from coarse to fine, 
was used to obtain the substructures of the labyrinth (i.e., 
the five parts of the inner ear labyrinth) in the temporal 
bone CT images. The medical image data were 3D, and 
the structure of the image, such as the semicircular canal, 
was fixed in its position in the temporal bone. The LSC is 
a rigid structure; thus, only convolutional neural networks 
were required to learn the mapping relationship of its local 
area for segmentation. The coarse segmentation network 
was first used to determine the coarse mask of the external 
semicircular canal in the temporal bone CT images. 
Conversely, the fine segmentation network focused on 
learning more suitable feature maps in the localization area 

to segment the desired structure more accurately.
The coarse segmentation was performed using the 3D 

deep supervised densely network (18). After determining 
the LSC position, the region block localization ROI was 
extracted. The fine segmentation stage used the sub-
volume block of the inner ear determined in the coarse 
segmentation stage as the input in the temporal bone CT 
based on a previous study (19). In this previous study,  
18 cases of labeled data were used as the labeled data pool 
for the training iteration, 72 cases of data were used as the 
unlabeled data pool, 31 cases were used as the validation 
set, and 38 cases were used as the test set. In each iteration,  
18 samples were screened out from the unlabeled sample 
pool with a different data screening method. Subsequently, 
as the samples were marked by experts, they were added to 
the labeled sample pool, until the entire unlabeled sample 
pool was empty. Therefore, this experiment used a total of 
five training iterations.

Simultaneously, based on the segmentation stage, 
we achieved fast and accurate separation of different 
substructures of the inner ear vestibule, cochlea, and 
superior semicircular canal (SSC), LSC, and posterior 
semicircular canal (PSC) (Figure 2A) by fine-tuning the 
decoding and end-clustering method. The label of the 
substructures was generated with a skeleton analysis 
scheme. Using a density-based clustering approach, the 
vestibule segment was subdivided, allowing the automatic 
annotation of pseudo-labels. Based on the pseudo-labels, 
we trained a transformer U-shaped network to segment the 
substructures of the labyrinth.

Skeleton extraction

Binary image refinement was applied to the segmented 
semicircular canal to extract its skeleton (Figure 2B). 
The skeleton extraction algorithm employed was based 
on previous studies (22,23). This algorithm can refine a 
connected region to a one-pixel width for feature extraction 
and topology representation. The following process was 
adopted:

(I)	 The 3D images were converted into a binary image 
containing only the target and background images.

(II)	 Morphological dilation was used to expand all the 
connected areas in the image outward until they 
contacted each other.

(III)	 Morphological erosion was applied to shrink all 
the edges in the previously expanded image inward 
until they were connected to the skeleton.
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(IV)	 The eroded binary image was morphologically 
dilated to expand outward in all areas outside the 
skeleton.

(V)	 Steps 3 and 4 were repeated until the skeleton no 
longer changed. The formulas are expressed as 
follows:

( ) ( )0 k

K
kS A U S A== 	 [1]

( ) ( ) ( )kS A A kB A kB B= Θ − Θ  	 [2]

where A  represents the target image, B  represents the 
structural elements, and the corrosion of A  by B  is 
denoted as { }|A B z Bz AΘ = ⊆ , where k  represents the 
number of operations performed.

During each morphological operation, the pixels in the 
image required updating. The values of all pixels connected 

Figure 1 Network flowchart. The original slice size was 650 mm × 650 mm × 370 mm. After passing through the positioning network, we 
obtained the ROI of the inner ear region measuring 224×224×160 voxels. In the ROI, we obtained the inner ear segmentation structure 
through the segmentation network and fine-tuned the decoding end (green block) to obtain sub-structural segmentation. ROI, region of 
interest; PSC, posterior semicircular canal; SSC, superior semicircular canal; LSC, lateral semicircular canal.

Figure 2 Three separated semicircular canals and their skeleton 
lines. From top to bottom, respectively, are the superior, lateral, 
and posterior semicircular canals. (A) The separated semicircular 
canals; and (B) the skeleton lines of the semicircular canals.
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to the target pixel were set to the values of the target pixel 
through a dilation operation. Conversely, the values of all 
the pixels connected to the skeleton pixel were set to the 
values of the skeleton pixel through a corrosion operation. 
All the morphological operations were performed using 
the structural elements of a 3×3×3-sized cube. Repeated 
morphological expansion and corrosion operations provided 
a 3D extracted skeleton of three semicircular canals that 
was used to represent the target objects in the 3D image to 
analyze the internal structural features.

Measurement

The Digital Imaging and Communications in Medicine 
images of each participant’s unilateral temporal bone 
using Python 3.7 (Python Software Foundation, USA) 
were illustrated within a 650 mm × 650 mm × 370 mm 
cube. Through this cube, the system could automatically 
generate a constructed coordinate system (Figure S1). 
Therefore, the coordinate system used in this study was 
the anatomical coordinate system. The sagittal plane 
(SP) is a vertical plane along the anterior and posterior 
diameters of the body, while the coronal plane (CP) is a 
vertical plane along the left and right diameters of the 
body perpendicular to the ground, and the axial plane 
(AP) is perpendicular to the longitudinal axis of the 
human body parallel to the ground. In this coordinate 
system, point cloud data from three semicircular tubes 
were obtained using the skeleton algorithm, and the three 
semicircular tubes were fitted to the plane using the least-
squares method (Figure 3). For the semicircular canal data, 
we fitted a plane equation by minimizing the sum of the 
squares of the errors.

The matrix form of the least-squares method is expressed 
as follows:

Ax b= 	 [3]

where A  is the matrix of n k× , x  is the column vector 1k × ,  
and b  is the column vector 1n× . When the vector x  was 
made the smallest value for Ax b= , x  was defined as the 
least-squares solution to the equation.

The normal vector of the fitted plane was determined 
using the fitted plane equation. By calculating the angle 
between the normal vectors, the mutual angle between the 
semicircular canals and the angle between the semicircular 
canals and the coordinate system plane were calculated 
separately (Figure 4).

Statistical analysis

We analyzed the data using SPSS 25.0 (IBM Corp., 
Armonk, NY, USA). The normally distributed quantitative 
variables are described as the mean and standard deviation 
(SD), while the non-normally distributed quantitative 
variables are described as the median (M) and interquartile 
boundary (P25, P75). The categorical variables are 
expressed as the frequency and percentage, n (%). An 
analysis of variance was used to compare the differences in 
spatial position among the three groups [i.e., MD-affected 
ears (MDAEs), MD-healthy ears (MDHEs), and HCs], and 
post-hoc pairwise comparisons were performed. For patients 
with bilateral MD, both ears were included in the MDAE 
group for the statistical analysis. Statistical significance was 
set at P<0.05. GraphPad Prism 9.0 (GraphPad Software, 
San Diego, California, USA) was used to display the overall 
data distribution among the three groups.

Figure 3 Fitting the semicircular canal plane using the least-squares method. (A) The superior semicircular canal plane; (B) the lateral 
semicircular canal plane; and (C) the posterior semicircular canal plane.
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Results

Study population

A total of 39 patients with MD [24 females, mean age: 
57.41±13.45 years (range, 22–77 years)] were enrolled in 
this study. Among them, 33 patients had unilateral MD, and 
6 had bilateral MD. Thus, a total of 45 ears were affected 
by MD, and 33 ears were healthy (Table 1). The HC group 
included 45 ears.

Comparison of the mutual angles of the semicircular canals

The range of mean R2 values for the different semicircular 
canals fit between the three groups was 0.58–0.78 
(Table S1). Figure 5 shows the angles between the three 
semicircular canals in the analyzed groups. We observed 
group differences in the angles between the PSC and LSC 
[F (2, 119) =7.924, P=0.001], and multiple comparison tests 
confirmed that this angle was significantly larger in the 
HC group than the MDAE group (P<0.001). The angles 
between the LSC and SSC and that between the SSC and 
PSC also differed among the groups [F (2, 113) =36.491, 
P<0.001 and F (2, 118) =10.629, P<0.001]. Specifically, the 
angles were significantly larger in the MDHE and MDAE 
groups than the HC group (all P<0.001) (Table 2).

Comparison of the angles between the semicircular canals 
and the planes of the 3D coordinate system

Figure 6A presents the results of the comparison of the 
angles between the LSC and planes in the 3D coordinate 
system among the three groups. We observed group 
differences in the angle between the LSC and the AP  
[F (2, 121) =21.659, P<0.001], as well as the angle between 
the LSC and the CP [F (2, 121) =46.324, P<0.001]. Post-
hoc analyses indicated that both angles were significantly 
larger in the MDAE and MDHE groups than the HC 
group (all P<0.001).

Table 1 Demographic characteristics of patients with Meniere’s 
disease

Clinical characteristics Patients

Age (years) 57.41±13.45

Sex

Male 15 (38.46)

Female 24 (61.54)

Lateral 

Unilateral 33 (84.62)

Bilateral 6 (15.38)

Data are expressed as the mean ± standard deviation or n (%).

Figure 5 Comparison of the mutual angles of the semicircular 
canals among the MDHE, MDAE, and HC groups. **, P<0.01; 
***, P<0.001. PSC, posterior semicircular canal; LSC, lateral 
semicircular canal; SSC, superior semicircular canal; HC, healthy 
control; MDHE, Meniere’s disease-healthy ear; MDAE, Meniere’s 
disease-affected ear. 

Figure 4 Determination of the mutual angles between the 
semicircular canals, and the angles between the semicircular canals 
and coordinate system plane. The planes are denoted as α and β, 
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The results of the comparison of the angles between the 
SSC and planes in the 3D coordinate system among the 
groups are shown in Figure 6B. We found that the angles 
between the SSC and the AP were significantly larger in 
the HC group than the MDAE group [F (2, 121) =5.120, 
P=0.007]. However, the angle between the SSC and the CP 
did not differ significantly among the groups [F (2, 121) 
=0.729, P>0.05].

Figure 6C shows the results of the comparison of the 
angles between the PSC and planes in the 3D coordinate 
system among the analyzed groups. Group differences in the 
angle between the PSC and the AP were observed [F (2, 121)  
=4.883, P=0.009], such that the angle was significantly 
larger in the MDHE group than the HC group (P<0.05). 
In addition, the angle between the PSC and the CP also 
differed significantly among the groups [F (2, 121) =13.701, 
P<0.001], such that the angles were significantly smaller in 
the MDHE and MDAE groups than the HC group. All the 
statistical results described above are set out in Table 3.

Discussion

Principal results

This study applied 0.1-mm slice thickness U-HRCT to 

Table 2 Group differences in the semicircular canal angles among the MDHE, MDAE, and HC groups

Variables MDHE (n=33) MDAE (n=45) HC (n=45) F-value P value

PSC-LSC 80.18±10.51 77.52±9.21†*** 85.40±8.90 7.924 0.001

LSC-SSC 88.21±5.03†*** 86.50±7.90†*** 74.16±9.30 36.491 <0.001

SSC-PSC 88.59±5.00†** 89.49±8.80†*** 82.45±8.13 10.629 <0.001

Data are presented as the mean ± standard deviation. Significant after Bonferroni correction: **, P<0.01; ***, P<0.001; †, significantly 
different from HC. MDHE, Meniere’s disease-healthy ear; MDAE, Meniere’s disease-affected ear; HC, healthy control; PSC, posterior 
semicircular canal; LSC, lateral semicircular canal; SSC, superior semicircular canal.

Figure 6 Comparison of the angles between the semicircular canal 
and planes of the three-dimensional coordinate system among 
the MDHE, MDAE, and HC groups. (A) Comparison of the 

angles between the lateral semicircular canal and planes in the 3D 
coordinate system among the three groups; (B) comparison of the 
angles between the superior semicircular canal and planes in the 
3D coordinate system among the three groups; (C) comparison 
of the angles between the superior semicircular canal and planes 
in the 3D coordinate system among the three groups. *, P<0.05; 
**, P<0.01; ***, P<0.001. LSC, lateral semicircular canal; AP, 
axial plane; CP, coronal plane; SP, sagittal plane; SSC, superior 
semicircular canal; PSC, posterior semicircular canal; HC, healthy 
control; MDHE, Meniere’s disease-healthy ear; MDAE, Meniere’s 
disease-affected ear; 3D, three dimensional.
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segment and measure the mutual angles of the semicircular 
canals and the angles between the semicircular canals and 
the coordinate system in patients with MD. The different 
spatial positions of the semicircular canals between patients 
with and without MD may indicate that congenital 
anatomical abnormalities in patients with MD can lead to 
disrupted endolymph production and circulation, resulting 
in EH. Conversely, the spatial position of the semicircular 
canals did not differ between the healthy and affected ears 
of patients with MD, which suggests that unilateral MD 
may eventually progress to become bilateral MD. 

Comparison with previous findings

Traditionally, manual measurements of CT or magnetic 
resonance imaging (MRI) have been used to study the 
semicircular canal structure (11,24). Insufficient HRCT 
resolution may cause unclear boundary localization, which 
may affect accuracy. U-HRCT can more accurately extract 
semi-tubular contours and delineate centerlines. Due to 
their complex and irregular structure, semicircular canal 
images vary greatly; thus, operators must fully understand 
the characteristics of inner ear images. Moreover, calibration 
should be performed manually; for example, radiologists 
usually have to manually reconstruct the temporal bone CT 
slices to ensure that the bilateral anatomies are symmetrical, 
making the process time consuming, laborious, and prone 
to error. In addition, reconstruction software may be 

restricted, patented, or copyright protected, thus limiting 
its application. Moreover, the use of different standards 
prevents direct comparisons of the results.

In recent years, the application of deep learning in 
the field of medicine has been growing rapidly, helping 
clinicians to quickly and accurately segment target organs 
using CT images (25,26). We used deep learning to build 
an intelligent segmentation net and performed binary image 
thinning on segmented semicircular canal images to extract 
the skeletons of the semicircular canals. We then applied the 
least-squares method to fit the plane of each semicircular 
canal skeleton separately and to measure the mutual angles 
of the semicircular canals, and the angles between the 
semicircular canals and the coordinate system plane. This 
convenient, fast, and automated system is a useful clinical 
tool. In future studies, for conventional spiral CT, we will 
consider applying 3D rendering. Understanding the spatial 
angles of the semicircular canals of patients with MD can 
provide additional clinical information.

The semicircular canals can adapt to different directions 
and speeds of motion, thereby ensuring the stability and 
coordination of the body (27). The semicircular canals 
sense angular acceleration, and structural abnormalities may 
cause spatial orientation disorders (28). Compared with 
unaffected individuals, patients with MD have significantly 
higher cognitive failure questionnaire scores, which may be 
accompanied by corresponding cognitive impairments (29).  
The cognitive impairments caused by vertigo are often 

Table 3 Group differences in the angles between the semicircular canal and planes of the three-dimensional coordinate system among the 
MDHE, MDAE, and HC groups

Variables MDHE (n=33) MDAE (n=45) HC (n=45) F-value P value

LSC-AP 24.21±9.81†*** 21.29±9.13†*** 12.35±5.57 21.659 <0.001

LSC-CP 109.97±10.57†*** 109.76±9.62†*** 91.89±9.92 46.324 <0.001

LSC-SP 90.63±12.20 87.63±6.61 91.69±4.48 2.230 0.112

SSC-AP 70.23±6.61 67.44±15.85†** 75.18±9.17 5.120 0.007

SSC-CP 46.36±6.07 49.49±11.01 48.10±8.16 1.979 0.143

SSC-SP 94.64±39.87 87.43±39.77 73.04±38.04 3.153 0.056

PSC-AP 67.15±4.94†* 64.73±8.95 57.74±21.18 4.883 0.009

PSC-CP 57.12±10.32†*** 60.47±19.07†*** 79.40±27.58 13.701 <0.001

PSC-SP 85.25±52.52 91.78±49.55 84.25±44.83 0.312 0.733

Data are presented as the mean ± standard deviation. Significant after Bonferroni correction: *, P<0.05; **, P<0.01; ***, P<0.001;  
†, significantly different from HC. MDHE, Meniere’s disease-healthy ear; MDAE, Meniere’s disease-affected ear; HC, healthy control; 
LSC, lateral semicircular canal; AP, axial plane; CP, coronal plane; SP, sagittal plane; SSC, superior semicircular canal; PSC, posterior 
semicircular canal.
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dominated by visuospatial impairments (30,31).
Contradicting previous theories, our measurements 

revealed that the angles of the semicircular canals were not 
perfectly perpendicular in either the normal population or 
in patients with MD. Kim et al. (32) reported average angles 
between the anterior and horizontal semicircular canal 
planes, the horizontal and PSC planes, and the anterior 
and PSC planes of 83.7°, 82.5°, and 88.4°, respectively. 
Lyu et al. (33) observed that the angle between the anterior 
and PSC planes was >100°. Our results also showed that 
the mutual angles of the three semicircular canal planes 
were not perpendicular to each other, possibly because the 
semicircular canals themselves are not a regular circular 
shape. Moreover, the measurements of the mutual angles 
depend on the method used to fit the semicircular canal 
planes. The orthogonality deviates significantly between 
the semicircular canals in most species (24). In addition, we 
observed differences in the angle between the semicircular 
canal and the coordinate plane in MD. Considering that 
each study coordinate system is not exactly the same, this 
result requires a larger sample size for further validation.

Head rotation causes the endolymph in the semicircular 
canal to move in the opposite direction due to inertia, 
stimulating hair cells on the crista ampullaris. These 
cells transmit signals to the brain through the vestibular 
nerve, causing corresponding reflex actions to regulate 
muscle tension and eye movement (34,35). The significant 
difference in the spatial structure of the semicircular 
canals between patients with and without MD may lead to 
weakened self-regulation of motion, weakened vestibulo-
ocular reflex, and higher sensitivity to vertigo in patients 
with MD. The abnormal spatial position of the semicircular 
canals may also affect endolymph flow or absorption, 
leading to changes in endolymphatic pressure and volume, 
which may cause MD symptoms. Our results showed the 
effect of spatial positional changes in the semicircular canals 
on MD; however, these anatomical factors may be a risk 
or triggering factor for MD, and there is no conclusive 
evidence that these factors have a direct causal relationship 
with the occurrence of MD. The etiology of MD may 
involve a combination of factors.

MD usually affects only one ear, and it is not yet clear 
whether unilateral MD will develop in the other ear. Due 
to differences in diagnostic criteria, examination methods, 
sample size, and regional differences, the true incidence of 
bilateral MD remains unknown (36). Approximately 14% of 
patients with unilateral MD progress to bilateral MD within 

an average of 7.6 years (37). In 1990, Yazawa et al. (38)  
performed a histological examination of the temporal 
bones in MD. Among 67 cases with EH, 20  (29.9%) 
showed bilateral EH. Morimoto et al. (39) reported EH in 
29 unilaterally affected ears of patients with definite MD 
but not in the cochlea or the vestibule of eight of 29 non-
affected ears. Pyykkö et al. (40) reported that approximately 
90% of patients with MD had EH on gadolinium-enhanced 
MRI and that 75% of patients with unilateral symptoms of 
MD had bilateral hydrops.

We observed no significant difference in the spatial 
positions of the semicircular canals between the affected 
and healthy sides of MD in this study; however, the spatial 
positions of both ears of patients with MD differed from 
those of the normal population in the spatial position of the 
semicircular canals, further showing that while the healthy 
ear of MD patients may display no clinical symptoms of 
hearing loss or ear fullness, bilateral onset may occur. No 
effective methods exist to prevent or stop unilateral MD; 
however, the spatial position information of the semicircular 
canals can be used to non-invasively determine the risk of 
developing MD in the asymptomatic ear. After obtaining 
information on the spatial position of semicircular canals in 
patients with MD, pharmacotherapy, surgery, rehabilitation, 
and other methods can be used to control the frequency of 
vertigo attacks, preserve hearing and balance, and improve 
the quality of life of patients.

Limitations

This study had several limitations. First, the sample size was 
limited; therefore, future studies with more cases need to be 
conducted to gather further evidence to support our results. 
Second, the construction of this cubic coordinate system 
was based on anatomical coordinates, after instructing 
all patients to focus on a fixed point to ensure that both 
eye orbits were parallel to the horizontal plane of the 
coordinate system. However, even though all patients were 
in the same position during CT acquisition, the position of 
the semicircular canal may have varied somewhat. Further 
validation is needed using high-resolution CT with a 
larger field of view. Finally, we focused only on the spatial 
position of the semicircular canals and not that of the entire 
inner ear, such as the cochlea and vestibule. The spatial 
information of these structures will be measured during 
follow up to improve knowledge of the spatial anatomy of 
the inner ear of patients with MD. 
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Conclusions

Our results revealed significant differences in the spatial 
positions of the semicircular canals between patients 
with MD and HCs based on the application of intelligent 
segmentation and U-HRCT. These findings indicate that 
spatial position changes in the semicircular canals may be 
the anatomical basis of MD. This study is a preliminary 
research and exploratory work; hence, future larger-scale 
studies are needed to validate these findings and measure 
the spatial position of the entire inner ear, including the 
cochlea and vestibule.
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